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Regional neuroinflammation
induced by peripheral infection
contributes to fatigue-like
symptoms: a [18F]DPA-714
positron emission tomography
study in rats
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Kobe, Japan, 2Department of Chinese Medicine Diagnostics, School of Traditional Chinese Medicine,
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Introduction: A series of symptoms, including fever, widespread pain, fatigue,

and even ageusia, have frequently been reported in the context of various

infections, such as COVID-19. Although the pathogenic mechanisms

underlying an infection causing fever and pain have been well established,

the mechanisms of fatigue induced by infection in specific brain regions

remain unclear.

Methods: To elucidate whether and how the peripheral infection cause fatigue

via regional neuroinflammation, we performed a brain-wide investigation of

neuroinflammation in a peripheral pseudoinfection rat model using [18F]DPA-714

positron emission tomography (PET) imaging analysis, in which the

polyriboinosinic: polyribocytidylic acid (poly I:C) was intraperitoneally injected.

Results: Transient fever lasting for several hours and subsequent suppression of

spontaneous activity lasting a few days were induced by poly I:C treatment.

Significant increase in plasma interleukin (IL)-1b, IL-6 and tumour necrosis factor

(TNF)-a were observed at 2 and 4 h following poly I:C treatment. PET imaging

analysis revealed that the brain uptake of [18F]DPA-714 was significantly

increased in several brain regions one day after poly I:C treatment, such as the

dorsal raphe (DR), parvicellular part of red nucleus (RPC), A5 and A7

noradrenergic nucleus, compared with the control group. The accumulation

of [18F]DPA-714 in the DR, RPC and A5 was positively correlated with subsequent

fatigue-like behavior, and that in the A7 tended to positively correlate with fever.
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Discussion: These findings suggest that peripheral infection may trigger regional

neuroinflammation, which may cause specific symptoms such as fatigue. A similar

mechanism might be involved in COVID-19.
KEYWORDS

fatigue-like symptoms, regional neuroinflammation, peripheral infection, PET,
sickness behavior
1 Introduction

Fatigue and other prolonged neuropsychiatric and physical

manifestations caused by SARS-CoV-2 infection have received

growing attention as the most frequently claimed post-COVID-19

sequelae and are becoming a serious global public health issue. In

general, infections induced by various kinds of pathogens or

pathogenic organisms are known to be associated with a series of

symptoms including fever, widespread pain, and fatigue. The

underlying mechanisms for infection-evoked fever and pain have

been well investigated. In response to peripheral infection,

prostaglandin E2 (PGE2) is produced and increases in the brain

parenchyma, which activates PGE receptor 3 (EP3) receptors of

thermoregulatory neurons in the preoptic area of the hypothalamus

leading to fever (1, 2). Peripheral and central mechanisms, such as

upregulation of the transient receptor potential family in afferent

sensory neurons evoked by pro-inflammatory mediators have been

proposed to be involved in infection-related pain (3, 4). Long-term

debilitating fatigue and severe fatigue sensations have also

been reported frequently in various infections. In 1985, there was

an outbreak of illness characterized by chronic or recurrent

debilitating fatigue linked to the Epstein–Barr virus in Nevada in

USA. The illness was defined as chronic fatigue syndrome (CFS) by

the Centers for Disease Control and Prevention and first described

in a publication in 1988 (5). Thereafter, similar symptoms have

been frequently reported in some virus infections, including

coronavirus disease 2019 (COVID-19). The latest clinical studies

in COVID-19 have mentioned that besides respiratory symptoms,

fatigue is one of the most common (approximately 50%)

typical clinical manifestations related to COVID-19, and

might be observed as sequelae (6–8). However, the detailed

mechanisms pointing to the involvement of infection in fatigue

pathophysiology remain unclear, and conclusive evidence has yet to

be demonstrated.

Recently, neuroinflammation has been proposed as a possible

mechan i sm re l a ted to the deve lopment o f f a t i gue .

Neuroinflammation, an immune response in the central nervous

system (CNS) whereby glial cells are activated, is known to be

involved in a variety of CNS diseases. In a pioneering study,

Nakatomi et al. (9) reported that widespread neuroinflammation,

particularly in the hippocampus, amygdala, thalamus, and midbrain,

correlated with the severity of symptoms in patients with CFS.

Although peripheral infection has been reported to trigger
02
inflammatory responses in the brain (10–12), the underlying

mechanisms for fatigue involved in neuroinflammation in the

specific brain regions remain unclear.

The regional neuroinflammation in the brain could be

quantitatively evaluated by positron emission tomography (PET)

imaging non-invasively using radiolabeled compounds targeting

specific biomarkers of activated glial cells. [18F]DPA-714 (N,N-

Diethyl-2-(2-[4-(2-Fluoroethoxy)-Phenyl]-5,7-Dimethyl-Pyrazolo

[1,5-a]Pyrimidin-3-yl)-Acetamide) has been developed and widely

used for the quantitative assessment of neuroinflammation in

diverse central nervous system diseases as a specific radioligand

for the translocator protein 18 kDa, a reliable biomarker for

activated microglia (13). To investigate whether and how the

regional neuroinflammation is involved in peripheral infection

induced fatigue-like symptoms, we induced a peripheral

pseudoinfection in rats by intraperitoneal injection of

polyriboinosinic: polyribocytidylic acid (poly I:C) (14). Using this

animal model, we performed brain-wide quantitative evaluation of

neuroinflammation using [18F]DPA-714 PET imaging analysis and

assessed the correlation between regional neuroinflammation and

sickness behaviors, including fatigue.
2 Materials and methods

2.1 Animals and peripheral
pseudoinfection generation

Forty-six male Sprague-Dawley rats (6 weeks old) were

purchased from Japan SLC (Hamamatsu, Japan). Since data

variability has been reported to be greater in the females than in

males in rodents PET imaging study, only male rats was used (15).

The rats were housed in a temperature- (23 ± 1°C), humidity- (60 ±

5%), and light- (lights on at 8:00 and off at 20:00) controlled

environment. A standard laboratory diet and tap water were

available ad libitum. For acclimation, rats were housed in the

experimental room for at least 1 week before the week-long pre-

level measurement of spontaneous activity, and randomly divided

into saline- (control) and poly I:C-treated groups. A pseudo-viral

infection in rats (8 weeks old) was induced by intraperitoneal

injection of poly I:C (GE Healthcare Life Science, Buckinghamshire,

UK), a synthetic double-stranded RNAwhich has been widely used to

mimic peripheral viral infections, dissolved in saline at a dose of 10
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mg/kg body weight between 10:00 and 11:00 in the morning (14, 16).

In the control group, rats were injected with saline at analogous

procedure. Body weight was measured in the morning every day from

3 days before to 4 days after the poly I:C injection. The experimental

procedures in the present study were approved by the Institutional

Animal Care and Use Committee of RIKEN, Kobe Branch, and were

performed in accordance with the Guide for the care and use of

laboratory animals (NIH publication No. 85-23, revised 2011).
2.2 Measurement of spontaneous activity

To quantitatively evaluate fatigue state, the spontaneous activity

of each rat was recorded with an infrared beam sensor (NS-AS01;

Neuroscience, Tokyo, Japan) prior to and following a poly I:C

injection. The infrared beam sensor was placed 15 cm above the

center of each cage, and the activities of rats housed in individual

cages were measured. The level of night-time spontaneous activity

was normalized by the mean value of the 3 days prior to poly I:C

injection. The fatigue of rats was calculated by assessing night-time

spontaneous activity, which was added up every 60 min and

analyzed in Clock Lab (Neuroscience, Tokyo, Japan). In addition,

the spontaneous activity in all rats used in [18F]DPA-714 PET scan

was also examined separately throughout the entire experimental

period for the correlation analysis.
2.3 Body temperature measurement

Body temperature of rats was monitored using an implantable

programmable temperature transponder (IPTT-300, Bio Medic

Data Systems, Seaford, USA), which was implanted gently into

the subcutaneous tissue between the scapulae of each rat under

anesthesia (with a mixture of 1.5% isoflurane and nitrous oxide/

oxygen 7:3) with a syringe-like action 7 days before intraperitoneal

injection of poly I:C or saline. Temporal changes in the body

temperature of the rats were measured wirelessly using an IPTT

reader from 0 h (before injection) to 48 h following the poly I:C or

saline injection.
2.4 Cytokine analysis

Besides the pre-injection levels (baseline), at 2 h, 4 h, 8 h, 24 h,

and 48 h after poly I:C injection, rats were shortly anesthetized with

a mixture of 1.5% isoflurane and nitrous oxide/oxygen (7:3), and

blood samples were collected from an indwelling catheter in the tail

vein implanted just before each sampling. Venous blood was

centrifuged at 12,000 rpm for 10 min at 4°C and cytokine levels

were measured on the resulting plasma. The cytokines interleukin

(IL)-1b, IL-6 and tumour necrosis factor (TNF)-a were

simultaneously assessed using the Bio-Plex Pro Rat Cytokines

Assay (Bio-Rad Laboratories, California, USA) (17). Since, the

level of plasma cytokines remained stable following repeat

measurements in satellite control rats (Supplemental Figure), the
Frontiers in Immunology 03
poly I:C induced temporal changes in plasma cytokines were

compared with their own baseline (pre-injection level).
2.5 PET scanning

In the present study, [18F]DPA-714 was synthesized as reported

by Sydney group (18). The product was identified and purified

using high-performance liquid chromatography on a COSMOSIL

C18-AR-II column (10 × 250 mm, Nacalai, Kyoto, Japan). Molar

activity ranged from 33 to 160 GBq/µmol. Radiochemical purity

analyzed using HPLC exceeded 99%.

All PET scans were performed using a microPET Focus220

(Siemens, Knoxville, USA) designed for small laboratory animals.

Both saline- and poly I:C-treated rats were anesthetized with 1.5%

isoflurane and nitrous oxide/oxygen (7:3) and placed in a prone

position in the PET scanner gantry. During the PET scan, the body

temperature was maintained at 37°C using a small animal warmer

connected to a thermometer (BWT-100A; Bio Research Center,

Nagoya, Japan). A 45-min emission scan was performed

immediately after the bolus injection of [18F]DPA-714 (≈75 MBq

per animal) via a cannula inserted into the tail vein; the energy

window was 400-650 keV and the coincidence time window was 6

ns. Emission data were collected in list mode and sorted into

dynamic sonograms (6 × 10 s, 6 × 30 s, 11 × 60 s, and 10 × 180

s, for a total of 33 frames). The acquired data were reconstructed by

standard 2D-filtered back projection (FBP) (ramp filter, cutoff

frequency at 0.5 cycles per pixel) for quantification, and by a

statistical maximum a posteriori probability (MAP) algorithm (12

iterations with point spread function effect) for image registration.
2.6 Image analysis

PET images were co-registered to a magnetic resonance

imaging (MRI) template which was placed in a Paxinos and

Watson stereotactic space using the PMOD imaging processing

software (version 3.6, PMOD Technologies, Zürich, Switzerland).

Each FBP image was spatially smoothed using an isotropic Gaussian

kernel (0.6-mm full width at half maximum) for enhancement of

the statistical power. The radioactivity was normalized with

cylinder phantom data and expressed as standardized uptake

values (SUVs).

A voxel-based statistical analysis was performed using Statistical

Parametric Mapping (SPM) 8 software (Welcome Department of

Imaging Neuroscience, London, UK). A two sample t-test was used

for estimating the statistical differences between groups. The

statistical threshold was set to be P < 0.005 familywise error

(FWE) with an extent threshold of 200 contiguous voxels.
2.7 Statistical analysis

All results are expressed as the mean ± SEM. All data were

analyzed in SPSS (version 24.0, IBM, Armonk, USA). One-way
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analysis of variance (ANOVA) with Bonferroni’s multiple-

comparison procedure was used to assess changes in body

temperature, cytokines, and spontaneous activity prior to and

following poly I:C injection. Two-way repeated measures

ANOVA with Bonferroni’s multiple-comparison procedure was

used to assess differences in body temperature and spontaneous

activity between the two groups of rats. Pearson’s test was used for

correlation analysis of the accumulation of [18F]DPA-714 in each

brain region and fatigue-like behavior. Differences were considered

statistically significant at P < 0.05.
3 Results

3.1 Poly I:C-induced symptoms and plasma
cytokine elevation

The body weight of poly I:C-treated rats decreased

approximately by 10% of the pre-level value the day after poly I:C

injection, thereafter recovering gradually. The body temperature of
Frontiers in Immunology 04
rats in the poly I:C-treated group increased significantly again and

reached a peak at 5 h (P < 0.001), following a significant increase as

an acute stress response within the first hour after the poly I:C

injection (Figure 1A).

To assess poly I:C-induced peripheral inflammatory responses,

temporal changes in plasma cytokines were detected up to 48 h after

the poly I:C injection (Figure 1B). Several pro-inflammatory

cytokines were significantly elevated at early injection time points,

as compared with the pre-level. Two hours after poly I:C injection,

cytokines IL-1b (P = 0.019), IL-6 (P = 0.004) and TNF-a (P < 0.001)

were significantly elevated. A significant elevation of IL-1b (P =

0.002) and IL-6 (P = 0.006) was observed until 4 h following the

poly I:C injection.
3.2 Poly I:C-induced suppression of
spontaneous activity

Fatigue can be assessed by changes in voluntary activity, known

to be associated with motivation (14). To evaluate fatigue, night-
B

A

FIGURE 1

Temporal changes in body temperature and peripheral cytokines following a poly I:C or saline treatment. (A) Subcutaneous body temperature of rats from
poly I:C (10 mg/kg) treated group (closed circles, n = 8) and control group (open circles, n = 12) up to 48 h after intraperitoneal injection with poly I:C or
saline were plotted. *P < 0.05, **P < 0.01 for poly I:C-treated group, ¶ ¶ P < 0.01 for control group vs. 0 h (before injection). #P < 0.05, ##P < 0.01 vs. control
group. (B) Plasma IL-1b, IL-6, and TNF-a were detected at 2 h, 4 h, 8 h, 24 h and 48 h following poly I:C injection, as well as pre-injection (0 h). Each value
represents the mean ± SEM, n = 14. *P < 0.05, **P < 0.01 vs. pre-treated level. IL, interleukin; TNF, tumour necrosis factor.
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time spontaneous activity in the home cage was investigated in both

groups. As shown in Figure 2, the night-time spontaneous activity

in the control group remained nearly stable throughout the

experiment. However, the night-time spontaneous activity

decreased significantly on the first night after the poly I:C

injection (post day 1, P < 0.001). On the second night (post day

2), the night-time spontaneous activity sharply recovered to 78 ±

4% (P < 0.001) of its pre-level, and gradually returned to baseline

level within 1 week. A significant difference in night-time

spontaneous activity between the two groups was observed until

day 5 post-injection (P < 0.001).
3.3 Peripheral infection-induced
neuroinflammation

In order to confirm whether the peripheral infection would

induce neuroinflammation in the brain, a PET scan with [18F]DPA-

714 was performed in rats from both groups 1 day after the poly I:C

or saline injection. As shown in the representative PET images

(Figure 3), [18F]DPA-714 radioactivity was barely observed within

the brain in the saline-injected rats, except in the choroid plexus in

the cerebral ventricles and some surrounding circumventricular

area. However, the radioactivity of [18F]DPA-714 apparently

increased throughout the brain regions after the poly I:C

injection, especially in the mesencephalon and medulla, as well as

in the cerebellum. A voxel-based statistical analysis showed that the

accumulation of [18F]DPA-714 significantly increased in the several

brain regions following poly I:C injection, including the dorsal

raphe (DR), parvicellular part of red nucleus (RPC), central medial

thalamic nucleus (CM), parabrachial nucleus (PB), gigantocellular

reticular nucleus (Gi), A5, A7, A11 nuclei, and so on (Figure 4

and Table 1).
Frontiers in Immunology 05
3.4 Correlation between
regional neuroinflammation and
fatigue-like behavior

Finally, to assess whether and how those regional

neuroinflammations cause peripheral infection-induced

symptoms, we analyzed the correlation between the [18F]DPA-

714 accumulation in all the brain regions showing significant

increment and the fever or fatigue-like behavior. The correlation

analysis revealed that the [18F]DPA-714 accumulation in the DR,

RPC and A5 positively correlated with the persistent fatigue severity

defined by decrease in spontaneous activity from day 2 to day 5

following the poly I:C injection (Figures 5A–C). Moreover, a

tendency towards a positive correlation of the [18F]DPA-714

accumulation with body temperature was observed in the A7

noradrenergic nucleus (Figure 5D).
4 Discussion

I n t h i s s t u d y , w e d emon s t r a t e d t h a t r e g i on a l

neuroinflammation caused by peripheral infection could be

involved in fatigue and related symptoms, such as fever. Here, we

provide lines of evidence that 1) transient fever and suppressed

spontaneous activity lasting a few days were observed after an

intraperitoneal injection of poly I:C, which has been widely used for

induction of pseudoinfection; 2) an increased accumulation of [18F]

DPA-714 was found in widespread brain regions 1 day after

treatment with poly I:C; 3) a voxel-based statistical analysis

showed that a significant increment of [18F]DPA-714

accumulation in the brain regions was closely related to fatigue-

like behavior. Indeed, the accumulation of [18F]DPA-714 in the DR,

RPC, and A5, was positively correlated with fatigue severity, and
FIGURE 2

Dynamics of night-time spontaneous activity induced by poly I:C intraperitoneal injection. The spontaneous activity of each rat from control (open
circles, n = 6) and poly I:C-treated (closed circles, n = 6) groups was recorded from 3 days prior to injection, and the percentage of night-time
spontaneous activity was normalized by the mean value over the course of the 3 days (-3 to -1). Each value represents the mean ± SEM. *P < 0.05,
**P < 0.01 vs. pre-injection level. #P < 0.05, ##P < 0.01 vs. control group.
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that in the A7 tended to positively correlate with fever. To our

knowledge, this is the first brain-wide investigation to determine the

region specific neuroinflammation induced by peripheral infection

that may relate to fatigue and specific related symptoms.

Pro-inflammatory cytokines, including IL-1b, are known to

activate the primary afferent nerve terminal or IL-1 receptors

present on perivascular macrophages and endothelial cells,

resulting in neuroinflammation following peripheral infection

(19–21). An increase in plasma IL-1b concentrations was

observed, suggesting that these two signaling pathways may

represent pathways for conveying immune signals from the

periphery to the brain, in the present study.

The main finding of the present study is that regional

neuroinflammation in several brain regions may relate to the

pathophysiology of fatigue-like symptoms following peripheral
Frontiers in Immunology 06
infection, such as the DR, RPC, and A5. Since a PET imaging

technique provides a non-invasive approach for the quantitative

evaluation of neuroinflammation in vivo, the association of regional

neuroinflammation with consequent behavioral changes may be

observed in the same animal. In the present study, we found that the

peripheral infection-induced regional neuroinflammation in the DR

was positively correlated with the subsequent fatigue-like

symptoms. Functional alternations in the brain serotonergic

system have long been implicated in fatigue development and

sensation (22). It has been suggested that dysfunction of the

serotonergic system could represent an underlying mechanism

involved in chronic/pathogenic fatigue (23). In exercise-induced

acute/physiological fatigue, the increased biosynthesis and release of

serotonin (5-HT) in several brain regions have been reported to be

involved in fatigue sensations (23, 24). In contrast, selective
FIGURE 3

Representative [18F]DPA-714 PET images co-registered with an MRI template in the saline- and poly I:C-treated rats. The coronal and transverse
views of representative PET images were shown. PET scan with [18F]DPA-714 was performed in rats from both groups at 24 h after poly I:C or
vehicle (saline) injection. PET images were reconstructed with a MAP algorithm and summed from 5 to 45 min following a [18F]DPA-714 bolus
injection. MAP, statistical maximum a posteriori probability.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1261256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1261256
FIGURE 4

Significant increment of regional neuroinflammation following peripheral pseudoinfection. Images were obtained by voxel-based statistical
comparison of [18F]DPA-714 accumulation in entire brain regions between vehicle (saline) (n = 8) and poly I:C (n = 8) injected rats and co-registered
with an MRI template. The T value of 9.14 was used as the threshold corresponding to the P < 0.005 FWE threshold. The right side of images
corresponds to the right hemisphere. A5, A5 noradrenergic nucleus; A7, A7 noradrenergic nucleus; A11, A11 region; DR, dorsal raphe nucleus; Gi,
gigantocellular reticular nucleus; IC/Cb, inferior colliculus/cerebellum; mRT, mesencephalic reticular formation; MG, medial geniculate nucleus; PB,
parabrachial nucleus; RPC, parvicellular part of red nucleus; sol, nucleus tractus solitarius; VM, ventromedial thalamic nucleus.
TABLE 1 Brain regions of significantly increased [18F]DPA-714 accumulation following peripheral pseudo infection.

T value Volume

Brain regions Laterality (peak) (mm3)

Ventromedial thalamic nucleus, VM R 9.88 0.16

A11 dopaminergic nucleus, A11 L/R 12.02/10.04 0.5/0.19

Red nucleus, parvicellular part, RPC L 11.76 0.45

Medial geniculate nucleus, MG R 11.46 1.39

Mesencephalic reticular formation, mRT R 10.7 0.68

Dorsal raphe nucleus, DR 10.09 0.17

Dorsolateral periaqueductal gray, DLPAG R 10.42 0.77

Hippocampus, HC L 10.5 0.63

Precuneiform area, PrCnF R 10.8 0.6

Subiculum, transition area, STr R 10.9 0.37

Entothinal cortex, Ent R 11.4 0.61

Parasubiculum, PaS L 10.4 0.34

Cuneiform nucleus, CnF R 11.31 0.58

Parabrachial nucleus, PB L/R 12.37/11.4 0.74/0.36

A7 noradrenergic nucleus, A7 L/R 9.83/11.76 0.27/1.25

Pontine reticular nucleus, oral part, PnO L 9.29 0.96

A5 noradrenergic nucleus, A5 R 12.46 0.98

Gigantocellular reticular nucleus, Gi R 10.82 0.67

nucleus tractus solitarius, Sol L/R 9.93/11.56 0.13/0.75

Inferior colliculus/Cerebellum, IC/Cb 13.34 29.58
F
rontiers in Immunology
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Vehicle (Saline) (n = 8) versus Poly I:C (10 mg/kg) (n = 8). Height threshold: T = 9.14 with an extent threshold of 200 contiguous voxels, p < 0.005 Familywise Error (FWE) corrected.
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serotonin reuptake inhibitors, which result in an increase in

extracellular serotonin concentration, have been demonstrated to

be effective for some patients with CFS. A gene polymorphism

analysis in CFS patients by our group demonstrated that the

frequency of longer (L or XL) allelic variants of the 5-HT

transporter (5-HTT) promoter region was significantly increased

compared to that in controls, pointing to elevated 5-HTT

expression and low levels of extracellular 5-HT concentrations

in CFS patients (25). Moreover, clinical studies have also

demonstrated that the upregulation of 5-HTT and consequent

reduction of extracellular 5-HT levels were observed in IFN-a
and IFN-g therapies to treat various forms of cancer and hepatitis

C, in which patients often complain of serious tiredness (26, 27).

These observations suggest that the dysfunction of serotonergic

system could represent an underlying mechanism involved at least
Frontiers in Immunology 08
in chronic/pathogenic fatigue. Along with the fact that

neuroinflammation is known to induce dysfunction or decline in

regional neural activity (28), the results in the present study suggest

that regional neuroinflammation in the DR probably cause fatigue-

like behavior via functional changes in the serotonergic system. In

addition, neuroinflammation in the RPC and the A5 noradrenergic

nucleus were also positively associated with fatigue-like behavior.

Recently, a positive correlation has been reported between the

magnitude of atrophy in the superior cerebellar peduncle (Scp)

which envelops and traverses the RPC at all rostrocaudal leves, and

fatigue severity in multiple sclerosis patients (29), and such

volumetric variation in the Scp was then considered as an early

structural change preceding fatigue development (30). Overall,

these observations suggest that regional neuroinflammation in

these brain areas could be a plausible mechanism underlying
B

C D

A

FIGURE 5

Correlation between regional neuroinflammation in brain areas and fatigue-like behavior. (A–C) The correlation between neuroinflammation in the
RPC, DR and A5 and night-time spontaneous activity. The positive correlation between the accumulation of [18F]DPA-714 in the RPC, DR, and A5 at
24 h after poly I:C injection with a prolonged decrease in night-time spontaneous activity from day 2 to day 5 following poly I:C injection. The
Pearson coefficient value (r) is shown for each relation. (D) The correlation between neuroinflammation in the A7 and body temperature. The
tendency towards a positive correlation between the accumulation of [18F]DPA-714 in the A7 at 24 h following poly I:C injection and an elevated
body temperature following poly I:C injection. The Pearson coefficient value (r) is shown for the relation. A5, A5 noradrenergic nucleus; A7, A7
noradrenergic nucleus; DR, dorsal raphe nucleus; RPC, parvicellular part of red nucleus; SA, night-time spontaneous activity.
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peripheral infection-induced fatigue-like symptoms. Incidentally,

chronic fatigue has been reported to be one of most frequently

reported symptoms following COVID-19 infection, in which

the elevation of IL1-family cytokines was also observed

(7, 31), suggesting that a similar mechanism underlying

neuroinflammation in multiple brain regions might be involved

in such fatigue evoked by COVID-19.

In the present study, we also found that neuroinflammation in

several other brain regions, including the A7, A11, CM, PB, and Gi,

was significantly increased, but was not correlated with fatigue-like

behavior. The tendency towards a positive association between [18F]

DPA-714 accumulation in the A7 and fever was observed following

poly I:C treatment. Peripheral infection-induced PGE2 in A7 has

been reported to suppress the inhibitory innervation of the A7

noradrenergic nucleus to the rostral medullary raphe (RMR),

resulting in fever (32). In the present study, although the

correlation was weak owing to the mismatched [18F]DPA-714

PET scan timing, it indicated that neuroinflammation in A7 may

be implicated in fever (Figure 1A). Taken together, these results

suggested that the peripheral infection-induced diverse symptoms

were probably attributed to regional neuroinflammation in specific

brain areas.

In conclusion, in the present study, we performed a brain-wide

investigation to provide prospective evidence of the brain regions

of peripheral infection-induced neuroinflammation. We also

demonstrated the effect of regional neuroinflammation to fatigue

and specific related symptoms. Future research is needed to further

clarify the multiple interactions of these symptoms, which will aid

in the development of more effective treatment strategies based on

anti-inflammatory effects to address all fatigue related symptoms.
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11. Dantzer R, Konsman J-P, Bluthé R-M, Kelley KW. Neural and humoral
pathways of communication from the immune system to the brain: parallel or
convergent? Auton Neurosci (2000) 85(1-3):60–5. doi: 10.1016/S1566-0702(00)00220-4

12. Banks WA. The blood-brain barrier in neuroimmunology: Tales of separation
and assimilation. Brain Behav Immun (2015) 44:1–8. doi: 10.1016/j.bbi.2014.08.007

13. Singh P, Adhikari A, Singh D, Gond C, Tiwari AK. The 18-kDa translocator
protein PET tracers as a diagnostic marker for neuroinflammation: development and
current standing. ACS Omega. (2022) 7(17):14412–29. doi: 10.1021/acsomega.2c00588

14. Yamato M, Tamura Y, Eguchi A, Kume S, Miyashige Y, Nakano M, et al. Brain
interleukin-1b and the intrinsic receptor antagonist control peripheral toll-like receptor
3-mediated suppression of spontaneous activity in rats. PloS One (2014) 9(3):e90950.
doi: 10.1371/journal.pone.0090950
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