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Introduction: The attenuation of BCG has led to the loss of not only

immunogenic proteins but also lipid antigens.

Methods: Thus, we compared themacrophage and T-cell responses to nonpolar

lipid extracts harvested from BCG and Mycobacterium tuberculosis (Mtb) to

better understand the role of BCG lipids in the already known diminished

responses of the vaccine strain.

Results: Relative to Mtb, nonpolar lipid extract from BCG presented a reduced

capacity to trigger the expression of the genes encoding TNF, IL-1b, IL-6 and IL-

10 in RAW 264.7 macrophages. Immunophenotyping of PBMCs isolated from

healthy individuals revealed that lipids from both BCG and Mtb were able to

induce an increased frequency of CD4+ and CD8+ T cells, but only the lipid

extract from Mtb enhanced the frequency of CD4-CD8-double-negative, gs+,

CD4+HLA-DR+, and gs+HLA-DR+ T cells relative to the nonstimulated control.

Interestingly, only the Mtb lipid extract was able to increase the frequency of

CD4+ memory (CD45RO+) T cells, whereas the BCG lipid extract induced a

diminished frequency of CD4+ central memory (CD45RO+CCR7-) T cells after 48

h of culture compared to Mtb.

Discussion: These findings show that the nonpolar lipids of the BCG bacilli

presented diminished ability to trigger both proinflammatory and memory

responses and suggest a potential use of Mtb lipids as adjuvants to increase

the BCG vaccine efficacy.
KEYWORDS

Bacillus Calmette-Guerin, Mycobacterium tuberculosis, nonpolar lipid extracts,
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(Mtb), is one of the leading infectious diseases worldwide, with

10.6 million new cases and 1.6 million deaths in 2021 (1). BCG

(Bacillus Calmette-Guérin) is currently the only licensed vaccine

against pulmonary TB, despite its variable efficacy (0-80%) (2–4).

Composed of attenuatedM. bovis bacilli, BCG has accumulated

genomic polymorphisms that account for the absence of not only

protein antigens but also key lipid antigens (5–9). A lipidomic

analysis compared the lipid profiles of Mtb and BCG and revealed

more than 1,000 differences between both strains (7). Recently, we

performed an in silico evaluation and found 14 nonhomologous

lipid-related genes absent in the six BCG strains most used

worldwide relative to Mtb. Those genes were associated with the

functional categories “cell wall and cell processes”, “virulence,

detoxification and adaptation”, “lipid metabolism”, and

“intermediary metabolism and respiration”, and together, these

gene modifications may favor a dormant-like state of the BCG

strains (10).

Mycobacterial lipids play a crucial role in the immunopathogenesis

of TB (11). Petrilli et al. (2020) showed differential macrophage and T-

cell responses to lipids extracted from twoMtb strains, an ATP-binding

cassette transporter-knockout strain and its parental strain,

highlighting the role of these molecules in controlling the

inflammatory response (12). In BCG, the absence of lipid antigens

has been associated with important changes in the host’s immune

response, with consequent decreased control of mycobacterial burden

and vaccine protection in vivo (13–15).

Protection against TB relies on the induction of a strong cellular

immune response, although correlates of protection have not been

identified. The results from a phase IIb clinical trial with the

candidate MVA85A did not add protection against TB, despite

significant induction of T-helper type 1 (Th1) cells (16, 17). Only

recent clinical trial results have shown that it is possible to boost the

protection already conferred by BCG throughout the revaccination

of adolescents (18) and by the immunization of adults with the

candidate M72/ASO1E (19). Other promising candidates have been

proposed, including relevant findings from nonhuman primate

models, that have been shown to induce not only CD4 and CD8

T cells but also polyfunctional Th17 cells and interleukin-10

production (20, 21). However, these results have not yet reached

public health action.

The role of protein antigens has already been comprehensively

described, whereas the importance of lipid antigens in the host’s

immune response has been less explored. Here, we aimed to

compare the cellular immune response induced by BCG and Mtb

lipid extracts to better understand the influence of lipid losses on

strain attenuation. These findings could elucidate future studies on

the use of this class of antigens in new vaccine candidates to

promote a more effective response and protection in combination

with proteins.
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2 Materials and methods

2.1 Bacterial strains, growth conditions,
and lipid extraction

M. bovis BCG Moreau (BCG Moreau RDJ, FAP) and M.

tuberculosis Erdman strains were used. Both strains were cultured

in Middlebrook 7H9 broth (Difco, MD) supplemented with 10%

ADC (Beckton-Dickinson, MD) and incubated at 37°C and 5% CO2

until stationary phase. Then, planktonic cultures of BCG Moreau

and Mtb were harvested and used for extraction of nonpolar lipids

(22, 23). Briefly, 5 mL of methanol with 0.3% NaCl (100:10) and 2.5

mL of petroleum ether were added to 30 mL of cultures and

incubated for 30 min at room temperature. The upper petroleum

ether layer containing the nonpolar lipids was collected after

centrifugation and kept in glass flasks until complete solvent

evaporation. Nonpolar lipid extracts of each strain were weighed

and resuspended in hexane:isopropanol (1:1) at 0.02 mg/mL. The

nonpolar fraction is expected to have phthiocerol dimycocerosates

(PDIM), triacylglycerol (TAG), pentacyl trehalose (PAT), trehalose

monomycolate (TMM), and dimycolate (TDM, the cord factor),

among others (24). Finally, 24-well tissue culture plates were

layered with 0.5 mL of lipid extracts or hexane:isopropanol.

Solvent evaporation was allowed, and plates were kept at -20°C

until use.
2.2 RAW macrophage assay

2.2.1 RAW 264.7 murine macrophage culture
RAW 264.7 cells (ATCC TIB-71) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Gibco) supplemented with 10%

FBS at 37°C and 5% CO2. After achieving 70% confluency,

macrophages were seeded onto lipid-coated 24-well tissue culture

plates at 3.7×10^5 cells/well and incubated at 37°C and 5% CO2 for

2 h, 12 h, 24 h or 72 h. For the control samples, wells were coated

with hexane/isopropanol in the absence of lipid extracts. Staining

with trypan blue (Gibco) was used to assess cell number

and viability.

2.2.2 RNA extraction and purification
Total RNA was extracted from RAW cells using the TRIzol

RNA extraction protocol (Invitrogen, Life Technologies) and

treated with DNase (Qiagen). DNA-free RNA (500 ng)

was mixed with 50 ng of random hexamers and 50 mM
oligo (dT) (Invitrogen), and cDNA was synthesized by

Superscript III reverse transcriptase (Invitrogen) following the

manufacturer’s recommendations.

2.2.3 RT-qPCR
The expression of the TNFa, IL-1b, IL-6 and IL-10 genes was

measured (Supplementary Table 1). Primers were designed to
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produce a 100–195 bp amplicon for each gene. qPCRs were

performed using 25 ng of cDNA and Maxima SYBR Green/ROX

qPCR Master Mix (2X) (Thermo Fisher) following the

manufacturer’s recommendations. The expression levels of all

target genes were normalized to b-actin and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), and relative changes

between lipid-stimulated and nonstimulated RAW cells were

measured by 2-DDCt (25).
2.3 Assays with peripheral blood
mononuclear cells

2.3.1 Study participants
Participants (n = 12) were enrolled in this study and recruited

from Gonçalo Moniz Institute (FIOCRUZ). All participants had

been vaccinated with BCG during infancy in accordance with

national guidelines and tested negative for latent TB infection by

interferon-g release assay (QuantiFERON® TB Gold Plus) upon

enrollment. The mean age of the volunteers was 28.08 years (SD =

6.37) with 66.7% identified as female. Information about previous

contact with TB patients and HIV status was self-declared, adhering

regulation from the Research Ethics Committee at Gonçalo

Moniz Institute (FIOCRUZ) (approved protocol number:

57273322.4.0000.0040). Individuals with regular contact with TB

patients, those who reported recent episodes of cough and/or fever,

or those with positive or indeterminate interferon-g release assay

results were excluded from the study.

2.3.2 PBMC isolation and culture assays
Peripheral blood mononuclear cells (PBMCs) were obtained by

Ficoll-Paque (GE Healthcare) density gradient and cryopreserved in

liquid nitrogen with inactive fetal bovine serum (FBS) and 10%

DMSO before culture assays. Cryopreserved cells were then thawed,

and PBMC concentrations were adjusted to 106 cells/mL in 1 mL of

RPMI 1640 (with 2 mM L-glutamine and 30 mM HEPES)

containing 1% gentamicin and 10% FBS (GIBCO). PBMCs were

added to 24-well tissue culture plates previously prepared with

nonpolar lipid extracts from BCG and Mtb. Phytohemagglutinin

(PHA) (GIBCO) (10 mg/mL) was added as a positive control. Cells

were cultured for 24 h, 48 h and 72 h at 37°C in a 5% CO2

humidified atmosphere, and the 48 h time-point was chosen for

the analyses.

2.3.3 Flow cytometry and cytokine analyses
Cells were first stained with CD3-FITC, CD4-PE, CD8-APC-

Cy7, CD45RA PE-Cy7, CD45RO-APC, CCR7-BV510, HLA-DR-

BV605, and TCRgd-BV421 (BD Biosciences). For intracellular

staining with IFNg-PE-Cy7, TNF-AL700, IL-2-BV421, and IL-17-

BV510, cells were fixed and permeabilized using the BD Biosciences

Cytofix/Cytoperm Kit. Data were acquired on BD LSRFortessa®
(50,000 events), and cell frequencies, as well as median fluorescence

intensity (MFI), were measured using FlowJo 10 software (Tree Star
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Inc.). Supernatants of PBMC cultures were collected and stored at

-20°C for cytokine assays. Concentrations of IFNg and IL-10 were

measured by ELISA (R&D Systems) according to the

manufacturer’s instructions.

2.3.4 Statistical analyses
Statistical analyses were performed using GraphPad Prism 8

software (GraphPad Inc.). Normal distribution was assessed by the

Shapiro−Wilk test. Statistical significance was assessed by Student’s

t test, one-way ANOVA followed by Tukey’s posttest, or Kruskal

−Wallis followed by Dunn’s posttest. The results were considered

significant when p <0.05.
3 Results

3.1 Lipid extract from the BCG strain
induced lower expression levels of
proinflammatory genes relative to
Mtb lipids

The transcriptional expression of genes encoding pro- and anti-

inflammatory cytokines was measured in macrophages cultured

with nonpolar lipid extracts harvested from both BCG and

Mtb strains.

Lipids from the BCG strain induced lower transcript production

than Mtb for all evaluated genes at most time points (Figure 1).

Relative to the nonstimulated control, there was increased

expression of IL-1b and IL-6 at 24 h of culture in macrophages

cultured with both BCG and Mtb lipid extracts (p <0.0001)

(Figures 1A, B). The expression of IL-1b and IL-6 increased by

48- and 9-fold in macrophages stimulated with BCG lipid extract

and by 93- and 47-fold in Mtb lipid-induced cells, respectively

(Supplementary Table 2). In addition, BCG lipids induced lower

expression of TNF across the 2 h, 24 h and 72 h time points when

compared with the stimulus triggered by Mtb lipids (Figure 1C).

WhereasMtb lipids sustained a 2-fold upregulation of this gene, the

2-DDCt of TNF in BCG lipid-stimulated macrophages varied from

1.1 to 1.7 over the 2 h, 24 h and 72 h time points (Supplementary

Table 2). After 12 h of incubation, the expression of IL-10 was 2-

and 4-fold in cultures with lipids extracted from BCG and Mtb,

respectively (p <0.001) (Figure 1D).
3.2 Both BCG and Mtb nonpolar lipid
extracts increased the frequency of CD4+
and CD8+ T cells

To evaluate whether lipids from BCG could also elicit

a lymphocyte response, PBMCs obtained from healthy

individuals were cultured with lipid extracts and stained for

immunophenotyping (Supplemetary Figure 1). Relative to

nonstimulated controls, lipids from both strains enhanced the
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B C D

E F G H

A

FIGURE 2

Flow cytometry of conventional and nonconventional T cells after 48 h of in vitro culture of PBMCs from healthy individuals with lipid extracts of
BCG and Mtb. (A) and (E) Frequencies of CD4+ and CD4+ HLA-DR+ T cells. (B) and (F) Frequencies of CD8+ and CD8+ HLA-DR+ T cells. (C) and
(G) Frequencies of CD4-CD8- DN and CD4-CD8- DN HLA-DR+ T cells. (D) and (H) Frequencies of gd+ and gd+ HLA-DR+ T cells. Normal
distribution was determined by the Shapiro‒Wilk test. p values for normal distributions were calculated by one-way ANOVA, and p values for
nonnormal distributions were calculated by the Kruskal‒Wallis test. *p <0.05; **p <0.01; ***p <0.001. Nonstimulated control (negative control);
Phytohemagglutinin, PHA (positive control).
B

C D

A

FIGURE 1

RT‒qPCR analyses of (A) IL-1b, (B) IL-6, (C) TNF, and (D) IL-10 after 2 h, 12 h, 24 h, and 72 h of cell exposure to BCG (orange) and Mtb (blue) lipid
extracts. Data represent the mean fold-change difference between BCG and Mtb relative to untreated control. Gene expression was normalized to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and b -actin genes. p values were calculated by t test, with ***p <0.001; ****p <0.0001.
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frequencies of CD4+ and CD8+ T cells (p <0.05) (Figures 2A, B),

whereas only Mtb significantly increased the frequencies of CD4-

CD8- double-negative (DN) and gd+ T cells (p <0.05 and p <0.01,

respectively) (Figures 2C, D). Similarly, Mtb but not BCG lipids

induced the proliferation of HLA-DR-positive CD4+ and gd+ T

cells (p <0.05) (Figures 2E, H).
3.3 BCG lipids present a reduced capacity
to induce CD4+ memory and central
memory T-cell proliferation

Neither BCG nor Mtb lipid extract stimulation resulted in

significant changes in the frequencies of CD4+ and CD8+ naïve T

cells (Figures 3A, B). Conversely, Mtb lipids induced both CD4+

and CD8+ memory T cells (p <0.0001), whereas lipid extract from

BCG only increased the frequencies of the latter (p <0.01) when

compared to the nonstimulated controls (Figures 3C, D). BCG

lipids were not only unable to increase the frequency of CD4+

memory T cells but also induced significantly lower proliferation of

this population than Mtb lipids (p <0.001) (Figure 3C).

Nonpolar lipid extracts from both BCG and Mtb strains

enhanced the frequency of CD4+ and CD8+ central memory T

cells (p <0.0001) (Figures 3E, F) but induced lower proliferation of

CD4+ and CD8+ effector memory T cells (p <0.0001) (Figures 3G,

H) when compared to nonstimulated controls. Furthermore,
Frontiers in Immunology 05
compared to Mtb, BCG lipid extract induced significantly lower

frequencies of central memory in CD4+ T-cell populations (p

<0.01) (Figure 3E).
3.4 Distinct level of cytokine synthesis
between Mtb- and BCG-lipid-induced
T cells

Intracellular cytokine levels in CD4+, CD8+, and CD4-CD8-

DN T cells in lipid-induced PBMCs from healthy individuals were

also assessed (Figure 4; Supplementary Table 3). Relative to

nonstimulated cells, Mtb lipid extracts significantly increased the

intracellular levels of TNF and IFNg in all evaluated cell populations
(Figures 4A-F). Lipids fromMtb also triggered the synthesis of IL-2

in CD4+ (Figure 4G) (p <0.05) and IL-17 in CD4-CD8- DN T cells

(Figure 4L) (p <0.01). BCG lipid extract stimuli were able to only

enhance the MFI of TNF and IFNg+ in CD4-CD8- DN T cells (p

<0.0001) (Figures 4C, F) and IL-17 in CD8+ T cells (Figure 4K) (p

<0.05). Compared to Mtb, the BCG lipid extract induced

significantly lower expression of TNF in CD4-CD8- DN cells (p

<0.001) (Figure 4F).

The concentrations of IFNg and IL-10 in culture supernatants

were measured at 48 h. Only Mtb lipid extract increased the

concentration of both cytokines (p <0.01) (Figures 5A, B;

Supplementary Table 5).
B C D

E F G H

A

FIGURE 3

Flow cytometry of memory T cells after 48 h of in vitro culture of PBMCs from healthy individuals with lipid extracts of BCG and Mtb. (A) and (B)
Frequencies of CD4+ and CD8+ naïve T cells (CD45RA+). (C) and (D) Frequencies of CD4+ and CD8+ memory T cells (CD45RO+). (E) and (F)
Frequencies of CD4+ and CD8+ central memory T cells (CD45RO+ CCR7+). (G) and (H) Frequencies of CD4+ and CD8+ effector memory T cells
(CD45RO+ CCR7-). Normal distribution was determined by the Shapiro‒Wilk test. p values for normal distributions were calculated by one-way
ANOVA, and p values for nonnormal distributions were calculated by the Kruskal‒Wallis test. **p <0.01; ***p <0.001; ****p <0.0001. Nonstimulated
control (negative control); Phytohemagglutinin, PHA (positive control).
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4 Discussion

Consecutive in vitro passages of M. bovis gave rise to BCG, an

attenuated strain with depletion of at least nine regions of difference
Frontiers in Immunology 06
(RD), including RD1, which encodes the proteins from the ESX-1

secretion system ESX-1, such as ESAT-6 and CFP-10 (9). Although

these proteins are important virulence factors, their deletion does

not completely explain the reduced ability of BCG to induce a
B C

D E F

G H I

J K L

A

FIGURE 4

Flow cytometry of CD4+, CD8+ and CD4-CD8- DN T cells producing TNF, IFNg, IL-2, and IL-17 after 48 h of in vitro culture of PBMCs from healthy
individuals with lipid extracts of BCG and Mtb. (A), (B), and (C) MFI of CD4+, CD8+ and CD4-CD8- DN T cells producing TNF. (D), (E), and (F) MFI of
CD4+, CD8+ and CD4-CD8- DN T cells producing IFNg. (G), (H), and (I) MFI of CD4+, CD8+ and CD4-CD8- DN T cells producing IL-2. (J), (K), and
(L) MFI of CD4+, CD8+ and CD4-CD8- DN T cells producing IL-17. Normal distribution was determined by the Shapiro‒Wilk test. p values for normal
distributions were calculated by one-way ANOVA, and p values for nonnormal distributions were calculated by the Kruskal‒Wallis test. *p <0.05; **p
<0.01; ***p <0.001; ****p <0.0001. MFI: Median fluorescence intensity. Nonstimulated control (negative control); Phytohemagglutinin, PHA
(positive control).
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protective immune response after vaccination (14, 15, 26). The lipid

profiles of Mtb and BCG differ from each other in more than 1,000

species (7), whereas an in silico analysis showed that lipid-related

gene deletions hinder the production of mce3, enoyl-CoA

hydratase, and phospholipase C in BCG. Thus, we reasoned that

losses of nonpolar lipid antigens in BCG would contribute to

impairing host cell functions and might determine whether the

vaccine can be improved by adding Mtb-derived lipid adjuvants.

Compared to Mtb, we observed that BCG lipids predominantly

induced diminished macrophage expression of the pro-

inflammatory markers IL-1b, IL-6, and TNF. This diminished

ability of BCG nonpolar lipids to induce inflammatory responses

was also evidenced by the synthesis of TNF and IFNg in both CD4+

and CD8+ T cells. Conversely, the difference between each stimulus

was less evident in TNF- and IFNg-producing CD4-CD8- DN T

cells. Considering that the frequencies of these populations are

relatively low compared to conventional T cells, we can assume that

the BCG strain also has an impaired ability to induce inflammation

at the adaptive immune response level.

Lipid extracts from Mtb and BCG strains were able to, directly

or indirectly, activate several T-cell subpopulations, according to

the analyses performed here. Interestingly, there was no difference

in the frequencies of CD4+ and CD8+ T cells in cultures with both

lipid extracts. In addition, although there was a significant increase

in the frequencies of CD4-CD8- DN and gd+ T cells in cultures with

Mtb lipid extract, relative to the untreated control, there were no

distinguishable differences in the proportions of these cells between

cultures with BCG and Mtb lipid extracts. These data suggest that

despite the reduced capacity of BCG nonpolar lipids to induce

inflammation, depletions in the genes related to lipid metabolism

did not alter the ability of this strain to increase the frequency of

some subsets of T cells.

Furthermore, different TB vaccine candidates and inoculation

routes have been associated with the activation of distinct memory
Frontiers in Immunology 07
T-cell subsets, but there is no consensus about which cell subtype is

responsible for providing protection. Here, Mtb lipid extracts

induced a greater response from memory T cells than BCG,

especially CD4+ T cells, which have been associated with vaccine

candidates that use lipid formulations (27, 28). In addition, lipid

extracts from both BCG andMtb strains prompted higher and lower

frequencies of effector and central memory T cells, respectively. In

particular, effector memory cells are induced by BCG vaccination in

humans and represent the predominant cell population in the lungs

of vaccinated mice, which has been associated with stronger and

more efficient protection against infection (29–32). Conversely,

smaller populations of central memory T cells result in poorer

memory responses (33–36). Notably, Mtb lipids were associated

with a greater increase of central memory and decrease of effector

memory T cells, whereas BCG lipids induced a similar yet

diminished dynamic between these populations. This finding

might indicate that Mtb lipids have a better chance to induce a

long-lasting T-cell memory response than BCG lipids.

This study incorporated a wide range of lymphocyte and

cytokine markers to compare the cellular immune response

induced by total nonpolar lipid extracts from Mtb and BCG. To

the best of our knowledge, no other study has performed T-cell

immunophenotyping under such stimulation. To minimize

potential biases arising from current or previous Mtb infections,

only healthy and IGRA-negative participants were included in this

study. However, this approach precluded us from investigating the

responses of cells pre-activated by Mtb to bothMtb and BCG lipids.

Notably, measuring the levels of CD1a receptors would increase

our comprehension of the abilities ofMtb and BCG nonpolar lipids

in stimulating CD4+ and CD8+ T cells. Additionally, subsequent

evaluations of different antigen delivery models that more

accurately simulate bacteria-cell interactions and ex vivo

experiments are important to assess whether the lipid-induced

immune response contributes to bacterial clearance.
BA

FIGURE 5

Concentrations of (A) IFNg and (B) IL-10 production after 48 h of in vitro culture of PBMCs from healthy individuals with lipid extracts of BCG and
Mtb. Normal distribution was determined by the Shapiro‒Wilk test. p values for normal distributions were calculated by one-way ANOVA, and p
values for nonnormal distributions were calculated by the Kruskal‒Wallis test. **p <0.01. Nonstimulated control (negative control);
Phytohemagglutinin, PHA (positive control).
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The question that arises from these analyses is whether the

nonpolar lipids from Mtb could in fact induce long lasting memory

during a BCG vaccination and, if that is the case, which lipid species

are responsible for such activation. Although our study could not

provide evidence of long-term protection induced by mycobacterial

lipids, our results support the possibility of improvement of the

BCG vaccine by including Mtb lipid molecules as adjuvants in the

vaccination scheme against TB.
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Ethics Committee at Gonçalo Moniz Institute. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

AS: Conceptualization, Formal analysis, Investigation, Writing

– original draft. AL: Investigation, Writing – review & editing. CA:

Investigation, Writing – review & editing. IM: Investigation,

Writing – review & editing. LA: Investigation, Writing – review &

editing. LP: Supervision, Writing – review & editing. AQ:

Conceptualization, Formal analysis, Project administration,
Frontiers in Immunology 08
Supervision, Writing – original draft. SA: Conceptualization,

Project administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

received financial support from the Bahia State Research Support

Foundation, Bahia, Brazil (grant numbers 5303/2017, BOL0172/

2019 and BOL1421/2021).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2023.1263352/

full#supplementary-material
References
1. WHO. Global tuberculosis report 2022. Geneva: World Health Organization.
(2022).

2. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne J, et al. Systematic
review and meta-analysis of the current evidence on the duration of protection by
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