AUTHOR=Li Peiting , Li Jun , Tong Xiaofei , Xiao Zhenyang , Diao Wuliang , Zhong Chi , Zhou Jianda , Wu Wei TITLE=Global research trends and prospects related to tumor microenvironment within Triple Negative Breast Cancer: a bibliometric analysis JOURNAL=Frontiers in Immunology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1261290 DOI=10.3389/fimmu.2023.1261290 ISSN=1664-3224 ABSTRACT=Background and aims

The tumor microenvironment (TME) has pivotal parts within multiple tumor models of onset/progression, such as triple-negative breast cancer (TNBC). This bibliometric analysis was developed to explore trends and research niches revolving around TME in TNBC.

Methods

Web of Science Core Collection was queried for identifying studies linked with TME in TNBC, after which the VOSviewer, CiteSpace, and R software programs were used to conduct bibliometric analyses and to generate corresponding visualizations.

Results

In total, this study included 1,604 studies published from 2005-2023. The USA and China exhibited the highest numbers of citations, and the research institutions with the greatest output in this field included Harvard University, the University of Texas System, and Fudan University. Ying Wang from Sun Yat-Sen University was the most published and most cited author in this space. The highest number of articles were published in Cancer, while the greatest co-citation number was evident in Breast Cancer Research. Important keywords related to this research topic included metastasis, tumor-infiltrating lymphocytes, immunotherapy, chemotherapy, and nanoparticles. In particular, pembrolizumab, immunotherapy, nanoparticles, combination treatment, and biomarkers were topics of marked interest in recent reports.

Conclusion

The TME in TNBC is an area of rapidly growing and evolving research interest, with extensive global collaboration helping to drive this field forward. Antitumor therapies targeting the TME in TNBC patients represent an emerging topic of future research, providing opportunities for translational findings. The results of this analysis may provide additional guidance for work focused on the TME in TNBC.