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Construction of a ferroptosis-
based prognostic model for
breast cancer helps to
discriminate high/low risk groups
and treatment priority

Liyong Zhang1†, Tingting Zhao1†, Xiujuan Wu1†, Hao Tian1,
Pingping Gao1, Qingqiu Chen1, Ceshi Chen2, Yi Zhang1,
Shushu Wang1*, Xiaowei Qi1* and Na Sun1*

1Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University,
Chongqing, China, 2Key Laboratory of Animal Models and Human Disease Mechanisms of the
Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy
of Sciences, Kunming, China
Introduction: Breast cancer is a common malignant tumor associated with high

morbidity and mortality. The role of ferroptosis, a regulated form of cell death, in

breast cancer development and prognosis remains unclear. This study aims to

investigate the relationship between ferroptosis-related genes and breast cancer

and develop a prognostic model.

Methods: RNA-seq expression datasets and clinical samples of breast cancer

patients were obtained from public databases. Immunity- and drug resistance-

related data were integrated. A preliminary screening was performed, resulting in

the identification of 73 candidate ferroptosis factors. Univariate Cox regression

analysis was conducted to select 12 genes, followed by LASSO Cox regression

analysis to construct a prognostic risk prediction model consisting of 10

ferroptosis-related genes. The model was further characterized by immune

cell infiltration. The expression levels of ferroptosis-related genes were

validated in human breast cancer cell lines, and immunohistochemical (IHC)

analysis was conducted on cancer specimens to assess ferroptosis-related

protein expression.

Results:: The study identified 10 ferroptosis-related genes that were significantly

associated with breast cancer prognosis. The constructed prognostic risk

prediction model showed potential for predicting the prognostic value of

these genes. In addition, the infiltration of immune cells was observed to be a

characteristic of the model. The expression levels of ferroptosis-related genes

were confirmed in human breast cancer cell lines, and IHC analysis provided

evidence of ferroptosis-related protein expression in cancer specimens.
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Discussion: This study provides a novel prognostic model for breast cancer,

incorporating 10 ferroptosis-related genes. The model demonstrates the

potential for predicting breast cancer prognosis and highlights the involvement

of immune cell infiltration. The expression levels of ferroptosis-related genes and

proteins further support the association between ferroptosis and breast

cancer development.
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Introduction

It was predicted that in 2020, approximately 2.3 million new

cases of breast cancer would occur and account for 11.7% of all new

cancer cases (1). Due to the heterogeneity of breast cancer

molecular subtypes, the current therapeutic effects, and patient

prognosis are still unsatisfactory. Although major progress has

been made in its treatment through surgery, radiation therapy,

hormone therapy, targeted therapy, etc., the mortality rate of breast

cancer is still high (2). Predicting the prognosis of patients and

treatment outcome is important from the viewpoint of treatment

management and improving survival. Currently, growing evidence

suggests that induction of ferroptosis may improve the efficacy of

tumor therapy (3–5). However, there was currently little research

on ferroptosis-related signature genes in breast cancer patients.

Ferroptosis is a newly identified regulated cell death mechanism

that is characterized by the destruction of intracellular redox balance

and non-apoptotic pathways (6). In recent years, studies have

suggested that ferroptosis may be triggered, for example, in the

treatment of aggressive malignancies that are resistant to

conventional therapy and have a poor prognosis (7). Various other

studies have also suggested that ferroptosis plays an inhibitory role in

tumor growth and progression, while the growth of chemotherapy-

resistant tumors is inhibited by induction of ferroptosis (8, 9). With

regard to breast cancer, it has been reported that erastin

encapsulated by targeting exosomes induces ferroptosis in TNBC

cells (10). Further, another study showed that estrogen receptor

inhibits sulfasalazine-induced ferroptosis in breast cancer cells by

inhibiting transferrin receptors (11). Another study found that

NCOA3 acts as a co-activator in synergy with NR5A2 to prevent

BETi-induced ferroptosis (12). Despite these findings, the

association between ferroptosis-related signature genes and the

prognosis of breast cancer patients remains unclear. Therefore, in

the current study, we downloaded the RNA-Seq expression datasets

and clinical samples datasets of breast cancer patients from The

Cancer Genome Atlas (TGGA) datasets and constructed a

prognostic polygenic model with ferroptosis-related signature

genes. Further, we verified the predictive ability of the model using

clinical data for breast cancer from the GEO dataset.

In recent years, there has been increasing research on the

immune microenvironment, especially the infiltration of immune

cells. According to reports, the immune microenvironment is
02
critical for the development of breast cancer, but its specific

mechanism is not yet clear (13). Therefore, determining the

immune-related molecular mechanism of breast cancer tumor

growth is very important for the treatment of breast cancer. In

this present study, functional enrichment analysis of the identified

ferroptosis-related DEGs was performed to explore potential

immune-related mechanisms of breast cancer. Additionally,

sensitivity to immunotherapy and chemotherapy was also analyzed.
Materials and methods

Cell lines and cultures

The human breast cancer cell lines MDA-KB-2, MDA-MB-231,

T47D, and MDA-MB-453 were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) containing high glucose (4.5 g/L glucose)

from HyClone, USA. The cell lines SK-BR-3, BT474, and ZR-75-1

were cultured in RPMI-1640 medium from HyClone. Both media

were supplemented with 10% fetal bovine serum from Biochannel,

Nanjing, China, as well as 100 U/mL penicillin and 100 mg/mL

streptomycin. All cell lines were incubated at 37°C and 5% CO2 in a

CO2 incubator (SANYO MCO-175, Japan).
Patient tissue samples

A total of 7 tissue samples were collected, including the Tumor

group (patients with breast cancer) and the Normal group (patients

with fibroadenoma and cyclomastopathy) (Table S1) (Southwestern

Hospital, Army Medical University, Chongqing, China). This study

was approved by the Ethics Committee of the First Affiliated

Hospital of the Army Medical University (KY2020055), and the

study subjects signed an informed consent form.
RNA extraction and qRT-PCR

Total RNA was isolated from breast cancer cell lines and normal

breast cell lines using TRIzol Reagent from Servicebio, Wuhan,

China. Approximately 1 mg of the total RNA was then reverse-

transcribed into cDNA using the PrimeScript™ RT Reagent Kit
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with gDNA Eraser (Perfect Real Time) according to the instructions

provided by the manufacturer, Takara, Dalian, China.

For quantitative real-time PCR (qRT-PCR), TB Green™

Premix Ex Taq II from TaKaRa was used. The qRT-PCR was

performed on a CFX Connect™ Real-Time PCR Detection System

from Bio-Rad, Hercules, CA, USA. The expression levels of TP63,

SQLE, SLC7A5, SLC7A11, PTGS2, PROM2, MT3, IL33, ANO6,

ALOX15B were normalized using b-Actin as the internal control. In

this study, quantitative real-time PCR (qRT-PCR) was performed to

analyze gene expression levels. The specific primer sequences used

for amplifying the target genes were as follows:

TP63: TCGTCAGAACACACATGGTATCC (forward);

GCTGTTGCCTGTACGTTTCAATT (reverse).

SQLE: AAGCTTCCTTCCTCCTTCATCAG(forward);

CAACAGTCATTCCTCCACCAGTA (reverse).

SLC7A5: GGGAACATTGTGCTGGCATTATA(forward);

CCAGGTGATAGTTCCCGAAGTC (reverse).

SLC7A11: CTTTCAAGGTGCCACTGTTCATC (forward);

Reverse: ACGAAGCCAATCCCTGTACTAAA (reverse).

PTGS2: CTTCCTCCTGTGCCTGATGATTG(forward);

CCCTCGCTTATGATCTGTCTTGA (reverse).

PROM2: AGCCTGAAAGTAGACACACAGAG (forward);

CTCTGGATCTGAACGAGGAAGTC (reverse).

MT3 : CTGCTGCTCTCCTCGACATG ( f o rwa rd ) ;

CTTTGCACACACAGTCCTTGG

IL33: ATGAATCAGGTGACGGTGTTGAT (forward);

TCCACAGAGTGTTCCTTGTTGTT (reverse).

ANO6: TCCCACTCCATGATTGCAAATTC (forward);

TAATAGCCCAGCCAAGCAAAGTA (reverse).

ALOX15B: CTGTCACTACCTCCCAAAGAACT (forward);

AGAGAACTGAGGCTTCCCATTAA (reverse).

Data analysis was performed using the comparative Ct

method (DDCt).
Immunohistochemistry and single-cell
RNA-seq analysis

The protein expression of 10 ferroptosis-related genes involved

in the signature, among TCGA-BRCA samples, was analyzed by

IHC using the available scanned tumor staining from Human

Protein Atlas (HPA) database (https://www.proteinatlas.org/). The

information of IHC staining was determined and manually adjusted

by experts from the HPA database, and ferroptosis-related genes

IHC staining was defined and exhibited as high, medium, low

staining or not detected. IHC analysis was employed to evaluate the

expression of TP63 and SCL7A11 proteins in breast tissue samples

from the tumor group and the normal group. First, the collected

tissue samples were fixed in 10% neutral-buffered formalin and

embedded in paraffin. Subsequently, 4 mm thick sections were cut

from the paraffin-embedded blocks and mounted on glass slides.

Antigen retrieval was performed to enhance antigenicity, followed

by blocking to minimize nonspecific binding. The sections were

then incubated overnight at 4°C or for a specified duration with

primary antibodies targeting TP63 (diluted 1:50) and SCL7A11

(diluted 1:100). Afterward, the sections were washed and incubated
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with secondary antibodies conjugated to a reporter enzyme.

Visualization was achieved using a chromogenic substrate,

resulting in a visible precipitate at the sites of antigen-antibody

interaction. Counterstaining with hematoxylin was performed to

improve tissue visibility. Subsequently, stained sections were

examined under an optical microscope to assess TP63 and

SCL7A11 expression levels. Staining intensities were compared

between the tumor group and the normal group to determine any

differential expression patterns. Additionally, ImageJ software was

used to analyze the positive area. Identification of tissue subtypes in

BRCA patients based on the single-cell RNA-Seq dataset GSE76078.
Data sources

The TCGA breast cancer datasets were downloaded using the

UCSC Xena browser and included 1,091 tumor tissue samples and

113 normal tissue samples. The breast cancer typing data was

downloaded with the R package TCGAbiolinks, and the

GSE96058 and GSE25066 datasets were downloaded from NCBI.
Screening and identification of DEGs

Differential analysis of genes obtained from the training datasets

was performed with the limma package. The criteria for selecting

DEGs were |logFoldChange| ≥ 1 and P-value < 0.05. Ferroptosis-

related signature genes and DEGs reported in the previous literature

and the FerrDb website were searched to determine candidate

ferroptosis-related factors (http://www.zhounan.org/ferrdb/) (7).
Construction and verification of a
prognostic risk model based on
ferroptosis-related signature genes

The survival package (R 4.0) was used to perform survival

analysis on candidate ferroptosis-related factors (P-value < 0.05). A

PPI (Protein-protein interaction) network was constructed for the

ferroptosis-related factors with the String database. In correlation

analysis was using the Hmisc package (R 4.0).

Lasso dimensionality reduction was performed with the glmnet

package. The number of iterations was 1000, and cross-validation

was performed to construct a scoring model of the risk for breast

cancer ferroptosis. The risk score for each patient was calculated

according to the risk formula. Risk score = gene A expression × b1 +
gene B expression × b2 +……gene expression × bn (bn represents

the coefficient of the corresponding gene). ROC analysis and

survival analysis were performed using the pROC package and

survival package (R 4.0). Additionally, other clinical factors were

analyzed by univariate and multivariate COX regression analysis.

LASSO Cox regression analysis by glmnet package (R 4.0). The

clinical data of the training set included age, menopausal status,

cancer stages, T stages, lymph node metastasis, and PAM50

classification. The clinical data of the validation set included age,

lymph node metastasis, and PAM50 classification.
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Functional and pathways enrichment
analysis of the identified DEGs

The limma package (R 4.0) was used to perform differential

analysis of the low- and high-risk groups of the training set and the

validation set, and the clusterProfiler package (R 4.0) was used to

perform functional and pathways enrichment analysis of the DEGs.

And take the intersection of the enrichment analysis results of the

training set and the validation set. The cutoff P-value for the KEGG

pathways enrichment and GO terms enrichment analysis were 0.05.
ssGSEA analysis

Single sample gene set enrichment analysis (ssGSEA) is an

algorithm used to assess the degree of tumor immune infiltration.

The datasets were evaluated using ssGSEA with the GSVA package

and GSEABase package (R 4.0). Genetic information about the

immune cells was obtained from the literature (7).
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Analysis of differences in mutations in
ferroptosis-related factors between risk
groups and analysis of
treatment differences

The maftools package and the GenVisR package were used to

divide the validation set data into risk groups by risk score.

Mutation information was from the mutation data. The screening

condition was mainRecurCutoff = 0.05.

The immunotherapy dataset was used to obtain data about

immunotherapy (14). TCGA dataset grouping constructs low- and

high-risk group data. The difference in immunotherapy between

risk groups was predicted with the submap model of the

Genepattern website.

Using the GSE25066 dataset, the ggplot2 and Survival packages

were used to analyze differences in the prediction of chemotherapy

sensitivity between risk groups, and the Wilcoxon test was used to

analyze differences in the expression of genes identified in the drug

resistance samples.
B

C D

A

FIGURE 1

Differential genes (DGEs) analysis. (A)The study flowchart. (B) Volcano plot of the differentially expressed genes identified from the TCGA-BRCA
database. (C) Venn diagram of the differentially expressed genes and ferroptosis-related genes. (D) Heatmap showing expression of the 73
overlapping genes between tumor and normal samples.
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Drug sensitivity analysis

We conducted a comprehensive drug resistance assessment of

genes using data from the GDSC drug database. We integrated

mRNA expression data with drug sensitivity data, followed by

performing Pearson correlation analysis to assess the relationship

between the mRNA expression levels of selected ferroptosis-related

genes and the corresponding IC50 values of drugs. To enhance

statistical rigor, we adjusted the p-values using the False Discovery

Rate (FDR) correction method.
Results

DEG screening

Figure 1A is the flowchart of our study. The difference in genes

expression between breast cancer tumor and adjacent tissue

samples in the TCGA datasets were analyzed, and 5089 DEGs

were obtained: 3347 genes were downregulated and 1742 genes were

upregulated (Figure 1B and Tables S2, S3). Seventy-three candidate

ferroptosis factors were common between the screened ferroptosis-

related signature genes and DEGs, and heatmaps were used to

visualize them (Figures 1C, D).
Frontiers in Immunology 05
Identifying ferroptosis-related factors and
constructing a prognostic model for
breast cancer

Univariate Cox regression analysis of the 73 candidate

ferroptosis-related factors revealed 12 potential prognostic factors

related to breast cancer (Table S4). These 12 genes are closely

related to the prognosis of breast cancer patients. Among

them, ANO6, PROM2, SLC7A11, SLC7A5 and SQLE are risk

genes (HR > 1.0, p <0.05) and ALOX15B, IL33, JUN, MT3,

PTGS2, TF and TP63 are protective genes (HR < 1.0, p <0.05,

Figure 2A). Figure 2B shows the correlation between the 12

prognostic ferroptosis-related signature genes (ANO6, PROM2,

SLC7A11, SLC7A5, SQLE, ALOX15B, IL33, JUN, MT3, PTGS2,

TF, and TP63).

To construct a prognostic model comprising ferroptosis-related

factors for breast cancer, and LASSO Cox regression analysis on the

12 identified breast cancer prognosis-related factors. From these 12

factors, 10 factors (i.e., TP63, SQLE, SLC7A5, SLC7A11, PTGS2,

PROM2,MT3, IL33, ANO6, ALOX15B) that contributed the most to

the prognosis of breast cancer patients were screened out based on

an optimal value of l (Figures 2C, D). The following formula was

used to construct a breast cancer prognostic model comprising

ferroptosis-related factors:
B

C D

A

FIGURE 2

Prognostic factors analysis for breast cancer. Forest plot (A) and correlation analysis network plot (B) of 12 prognostic factors for breast cancer.
Prognostic factors associated with breast cancer are CV chart (C) and risk coefficient bar chart (D).
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Riskscore=TP63*-0.085+SQLE*0.05525+SLC7A5*0.1084

+SLC7A11*0.01612+PTGS2*-0.04034+PROM2*0.2264+MT3*-

0.03566+IL33*-0.02012+ANO6*0.4927+ALOX15B*-0.07203.

The median risk score was used as the cutoff value, patients in

the TCGA datasets were divided into the low- and the high-risk

group (Figure S1A). Survival analysis suggested that the low-risk

group had a longer survival time (Figure S1B, p < 0.01).
Evaluation of 10 ferroptosis-related
signatures genes as independent
prognostic factors in breast
cancer patients

We further confirmed whether the 10 ferroptosis-related gene

signatures were independent prognostic factors by univariate and

multivariate COX regression analysis. In the training dataset,

univariate COX regression analysis suggested that M (HR=1.378,

95%CI = 1.133-1.675, p=0.001), N (HR=1.683, 95%CI = 1.393-

2.034, p < 0.001), T (HR=1.550, 95%CI = 1.226-1.959, p < 0.001),

age (HR=2.606, 95%CI = 1.763-3.851, p < 0.001), stage (HR=2.134,

95%CI = 1.651-2.758, p < 0.001), and risk score (HR = 3.271, 95%

CI = 2.242–4.772, p < 0.001; Figure 3A) and the multivariate Cox

regression suggested that age (HR=1.074, 95%CI = 1.063-1.085, p <

0.001), N (HR=1.585, 95%CI = 1.360-1.847, p < 0.001), PAM50

(HR=0.736, 95%CI = 0.641-0.800, p < 0.001), and risk score (HR =

1.787, 95% CI = 1.333–2.397, p < 0.001, Figure 3C). In the validation

set, univariate COX regression analysis showed that N (HR=1.347,

95%CI = 1.009-1.798, p = 0.043), age (HR=2.408, 95%CI = 1.511-

3.837, p < 0.001), stage (HR=1.604, 95%CI = 1.021-2.519, p = 0.040),

PAM50 (HR=0.805, 95%CI = 0.666-0.973, p = 0.025) and risk score

(HR = 3.243, 95% CI = 2.193–4.797, p < 0.001; Figure 3B) and the

multivariate Cox regression suggested that age (HR=1.074, 95%CI =
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1.063-1.085, p < 0.001), N (HR=1.572, 95%CI = 1.352-1.828, p <

0.001), PAM50 (HR=0.643, 95%CI = 0.573-0.722, p < 0.001), and

risk score (HR = 1.328, 95% CI = 0.989–1.783, p = 0.059, Figure 3D).

All these results suggested that these 10 ferroptosis-related gene

signatures are significantly related to the prognosis of breast

cancer patients.
Functional enrichment analysis of DEGs in
the risk groups and assessment of immune
function in the risk groups

To clarify the enrichment pathways and biological functions of

the identified prognostic ferroptosis-related signature genes,

functional enrichment analysis was performed on the DEGs

between the risk groups in the training set and validation set

(Tables S5, S6). A total of 620 DEGs were identified in the

training dataset (Table S7) and 817 DEGs were identified in the

validation dataset (Table S8). The training set DEGs were enriched

in 150 GO terms (Figure S2A and Table S9) and 8 KEGG pathways

(Figure S2B and Table S10), the KEGG pathways were

enriched in cytokine-cytokine receptor interaction (hsa04060),

viral protein interaction with cytokine and cytokine receptor

(hsa04061), neuroactive ligand-receptor interaction (hsa04080),

staphylococcus aureus infection (hsa05150), tyrosine metabolism

(hsa00350), PPAR signaling pathway (hsa03320), arachidonic acid

metabolism (hsa00590) and IL-17 signaling pathway (hsa04657).

And the validation set DEGs were enriched in 650 GO terms

(Figure S2C and Table S11) and 18 KEGG pathways (Figure S2D

and Table S12), the KEGG pathways were enriched in Cytokine-

cytokine receptor interaction (hsa04060), viral protein interaction

with cytokine and cytokine receptor (hsa04061), hematopoietic cell

lineage (hsa04640), ECM-receptor interaction (hsa04512), PPAR
B

C

D

A

FIGURE 3

Risk score as an independent prognostic factor for breast cancer Results of overall survival in the training dataset and validation dataset using
univariate (A, B) and multivariate Cox regression analyses (C, D).
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signaling pathway (hsa03320), primary immunodeficiency

(hsa05340), focal adhesion (hsa04510), chemokine signaling

pathway (hsa04062), renin secretion (hsa04924), etc. Between the

two sets, there were 85 overlapping GO terms (Table S13) and 4

overlapping KEGG pathways (Table S14). The main functions and

pathways that were enriched in the PPAR signaling pathway,

cytokine receptor function, tyrosine metabolism, response to

chemokines, cell adhesion molecules, extracellular matrix

structural components, glycosaminoglycan binding, and

heparin-binding.

The ssGSEA algorithm was used to compare immune cell

infiltration in the risk groups. The combined results from the

TCGA and GEO datasets showed that the high-risk group had

significant higher B cell, DCs, iDCs, macrophage, neutrophil, pDC,

NK cell, Tfh cell, Th2 cell, and TIL cell infiltration than the low-risk

group (p < 0.05, Figures 4A, C). Immune cell infiltration was

generally higher in the high-risk group. In addition, immune-

related functions, including APC co-stimulation, APC co-

inhibition, HLA, CCR, promotion of inflammation, type I IFN

response, type II IFN response, MHC class I and T cell co-

stimulation were significantly upregulated in the high-risk groups

(p < 0.05, Figures 4B, D). Overall, these 10 ferroptosis-related genes

were also found to be related to the immune status of breast cancer.
Differences in mutations in ferroptosis-
related factors between the low- and high-
risk groups and differences in
treatment sensitivity

MUC4 and NEBmutations were detected in the low-risk group,

but not in the high-risk group, of the training set. In the high-risk
Frontiers in Immunology 07
group of the training set, FLG, NCOR1, SPTA1, DMD, PTEN,

ZFHX4, CSMD3, MUC17, and FAT3 mutations were detected

(Figure S3A), but these were not detected in the low-risk group

(Figure S3B). PIK3CA, TP53, CDH1, TTN, MUC16, GATA3,

MAP3K1, KMT2C, HMCN1, DSH2A, RYR2, SYNE1 mutations

were detected in the low- and high-risk groups. Additionally,

there was a difference in the proportion of CDH1 between the

low- and high-risk groups. Our prediction analysis of

immunotherapy outcome showed that the ant i -PD1

(programmed cell death protein 1) treatment may be less effective

in the high-risk group (Table S15).

There was a significant difference in overall survival between the

low- and high-risk groups (Figure 5A), and this was reflected by the

prognostic model. In the high-risk group, 36.22% of the samples

were Treatment sensitive and 63.78% were Treatment insensitive,

and in the low-risk group, 30.31% were Treatment sensitive and

69.69% were Treatment insensitive (Figure 5B and Table S16).

There was an insignificant difference in risk score between the

Treatment-sensitive and Treatment-insensitive samples

(Figure 5C). Then, we analyzed the genes expression in the

prognostic model according to drug resistance. The results

showed that the IL33, MT3, and SQLE genes had significantly

different expressions in the Treatment-sensitive and Treatment-

insensitive samples, and ALOX15B, PTGS2, SLC7A5, SLC7A11, and

TP63 expression between Treatment-sensitive and Treatment-

insensitive samples were not statistically significantly different.

(Figures 5D-K and Table S17).

Finally, we analyzed the drug resistance of genes based on the

GDSC drug database (https://www.cancerrxgene.org/faq). The

results showed that PROM2, TP63, PTGS2, MT3, ANO6, SQLE,

and SLC7A11 were associated with drug response. PROM2 and

TP63 were sensitive to gefitinib, afatinib, lapatinib, erlotinib,
B

C D

A

FIGURE 4

Immune cell and immune-related functions between low- and high-risk groups. 16 immune cells and 13 immune-related functions in the TCGA
datasets (A, B) and GEO datasets (C, D).
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cetuximab, and docetaxel. Notably, the expression of SLC7A11 was

positively correlated with Shikonin, QL-XII-61, QL-X-138

(Figure S4).
Validation of ferroptosis-related
genes expression

Finally, we validated the expression levels of these ten

ferroptosis-related genes in human breast cancer cell lines.
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Compared to the normal breast cell line MDA-KB2, TP63,

SLC7A11, PTGS2, IL33, and ANO6 were downregulated in other

cell lines. SQLE showed high expression in T47D, ZR-75-1, and

BT474, while it was lowly expressed in MDA-MB-231 and MDA-

MB-453 (Figure 6A). SLC7A5 exhibited low expression in SK-BR-3,

ZR-75-1, MDA-MB-231, and MDA-MB-453, but high expression

in T47D and BT474. PROM2 demonstrated high expression in SK-

BR-3, T47D, and MDA-MB-453. ALOX15B displayed low

expression in SK-BR-3, T47D, ZR-75-1, BT474, and MDA-MB-

231, but high expression in MDA-MB-453 (Figure 6A). To further
B C

D E F

G H I

J K

A

FIGURE 5

Differences in the prediction of chemotherapy sensitivity according to risk (A) Prognostic survival analysis of high and low risk groups; (B) Ratio of
treatment insensitives and treatment sensitives in the risk group of the high- and low-risk group; (C) Differences in riskscore between Treatment
Sensitive and Treatment Insensitive; (D-K) Differences in gene sensitivity therapy among different genes.
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validate our findings, we utilized IHC analysis. IHC data were

retrieved from the HPA database to examine the protein levels

associated with the signature ARG. It was observed that 8/9, 9/12,

10/12, 9/11, 11/12, 3/12, 10/12, and 4/9 BRCA samples expressed

TP63, SQLE, SLC7A5, PTGS2, PROM2, MT3, ANO6, and

ALOX15B, respectively (Figure 6B). Notably, through IHC

analysis, it was observed that these eight ferroptosis-related

proteins were localized in the cytoplasm and/or membrane of the
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BRCA samples (Figure 6C). However, IL33 was not detected in any

of the BRCA samples (Figures 6B, C). Due to the lack of IHC

staining for SLC7A11 in the BRCA samples, the protein expression

was not estimated. In addition, we also focused on the expression of

these 10 ferroptosis-related genes in breast cancer samples in single

cell data analysis. The expression patterns of SQLE, SLC7A5, and

ANO6 are similar in different cells (Figure 6D). To validate the

protein-level expression of the aforementioned genes, we selected
B

C

D

E

A

FIGURE 6

Analysis of Expression in Cell Lines and IHC Analysis. (A) RT-qPCR detection of the expression of ferroptosis-related genes in breast cancer cell lines,
with b-actin as a control; (B) Collection of IHC staining information for ferroptosis-related genes; (C) Representative IHC staining for ferroptosis-
related genes; (D) The expression level of ferroptosis-related genes. Identification of tissue subtypes in BRCA patients based on the single-cell RNA-
Seq dataset GSE76078; (E) IHC analysis of TP63 and SCL7A11 protein expression in human breast tissue samples. Statistically significant differences
are represented by ‘*’, P<0.05.
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two genes that exhibited significant differences in expression levels.

Immunohistochemical staining was performed on human breast

tissue samples obtained from the tumor group and the normal

group. The results of the immunohistochemical staining revealed

distinct staining patterns for TP63 and SCL7A11 in different

groups. Statistical analysis further demonstrated a significant

decrease in TP63 expression in the tumor group compared to the

normal group. Conversely, the expression of SCL7A11 was

significantly increased in the tumor group when compared to the

normal group (Figure 6E, P<0.05).
Discussion

In our study, we systematically studied the expression of 73

ferroptosis-related genes in breast cancer and their relationship

with overall survival. And based on the data of the TCGA dataset, a

novel model containing 10 ferroptosis-related genes was

constructed to predict the prognosis of breast cancer, and it was

validated in the GEO dataset. As well as in the functional

enrichment analysis results suggested that immune-related

functions were enriched. Overall, the findings suggest that

according to the model, breast cancer patients classified as high-

risk groups lived less than low-risk groups.

In the present study, 10 significant ferroptosis-related factors

associated with breast cancer were used to construct the model for

prediction of prognosis: Tp63, SQLE, SLC7A5, SLC7A11, PTGS2,

PROM2, MT3, IL33, ANO6, and ALOX15B. According to FerrDb

(http://www.zhounan.org/ferrdb/) (15), TP63 and SLC7A11 are

inhibitors of ferroptosis, while SQLE, ANO6, IL33, and ALOX15B

may promote ferroptosis. So far, SLC7A5 and MT3 have not been

reported to be associated with ferroptosis.

SLC7A11 is closely related to resistance to ferroptosis inducers.

SLC7A11 is highly expressed in tumour samples and the ectopic

expression of SLC7A11 inhibits by p533KR-induced ferroptosis in

human cancer cells (16, 17). SLC7A11 directly interacts with

ALOX12, resulting in the inhibition of ALOX12 activity. A recent

report suggested that ALOX12 is essential for p53-mediated

ferroptosis (18). There are six ALOX (arachidonic acid

lipoxygenase) genes in humans: ALOXE3, ALOX12, ALOX12B,

ALOX15, ALOX15B, and ALOX5. Silencing the ALOX gene makes

cells resistant to ferroptosis. By silencing ALOX15B and ALOXE3,

erastin-induced cell death can be rescued, which supports the

hypothesis that ferroptosis requires lipoxygenase (19). TP63 is a

member of the Tp53 family (20). TP63 via its byproducts DNp63
regulates the self-renewal of progenitor cells in epithelial tissue,

which has a dominant-negative effect on other isoforms of the Tp53

family and exerts tumorigenic functions (21). TP63 amplification

up-regulates glutathione metabolism and promotes tumorigenesis.

DNp63a inhibits oxidative stress by regulating glutathione

metabolism. DNp63a is an important cell guard against oxidative

stress (including ferroptosis) (22). The expression of TP63 was

positively correlated with the expression levels of glutathione

metabolism-related genes, including SLC7A11, GCLC, and GSS

(23). ANO6 is activated during the ferroptosis process induced by

erastin and RSL3. The activation of ANO6 is a key component of the
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ferroptosis cell death process. Inhibition prevents the ferroptosis

cell death induced by RSL3/erastin (24). PROM2 is induced by

ferroportin, and Prominin2 promotes the ferroptosis resistance

of breast cancer cells. In terms of mechanism, prominin2

promotes the formation of ferritin-containing exosomes and

multivesicular bodies (MVB), transports iron out of cells, and

inhibits ferroptosis (25).

Studies have shown that PTGS2 may promote ferroptosis, and

the up-regulation of PTGS2 is a suitable marker for lipid

peroxidation that occurs during ferroptosis regulated by GPX4.

GPX4 is an established central regulator of ferroptosis and can

induce ferroptosis in mouse tumor xenografts (26). Ferrostatin-1

(Fer-1) is an inhibitor of ferroptosis, regarding the immunogenicity

of ferroptosis. Fer-1 prevents the up-regulation of IL-33, which is an

alarm related to necroptosis and prevents macrophage infiltration

and Klotho down-regulation (27). Therefore, the role of SLC7A5

and MT3 genes in ferroptosis can be explored in the future.

In recent years, although the relationship between the

occurrence and development of tumors and ferroptosis has been

intensively studied, the mechanism by which genes regulate breast

tumor occurrence and development by affecting ferroptosis

remains unclear.

In this study, we evaluated the expression levels of 10

ferroptosis-related genes in breast cancer cells and further

validated their protein expression using IHC analysis. Our

findings revealed distinct expression patterns among these

ferroptosis-related genes in breast cancer cells. The IHC analysis

provided further validation of the protein expression of these genes

in breast cancer tissue samples. Furthermore, we performed single-

cell data analysis to visualize the expression levels of these genes in

different cells, with the aim of identifying patterns associated with

breast cancer prognosis. These genes may potentially be involved in

the pathogenesis of breast cancer or interact with other genes, but

further research is needed to confirm their functions and biological

significance. Although we did not observe clear differential

expression patterns, our study provides a starting point for

further exploration of the roles of these 10 genes in breast cancer.

Deeper investigation into the functions and regulatory mechanisms

of these genes, as well as their association with breast cancer

prognosis, will contribute to a better understanding of the

pathological processes in breast cancer and provide new clues for

treatment and prognosis assessment. These results indicate a

potential clinical relevance of these genes in breast cancer

progression and treatment response.

It is worth noting that the dysregulation of ferroptosis-related

genes may contribute to the development of chemoresistance in

breast cancer. Previous studies have demonstrated the involvement

of ferroptosis in cancer biology and its therapeutic implications (28–

30). In conclusion, our study provides a comprehensive analysis of

the expression patterns of 10 ferroptosis-related genes in breast

cancer cells, supported by IHC validation in tumor tissues. These

findings contribute to the growing understanding of ferroptosis

dysregulation in breast cancer and its potential implications in

clinical management. Further research is necessary to fully unravel

the functional roles of these genes and their therapeutic significance

in breast cancer.
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In the present study, GO terms and KEGG pathway analysis of

the DEGs identified between the training set and the validation set

shows that extracellular matrix decomposition, humoral immune

response, cytokine receptor function, chemokine receptor binding,

and PPAR signaling pathways, among other pathways, were

enriched. Accordingly, studies have shown that the shedding of

extracellular mechanisms leads to the accumulation of oxidative

stress and ferroptosis (31). Further, the PPAR signaling pathway

plays a central role in lipid metabolism (32), and iron-dependent

accumulation of lipid hydroperoxides leading to a lethal level is

characteristic of ferroptosis (33). It is also known that the

dysregulation of extracellular matrix deposition promotes breast

cancer aggressiveness by maintaining important growth, invasion,

and survival-related signaling pathways (34, 35). Glycosaminoglycans

are biomarkers and targets for the diagnosis, prognosis, and

treatment of breast cancer and play a key role in their growth (36,

37). Therefore, these functional enrichment analysis results suggest

that ferroptosis-related genes may promote breast cancer progression

by regulating some signaling pathways and the immune system at the

early stage of breast cancer.

The potential association between cancer immunity and

ferroptosis remains to be further elucidated. In our research results,

we found that compared with the high- and the low-risk group had

significantly lower B cell, DC, iDC, macrophage, neutrophil, NK cell,

pDC, Tfh, Th2 cell, and TIL cell infiltration. Tumor-infiltrating B

cells (TIB) have been shown to promote tumor cell lysis and

apoptosis (38). Neutrophil infiltration is associated with increased

overall survival in breast cancer and is an independent prognostic

factor (39). Additionally, dendritic cells (DCs) are known to have a

role in initiating immune mechanisms. Studies suggest that defective

DCs function in patients with early-stage breast cancer is one of the

important factors in tumor progression (40). Consistent with our

findings, in our ferroptosis-related prognostic model, there was a

significant difference in the proportion of DCS in breast cancer

patients among the risk groups. In conclusion, dysfunction of the

immune response in the peri-tumor environment may be one of the

reasons for the low-risk score.

Through univariate and multivariate Cox regression analysis, it

was found that the model constructed in this study can predict

prognosis well, and reliable results were obtained in constructing a

risk score model. At the same time, we should acknowledge some

limitations of this study. All results are based on public datasets and

prospective clinical validation should be required in the future. In

conclusion, 10 ferroptosis-related gene signatures were identified as

independent prognostic significance in breast cancer. It also

provides potential biomarkers and models for future personalized

medicine and immune-related work in the treatment of breast

cancer patients.
Conclusion

In summary, our findings highlight the crucial role of

ferroptosis-related genes in breast cancer prognosis. By
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developing a novel prognostic risk prediction model that

combines these genes and immune cell infiltration information,

we offer a promising approach for assessing the prognostic value of

ferroptosis-related genes in breast cancer. Additionally, our

validation study confirmed the expression levels of ferroptosis-

related genes in human breast cancer cell lines and assessed the

expression of ferroptosis-related proteins in cancer specimens using

IHC analysis. Further studies are warranted to validate and explore

the clinical implications of this model, potentially improving

treatment strategies and patient outcomes.
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Prognostic analysis of the 12-gene model in the TCGA datasets (A) The

distribution of risk score in the TCGA datasets. (B) Kaplan-Meier survival

analysis of OS between the risk group in the TCGA datasets.

SUPPLEMENTARY FIGURE 2

Functional enrichment of DEGs identified between the risk groups. GO terms

enrichment analysis in the TCGA datasets (A) and in the GEO datasets (C).
KEGG pathways enrichment analysis in the TCGA datasets (B) and in the GEO

datasets (D).

SUPPLEMENTARY FIGURE 3

Analysis of differences in mutations in ferroptosis factors according to risk (A)
Low-risk group; (B) High-risk group.

SUPPLEMENTARY FIGURE 4

Drug resistance analysis based on GDSC drug data.
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