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Toll-like receptor 4 (TLR4) are part of the innate immune system. They are

capable of recognizing pathogen-associated molecular patterns (PAMPS) of

microbes, and damage-associated molecular patterns (DAMPs) of damaged

tissues. Activation of TLR4 initiates downstream signaling pathways that trigger

the secretion of cytokines, type I interferons, and other pro-inflammatory

mediators that are necessary for an immediate immune response. However,

the systemic release of pro-inflammatory proteins is a powerful driver of acute

and chronic inflammatory responses. Over the past decades, immense progress

has been made in clarifying the molecular and regulatory mechanisms of TLR4

signaling in inflammation. However, the most common strategies used to study

TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with

agonists such as lipopolysaccharide (LPS) derived from the outer membrane of

Gram-negative bacteria, which are often associated with the generation of

irreversible phenotypes in the target cells or unintended cytotoxicity and

signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics

offers an alternative strategy to control and monitor cellular signaling in an

unprecedented spatiotemporally precise, dose-dependent, and non-invasive

manner. This review provides an overview of the structure, function and

signaling pathways of the TLR4 and its fundamental role in endothelial cells

under physiological and inflammatory conditions, as well as the advances in TLR4

modulation strategies.
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1 Structure and function of the toll-
like receptor 4 and its receptor family

Toll-like receptors (TLRs) are a family of conserved pattern-

recognition receptors (PRRs) that detect and bind to evolutionarily

conserved molecular motifs in pathogen-associated molecular

patterns (PAMPs) of microbes or damage-associated molecular

patterns (DAMPs) of injured tissues to induce innate and

adaptive immune response (1–3). Other classes of PRRs include

Nod-like receptors (NLRs), RIG-I-like receptors (RLRs), AIM2-like

receptors (ALRs), C-type lectin receptors (CLRs), and intracellular

DNA and RNA sensors such as cyclic GMP-AMP synthase (cGAS)

(4, 5). Obviously, TLRs are expressed in innate immune cells such as

macrophages, neutrophils, dendritic cells, natural killer cells, mast

cells, eosinophils, basophils as well as adaptive immune cells,

including B cells and specific T cells. They are also found in and

on non-immune cells such as fibroblasts, epithelial and endothelial

cells (6–8). TLRs are type I transmembrane proteins consisting of

an extracellular domain (ECD) with leucine-rich repeats (LRRs)

responsible for the detection of PAMPs and DAMPs, a

transmembrane region, and an intracytoplasmic toll/interleukin 1

(IL-1) receptor (TIR) domain necessary for the initiation of the

downstream signaling pathways (9) (Figure 1). LRRs exist in

different protein combinations depending on the type of receptor

and the corresponding ligand recognition and signal transduction

(10). This high variety of LRRs is attributable to its consensus

sequence motif of L(X2)LXL(X2)NXL(X2)L(X7)L(X2), where X can

be any amino acid. Upon interaction of distinct PAMPs or DAMPs

with the corresponding LRR, the extracellular domains of the

respective TLRs form homo- or heterodimers with co-receptors

or accessory molecules, which is essential for the activation of

various signaling pathways and thus for an appropriate immune

response (11). The LRR carboxy-terminal domain, characterized by

the consensus motif CXC(X23)C(X17)C, separates the LRR region

from the transmembrane region in TLRs (12). The TIR domain

exhibits high homology to that of the IL-1 receptor family (13).
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Three highly conserved regions in TIR domains have been

identified that mediate the protein-protein interactions between

TLRs and adaptor proteins necessary for signal transduction. The

various TLRs use different sets of adaptor proteins to determine

signal transduction, with TLR4 being the only known TLR that uses

all TIR domain-containing adaptor proteins, including the myeloid

differentiation factor 88 (MyD88), TIR domain-containing adaptor

protein (TIRAP), also known as MyD88-adaptor like (Mal), TIR

domain-containing adaptor inducing interferon beta (TRIF), and

TRIF-related adaptor protein (TRAM) (14, 15).

In 1985, Anderson et al. originally identified Toll as a gene

product essential for the embryonic dorsoventral axis formation in

the fruit fly Drosophila melanogaster (16), and 11 years later, its

critical antifungal function in this species was described (17). Just

one year later, in 1997, the discovery of the mammalian homologue

of the toll receptor (now designated TLR4), which plays a major role

in the innate immune response by inducing the expression of pro-

inflammatory genes, revolutionized our knowledge of the immune

system and triggered an irresistible research on PRRs (18). To date,

a total of 10 and 12 functional TLRs have been identified in humans

and mice, respectively, with TLR1 - TLR9 being conserved in both

species. A retroviral insertion into the TLR10 gene in mice impaired

its functionality, and the human genome lost TLR11, TLR12, and

TLR13 (19). Based on their cellular localization and respective

PAMP ligands, human TLRs are classified into cell surface TLRs

and intracellular TLRs (Figure 2). TLR2/TLR1 and TLR2/TLR6

heterodimers, TLR4 and TLR5 homodimers, and the orphan TLR10

(incomplete understanding of dimerization) are expressed on the

cell surface and primarily recognize microbial membrane

components such as lipoteichoic acid (LTA) (TLR2), lipopeptides

(LP) (TLR1, 2, 6) and lipopolysaccharide (LPS) (TLR4, 10) as well as

flagellin (TLR5, 10) (20, 21). In addition, TLR2 detects zymosan

glycan in fungi and like TLR4 glycophosphatidylinositol (GPI)

anchors in protists. In contrast, human TLR3, TLR7, TLR8, and

TLR9 homodimers are exclusively found in intracellular

components such as lysosomes, endosomes, endolysosomes, and
FIGURE 1

Conserved structure of TLRs. TLRs are characterized by an extracellular domain with leucine-rich repeats responsible for the recognition of PAMPs
and DAMPs, a transmembrane domain, and an intracytoplasmic Toll/IL-1 receptor (TIR) domain necessary for signal transduction. TLR, toll-like
receptor; LRR, leucine-rich repeats; PAMP, pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern; TIR domain, Toll/
interleukin-1 (IL-1) receptor domain. Created with BioRender.com.
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the endoplasmic reticulum, where they mainly target microbial

nucleic acids (9, 22) (Figure 3).
2 TLR4 signaling

One of the best characterized PAMPs to date is the endotoxin

LPS, which is derived from the outer membrane of Gram-negative

bacteria. The general structure of LPS is divided into lipid A, a core

oligosaccharide, and an O side chain, with lipid A being the major

PAMP of LPS (23, 24). LPS stimulation of human cells triggers a

series of interactions involving the soluble LPS binding protein

(LBP), the soluble glycosylphosphatidylinositol-anchored protein

cluster of differentiation 14 (CD14), the soluble myeloid

differentiation factor 2 (MD-2), and TLR4 (25, 26). LBP extracts

LPS from the outer membrane of Gram-negative bacteria and

transports it to CD14, which then transfers LPS to the TLR4/

MD-2 receptor complex (14, 27). Interestingly, LPS can bind to

MD-2 even in the absence of TLR4, which does not seem to be

possible the other way around, as there is only evidence that TLR4

can enhance the binding of LPS to MD-2 (28, 29). Upon LPS
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recognition, the extracellular domains of TLR4 dimerize and

adaptor proteins recruit through interactions with the TIR

domains of TLR4. Initial recruitment of the adaptor proteins

MyD88 and TRIAP induces the MyD88-dependent signaling

pathway, which triggers an early activation of the nuclear factor

kappa B (NF-kB) and the mitogen-activated protein kinases

(MAPK) (30, 31). Sequential binding of the adaptor proteins

TRIF and TRAM and subsequent dynamin-driven endosomal

translocation of TLR4 initiates the MyD88-independent pathway,

also known as the TRIF-dependent pathway, which culminates in

the late-phase activation of NF-kB and the IFN-inducing

transcription factor IFN regulatory factor 3 (IRF3). The MyD88-

dependent pathway leads to the production of pro-inflammatory

cytokines. In contrast, the TRIF-dependent pathway additionally

results in the secretion of type I interferons (IFN) (32). The signal

transduction of the MyD88-dependent and TRIF-dependent

pathway is described in detail in the following sections and is

graphically displayed in Figure 2.

The MyD88-dependent pathway is characterized by the

formation of the Myddosome consisting of MyD88, TRIAP,

IRAK4, IRAK1, and IRAK2. MyD88 recruits IL-1 receptor-
FIGURE 2

Schematic representation of the TLR signaling pathways. Depending on the type of PAMP and its respective binding affinity to different extracellular
domains of the TLRs, TLR signaling is initiated by the dimerization of the extracellular domains of the receptors after recruitment of the adaptor
proteins MyD88 and TIRAP (MyD88-dependent pathway) or TRIF and TRAM (TRIF-dependent pathway) through the interactions with the TIR
domains of the TLRs. TLR, toll-like receptor; LPS, lipopolysaccharide; dsRNA, double-stranded ribonucleic acid; ssRNA, single-stranded ribonucleic
acid; CpG DNA, 5’-cytosine-phosphate-guanine-3’ deoxyribonucleic acid; MyD88, myeloid differentiation factor 88; TRIAP, TIR domain-containing
adaptor protein; TRIF, TIR domain-containing adaptor inducing interferon beta; TRAM, TRIF-related adaptor protein; IRAK, interleukin 1 receptor-
associated kinase; TRAF, tumor necrosis factor receptor-associated factor; TAK-1, transforming growth factor beta-activated kinase 1; TAB, TAK-1
binding protein; MKK, mitogen-activated protein kinase kinase; JNK, Jun N-terminal kinase; ERK1/2, extracellular signal−regulated protein kinase 1/2;
CREB, cyclic adenosine monophosphate-responsive element-binding protein; AP-1, activator protein 1; NF-kB, nuclear factor kappa B; NEMO,
NF-kB essential modulator; IKK, IkB kinase; IKKi, inhibitor of NF-kB kinase; RIP1, receptor-interacting protein 1; TBK, TANK-binding kinase; IFN,
interferon; IRF, interferon regulatory factor. Created with BioRender.com.
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associated kinase-4 (IRAK4) through homotypic interaction of their

death domains (14). IRAK4 is a member of the IRAK family, which

shares a death domain and a kinase domain (33). IRAK4 knock-in

mutation studies in mice revealed that the kinase activity of IRAK4

is crucial for TLR signaling (34, 35). Of note, IRAK4 also activates

NF-kB and MAPK (36). IRAK4 sequentially engages and activates

IRAK1 and IRAK2, which are then autophosphorylated at multiple

sites (37), leading to the binding of tumor necrosis factor receptor

(TNFR)-associated factor-6 (TRAF6) (38). IRAK1 activates the E3

ubiquitin ligase TRAF6, which together with the E2 ubiquitin-

conjugating enzymes Ubc13 and Uev1A, induces the synthesis of

Lys63 (K63)-linked polyubiquitin to degrade both TRAF6 and

IRAK1 and to recruit the transforming growth factor beta (TGF-

b)-activated kinase 1 (TAK1) and the adaptor molecules TAK-1

binding protein 2 and 3 (TAB2, TAB3) (11). Subsequent

phosphorylation of TAK1 simultaneously induces the IkB kinase

(IKK)-NF-kB and MAPK signaling cascades. The IKK complex

consists of two catalytic subunits, IKKa and IKKb, and the

regulatory subunit NF-kB essential modulator (NEMO), also

called IKKg. Upon its association with TAK1 through ubiquitin

chains, the IKK complex is phosphorylated, leading to the

activation of IKKb (9, 19). Following phosphorylation and

proteasomal degradation of the NF-kB inhibitory protein, IkBa
releases NF-kB. Released NF-kB then translocates into the nucleus
Frontiers in Immunology 04
to initiate transcription of pro-inflammatory genes (39). Activated

TAK1 simultaneously phosphorylates the MAPK kinases (MMK)

3/6, 4/7, and 1/2, thereby initiating the activation of p38, Jun N-

terminal kinases (JNKs), and extracellular signal−regulated protein

kinase 1/2 (ERK1/2). Once activated, they phosphorylate the cyclic

adenosine monophosphate (cAMP)-responsive element-binding

protein (CREB) and activator protein 1 (AP-1) transcription

factors, which consist of a heterodimer of c-Fos and c-Jun

subunits. The final interaction of CREB and AP-1 with NF-kB
facilitates the transcription of pro-inflammatory genes (9, 40).

The TRIF-dependent pathway is characterized by the

recruitment of TRAM and TRIF to form the so-called Triffosome

(41). TRIF associates with TRAF6 and TRAF3. Activated TRAF6

recruits the kinase receptor-interacting protein 1 (RIP1), which

subsequently engages the TAK1 and IKK complex, leading to

the activation of NF-kB and MAPKs. Activated TRAF3 recruits

the IKK-related kinase TANK-binding kinase 1 (TBK1) and the

inhibitor of NF-kB kinase (IKKi), which in turn phosphorylates

and activates IRF3, ultimately leading to the induction of IFN

(42, 43).

Importantly, once activated, TLR4 is the only member of the

TLR family that induces both the MyD88-dependent and TRIF-

dependent signaling pathways. TLR2/TLR1, TLR2/TLR6, TLR5,

TLR7, TLR8, and TLR9 initiate the MyD88-dependent pathway,
FIGURE 3

Pathogens and their ligand targets for different human TLRs. Cell surface TLRs primarily recognize components of microbial membranes such as
lipoteichoic acid (TLR2), lipopeptides (TLR1, 2, 6) and lipopolysaccharide (TLR4, 10) as well as flagellin (TLR5, 10). Additionally, TLR2 detects zymosan
glycan of fungi and, like TLR4, protist GPI anchors. In contrast, cytosolic TLR3, TLR7, TLR8, and TLR9 mainly recognize microbial nucleic acids. TLR,
toll-like receptor; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; LTA, lipoteichoic acid. LP, lipopeptides. LPS, lipopolysaccharide. GPI,
glycosylphosphatidylinositol. Adapted from “Pathogen Ligand Targets for Different TLRs”, by BioRender.com (2023).
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whereas TLR3 induces the TRIF-dependent pathway (9, 11). Of

note, upon Myddosome formation in response to TLR7, TLR8, or

TLR9 activation, IRF7 binds and is directly activated by IRAK1 and

IKKa. Like IRF3, IRF7 leads to the induction of IFN (44, 45). We

already have a quite clear understanding of the ligand recognition,

dimerization, signaling, and biological functions of human TLR1-9,

but not of the orphan TLR10.While we know that TLR10 is localized

on the cell surface, its ligands, homo- or heterodimerization, TIR

domains and adaptor molecules, signal transduction and biological

function are still unclear (21).
3 TLR4 signaling in endothelial cells
under physiological and inflammatory
conditions

Endothelial cells (ECs) form the innermost layer of blood

vessels, which include arteries, veins, and capillaries, and separate

the circulating blood from the surrounding tissues (46) (Figure 4).

Since the blood pressure is much higher in the arteries than in veins,

arteries require more layers of smooth muscle cells than veins,

making them the thickest blood vessels. Capillaries consist of just

one single layer of ECs and no layers of smooth muscle cells because

they do not have to withstand any pressure (47).

Due to their unique position, they are the first cells exposed to

circulating substances in the blood, under healthy and pathological

conditions, and thus act as gatekeepers of vascular health and

function (48). Under physiological conditions, the endothelium

perform several functions to maintain organ homeostasis, including

vasoregulation, selective vascular permeability, and provision of an

anti-coagulant environment (49). Upon recognition of PAMPs and

DAMPs by PRRs, including TLR1-10, NOD1, and RIG-1, ECs secrete

various cytokines, chemokines, growth factors, and adhesion

molecules to facilitate vasodilation, promote neutrophil trafficking
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to the endothelium, activate coagulation pathways, and increase

vascular permeability (48, 50–52) (Table 1). Of note, studies have

highlighted that TLR2, TLR4, and TLR9 are the main drivers of the

endothelial immune response (50, 59, 77, 78). In addition to that, by

analyzing the baseline mRNA transcription levels of TLR1-10 in

different endothelial cell lines, including human umbilical vein

endothelial cells (HUVECs), human coronary artery endothelial

cells (HCAECs), human microvascular endothelial cells (HMVECs)

derived from the brain, liver, and lung, Khakpour et al. clearly

demonstrated that TLR4 is the most highly expressed of all TLRs,

suggesting that TLR4 is the central PRR in the acute and chronic

endothelial immune response (50).
3.1 Vasoregulation

To control vascular tone, ECs secrete various paracrine

substances. Vasodilators, including nitric oxide (NO), prostacyclin

(PGI2), and the endothelium-derived hyperpolarizing factor

(EDHF), increase the intravascular diameter by relaxing the

adjacent smooth muscle cells, whereas vasoconstrictors such as

angiotensin, thromboxane (TXA2), and endothelin-1 (ET-1),

counteract the function of vasodilators to keep a balance in

vascular resistance. It is noteworthy that activation of endothelial

PRRs, especially TLR4, enhances the expression of vasodilators,

leading to decreased blood pressure and increased blood flow,

which facilitates endothelial permeability (47, 49, 79).
3.2 Leukocyte extravasation/diapedesis/
transendothelial migration

PRR, especially TLR4-induced secreted chemokines, such as

CXCL8 and CCL2, initiate the expression of E- and P-selectins at
FIGURE 4

Schematic representation of the general architecture of blood vessels. ECs line the innermost wall of blood vessels, separating the circulating blood from the
surrounding tissue. Adjacent smooth muscle cells are trapped between the internal and the external elastic membranes. Created with BioRender.com.
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the site of EC activation, which interact with sialyl Lewis X glycan

epitopes expressed on leukocytes to tether and roll them (51, 63, 80).
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Sialyl Lewis X is a tetrasaccharide composed of N-acetylneuramic

acid (Neu5Ac) a2-3 galactose (Gal) b1-4 [fucose (Fuc) a1-3] N-

acetylglucosamine and is attached to glycoproteins or glycolipids of

cell surface proteins (81–83). Notably, lymphocytes express L-selectin

and interact with sialyl Lewis X glycan epitopes expressed on ECs

(84). Subsequent deceleration and firm adhesion of rolling leukocytes

to the ECs is mediated by b2- and a4-containing integrins expressed
on the surface of leukocytes and the intracellular and vascular

adhesion molecules (ICAM-1, VCAM-1) upregulated on the

surface of ECs in response to the PRR, especially TLR4-induced

endothelial cytokine production, such as IL-1 and IL-6 (85–87).

Leukocytes then migrate from the luminal to the abluminal side of

the vascular barrier either via the vesicle-based transcellular route

through the EC body or via the junctional disruptive paracellular

route between adjacent ECs (85, 88) (Figure 5). Upon arrival at the

site of the injured or infected tissue, leukocytes eliminate the necrotic

cell debris or pathogens by phagocytosis (50). Of note, neutrophils are

the first leukocytes to appear at the site of inflammation and form

neutrophil extracellular traps (NETs) to bind, eradicate, and inhibit

the distribution of invading pathogens (89).
3.3 Coagulation and fibrinolysis

Generally, the coagulation system can be divided into the fast

extrinsic and the slower intrinsic pathway, both of which converge on
TABLE 1 PRR, especially TLR4-induced responses in ECs.

Pro-
inflammatory
protein class

Upregulation Downregulation Reference

Cytokines

IFN-b, IL-1a+b, IL-6,
IL-10, IL-18 IL-28, IL-
29, IL-33,
IL-36, G-CSF, GM-
CSF, TNF-a

IL-1RA, IL-10RA,
IL-36RA, IL-37

(51, 53–58)

Chemokines

CCL2, CCL5, CCL20,
CCL21, CXCL8,
CXCL9, CXCL10,
CXCL11, CXCL12

(54, 55, 57,
59–62)

Adhesion
molecules

E-selectin, P-selectin,
ICAM-1, VCAM-1

(55, 57, 59,
63–67)

Coagulation
factors

Fibrin, PAI-1, PAI-2,
TF, vWF

TFPI, u-PA, t-PA
(52, 68–71)

Permeability
factors

VEGF Claudin, Occludin
(51, 72–76)
IFN-b, interferon beta; IL, interleukin; G-CSF, granulocyte colony-stimulating factor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; TNF-a, tumor necrosis factor alpha;
CCL, chemokine CC-motif chemokine ligand; CXCL, chemokine (C-X-C motif) ligand;
ICAM-1, intracellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; PAI,
plasminogen activator inhibitor; TF, tissue factor; vWF, von Willebrand-factor; TFPI, tissue
factor pathway inhibitor; u-PA, urokinase-type plasminogen activator; t-PA, tissue-type
plasminogen activator; VEGF, vascular endothelial growth factor.
FIGURE 5

Simplified schematic representation of leukocyte extravasation. PRR, particularly TLR4-induced chemokine secretion initiates the expression of E-
and P-selectins on endothelial surfaces, which have a high affinity for sialyl Lewis X glycan epitopes expressed on leukocytes. These selectin-glycan
interactions facilitate leukocyte tethering, rolling, and final endothelial transmigration to the site of inflammation. Leukocytes can migrate from the
luminal to the abluminal side of the vascular barrier either by the vesicle-based transcellular route through the EC body or by the junctional
paracellular route between adjacent ECs. Lymphocytes express L-selectins on their surface and interact with sialyl Lewis X glycan epitopes expressed
on ECs to facilitate diapedesis into the subendothelial compartment. Adapted from “Leukocyte Extravasation - The Role of Glycans in Inflammation”,
by BioRender.com (2023).
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a common pathway initiated by the activation of factor X to Xa

(Figure 6A). Tissue factor (TF) and the plasma factor VII are the

major initiators of the extrinsic coagulation pathway (90). TF is a

membrane-bound glycoprotein that is latent under physiological

conditions and released into the blood upon injury. Notably, TF

can also be expressed by monocytes and ECs in response to pathogen

invasion (91). Factor VII associates with TF to convert to its active

form, VIIa. The TF/VIIa complex, in turn, converts circulating factor

X to its active serine protease, factor Xa. In contrast, the intrinsic

coagulation pathway is initiated by the auto-activation of factor XII to

the serine protease factor XIIa upon interaction with negatively

charged surfaces such as polyphosphates and phospholipids on

activated platelets. This results in the sequential activation of factors

XI and IX (92, 93). Thus, both coagulation pathways culminate in the
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generation of the active factor Xa, which is the starting point of the

common pathway. Xa interacts with the cofactor Va to convert

prothrombin (factor II) to thrombin (factor IIa). Finally, thrombin

cleaves fibrinogen (factor I) to fibrin (factor Ia). The subsequent

polymerization of fibrin and aggregation of platelets leads to the

formation of a blood clot (94). During the healing process, tissue-type

plasminogen activator (t-PA) and urokinase-type plasminogen

activator (u-PA) convert the fibrin-bound plasminogen to the

active enzyme plasmin, which in turn lyses the fibrin network into

a degradable form. Freely circulating t-PA and u-PA are inactivated

by the plasminogen activator inhibitor (PAI) 1 and 2, and plasmin is

blocked by a2 antiplasmin (Figure 6B) (95, 96).

Since platelets, leukocytes, and erythrocytes circulate

continuously in the blood vessels until they are needed, the
B

A

FIGURE 6

Schematic representation of the coagulation pathways and fibrinolytic pathways. (A) Tissue factor (initiation of the extrinsic pathway) and contact activation
(initiation of the intrinsic pathway) lead to a common pathway that generates thrombin. Created with BioRender.com. (B) During fibrinolysis, t-PA and u-PA
convert plasminogen to plasmin, which degrades the fibrin network. Adapted from “Process of Blood Clot Formation”, by BioRender.com (2023).
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endothelium must provide an anti-coagulant and anti-

thrombogenic environment to prevent platelet adhesion under

physiological conditions (97) (Figure 7). Therefore, ECs express

nitric oxide (NO), prostacyclin (PGI2), and adenosine

diphosphatase (ADPase) to prevent platelet adhesion and

aggregation (93). The glycocalyx is a layer of proteoglycans (PGs)

(syndecans and glypicans) and glycosaminoglycan chains (GAGs)

(heparan sulfate (HS), chondroitin sulfate (CS) that covers the

vascular lumen. Due to its negatively charged composition, the

glycocalyx repels platelets and leukocytes from contacting with

the ECs (98–101). In particular, heparan sulfate proteoglycans

cooperate with antithrombin (AT) to interfere with several

coagulation factors, including thrombin, IXa, Xa, XIa, and XIIa

(102). Tissue factor pathway inhibitors (TFPIs), as the name

suggests, inhibit the coagulation-activating TF, VII, and X.

Thrombomodulin (TM) binds to thrombin, which associates with

the endothelial cell protein C receptor (EPCR). The subsequently

released activated protein C (APC) interacts with protein S (PS) to

block coagulation factors Va and VIIIa (103). Notably, Nur77 and

Nor1, as well as the inflammatory stimuli C-reactive protein (CRP)

and oxidized low-density lipoprotein (oxLDL), have been identified

as potential regulators of TM expression and were found to be

downregulated in activated ECs, thus exerting a pro-thrombotic

effect (104).

Upon vascular injury or pathogen invasion, the endothelium

shifts from the physiological anti-coagulant/anti-thrombotic

environment to a pro-coagulant/pro-thrombotic state that

promotes fibrin clot formation and reduces clot lysis to prevent

blood loss and trap pathogens, respectively (103). This alteration in

endothelial function is initiated by sustained activation of ECs by

inflammatory stimuli, including circulating PAMPs as described in

1, DAMPs (high-mobility group box 1 (HGMB1), heat shock

proteins, heme), cytokines (IL-1b, IL-6, IL-17, IL-19, IFN-g, TGF-
b, TNF-a), chemokines (CXCL1, CXCL8, CCL2), complement

system-derived receptors (C1q, C3a or C5a) and proteins (C1, C3,

C5, factor B), and reactive oxygen species (ROS) (superoxide anion

(O2−)) (105–111). Weibel-Palade bodies (WPBs) synthesize and

store von Willebrand factor (vWF), P-selectin, and different pro-
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coagulant and pro-inflammatory proteins. PRR, especially TLR4-

induced, exocytosis of WPBs and liberation of their storage

components from inflamed ECs leads to the expression of vWF

and P-selectin, recruiting platelets and leukocytes such as

neutrophils and monocytes, respectively (110, 112, 113).

Leukocytes expressing P-selectin glycoprotein ligand-1 (PSGL-1)

are recruited upon interaction with endothelial P-selectin, and

platelets adhere upon the interaction of endothelial vWF and

platelet-derived glycoprotein Ib-alpha (GPIba) (114). Activated

platelets recognize pathogens and further secrete pro-

inflammatory and pro-coagulant proteins, including platelet

factor 4 (PF4), CXCL4, CXCL5, CXCL8, CCL3, CCL5, and CCL7,

which facilitate neutrophil recruitment, tethering, and NET

formation. Neutrophils release NETs to capture pathogens,

facilitate thrombus formation, and activate platelets. Active TF

from the surface of monocytes and microvesicles further

enhances the propagation of thrombosis by inducing fibrin

formation and trapping red blood cells (Figure 8) (68, 115, 116).
3.4 Permeability of the endothelial barrier

Endothelial integrity and permeability are determined by

intracellular junctions between adjacent ECs to regulate the

extravasation of water, plasma proteins (e.g., albumin, globulins,

fibrinogen, hormone-transporting plasma proteins, cytokines,

chemokines), nutrients (e.g., glucose, amino acids, fatty acids,

vitamins, minerals), metabolic waste products (e.g., urea,

creatinine, carbon dioxide), electrolytes (e.g., sodium, potassium,

calcium, magnesium, chloride, bicarbonate, phosphate, sulfate,

organic acids), and immune cells (e.g., lymphocytes, monocytes,

natural killer cells, erythrocytes, platelets, eosinophils, basophils,

neutrophils) (117–119). Inter-EC junctions include tight junctions

(claudin, occludin, junction adhesion molecule (JAM) A, B, and C),

adherens junctions (VE-cadherin, nectin), gap junctions (connexin

32, 37, 40, and 43), and the platelet-EC adhesion molecule-1

(PECAM-1) (120, 121) (Figure 9). Gap junctions are channels

that directly link the cytoplasm of adjacent ECs and allow the
FIGURE 7

Schematic representation of anti-coagulant mediators expressed on ECs. Under physiological conditions, the endothelium provides an anti-
coagulant/anti-thrombotic environment to prevent thrombus formation by free circulating platelets and red blood cells within the blood vessel. NO,
PGI2, and ADPase prevent platelet adhesion and aggregation. HS cooperates with AT to interfere with thrombin, factors IXa, Xa, XIa, and XIIa. TFPI
binds to thrombin, which associates with EPCR, and subsequently released APC interacts with PS to block factors Va and VIIIa. EC, endothelial cell;
NO, nitric oxide; PGI2, prostacyclin; ADPase, adenosine diphosphatase; AT, antithrombin; HS, heparan sulfate proteoglycan; TM, thrombomodulin;
EPCR, endothelial cell protein C receptor; PC, protein C; APC, activated protein C; PS, protein S. Created with BioRender.com.
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transmission of electrical impulses, ions, and small molecules to

pass between cells (122). Endothelial tight junctions mediate the

diffusion of polar solutes and ions and prevent the penetration of

macromolecules across the ECs (123). Interestingly, occludins and
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claudins are indirectly linked to adherens junctions through zonula

occludens (ZO) -1, -2, and -3 and further via the actin cytoskeleton

(124). Adherens junctions are particularly important in the

endothelium, where they stabilize endothelial cell-cell contact and
FIGURE 8

The propagation of immunothrombosis by leukocytes and platelets. During inflammation, PRRs, particularly TLR4, initiate the exocytosis of WPB
from ECs and subsequently the expression of P-selectins and vWFs. Leukocytes expressing PSGL-1 are recruited upon interaction with endothelial
P-selectin and platelets adhere upon the interaction of endothelial vWF and platelet-derived GPIba. Neutrophils release NETs that trap pathogens,
facilitate thrombus formation, and activate platelets. The activated platelets, recruit leukocytes and recognize pathogens. Active TFs on the surface
of monocytes and microvesicles further enhance thrombus propagation by inducing fibrin formation and trapping RBCs. The resulting thrombus
promotes pathogen capture. PRR, pathogen recognition receptor; WPB, Weibel-Palade bodies; vWF, von Willebrand factor; PSGL-1, P-selectin
glycoprotein ligand-1; NET, neutrophil extracellular trap; TF, tissue factor; RBC, red blood cell. Adapted from “Propagation of Immunothrombosis by
Leukocytes and Platelets”, by BioRender.com (2023).
FIGURE 9

Endothelial permeability. Endothelial integrity and permeability are determined by intracellular junctions, including gap junctions (connexin 32, 37,
40, and 43), adherens junctions (VE-cadherin, nectin), tight junctions (claudin, occludin, JAM A, B, and C), and PECAM-1 to regulate the extravasation
of water, plasma proteins, electrolytes, nutrients, metabolic waste products, and immune cells. Created with BioRender.com.
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regulate the expression and organization of tight junctions (125,

126). Adherens junctions found in ECs have VE-cadherin as the key

transmembrane component and link adjacent cells through its

extracellular domain. The cytoplasmic tail associates with p120-

catenin through its juxtamembrane domain (JMD) and with b-
catenin and plakoglobin through its C-terminal domain (CTD).

Plakoglobin or b-catenin are connected to a-catenin, thereby
indirectly linking VE-cadherin to the actin cytoskeleton (119,

127). Nectin, a specific member of the endothelial adherens

junction family, is a transmembrane protein of the IgG

superfamily and enhances homophilic cell-cell adhesion. Nectin

sequentially binds afadin, ponsin, a-catenin and vinculin, and

finally actin (128). PECAM-1 is a type I transmembrane

glycoprotein of the immunoglobulin (Ig) superfamily of cell

adhesion molecules and has been found to be highly expressed at

inter-EC junctions to maintain barrier integrity by interacting with

tight and adherens junctions and acting as a scaffold by engaging b-
and g-catenins (129, 130). PRRs, especially TLR4-induced

inflammatory proteins (vascular endothelial growth factor

(VEGF), histamine, thrombin, and IL-6) enhance endothelial

permeability by activating vasodilators, kinases, and phosphatases

to induce augmented actin-myosin contractility, destabilization of

the inter-EC junctions and the formation of focal gaps between

adjacent ECs (72, 131). Primarily, VEGF, histamine, and thrombin

trigger the activation of Src-family tyrosine kinases, which are

responsible for the phosphorylation of VE-cadherin, mainly at the

tyrosine residue Y685, and its subsequent internalization, thereby

strongly promoting endothelial permeability (132). Interestingly,

Alsaffar et al. recently demonstrated that the IL-6/Janus kinase

(JAK) signaling induces an initial and short-term (2 h) loss of

barrier function dependent on Src and MEK/ERK activation, and a

sustained permeability requiring signal transducer and activator of

transcription 3 (STAT3) phosphorylation at Y705 (131).

Transiently increased endothelial permeability in the acute

inflammatory response is crucial for tissue repair or pathogen

clearance. However, prolonged hyperpermeability leads to

pathological conditions such as edema, hypotension, and

impaired vascular perfusion and oxygenation of adjacent

tissues (127).
4 Optogenetics: the art of studying
the TLR4 signaling pathway

TLR4 signaling is a complex, highly dynamic, and tightly

regulated network of two distinct pathways that initiate the innate

immune response. Persistent TLR4 signaling is responsible for

chronic and acute inflammatory disorders, including sepsis (133),

atherosclerosis (134, 135), rheumatoid arthritis (136), acute and

chronic lung injury (137), sickle cell disease (63, 110, 138),

neurodegenerative diseases (139, 140), and cancer (141, 142). For

instance, sickle cell disease is a chronic inflammatory condition with

hemolysis, vaso-occlusion, and ischemia-reperfusion due to the

heme-induced MD-2/TLR4 activation leading to the production of

pro-inflammatorymediators and a persistent activation of leukocytes,

platelets, and endothelial cells (63, 110, 111, 138). Therefore,
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modulation of the TLR4 signaling pathway is a promising strategy

to specifically target these pathologies. Common approaches used to

study TLR4 signaling are primarily based on genetic manipulation

through gain or loss-of-function mutations of the TLR4 or treatment

with the bacterial endotoxin LPS. However, these strategies are often

associated with the generation of irreversible phenotypes in the target

cells or unintended cytotoxicity and signaling crosstalk due to off-

target or pleiotropic effects. Furthermore, ligands are often unable to

penetrate complex tissues, spheroids, or organoids, resulting in

surface activation only. On top of that, the use of reagents is

associated with complex operational design, high costs, and sources

or errors (isolation impurities, batch variations, pipetting errors,

instability upon solvation, etc.) (143–145). Here, optogenetics offers

an alternative strategy to control and monitor cellular signaling in an

unprecedented spatiotemporally precise, dose-dependent, and non-

invasive manner (Figure 10). It is based on utilizing light-sensitive

protein domains of microbial or plant photoreceptors, integrated

into effector proteins, to direct them with light stimuli. Hence,

light induction allows activation, inactivation, stabilization,

destabilization, or localization of signaling pathways depending on

the protein type and setup (146–148). Initial optogenetic applications

used naturally derived photosensitive opsins to investigate and

control neuronal activity and later to study brain circuits. This

allowed to replace conventional strategies, most of which were

highly invasive, slow in kinetics, and imprecise in targeting specific

neurons (149–152). Since then, optogenetics has revolutionized the

study of cell biological processes, including signaling pathways,

protein movement, or metabolic processes, and was even voted for

the Method of the Year 2010 (153, 154). The present available

repertoire of light-sensitive domains allows for the formation of

protein complexes in response to blue (155–157), red (158, 159), or

green (160) light. An important system involves the light oxygen

voltage (LOV) domain isolated from the yellow-green algae

Vaucheria frigida. This xanthophyte contains two distinct

aureochromes, aureochrome 1 (AUREO1) and aureochrome 2

(AUREO2), each consisting of a LOV domain and a basic leucine

zipper (bZIP) domain. AUREO1 controls blue light-induced cell

branching, whereas AUREO2 mediates the development of a sex

organ (161, 162). LOV domains are a subfamily of the Per-ARNT-

Sim (PAS) family and shear a common PAS domain fold comprising

of a five-stranded antiparallel b-sheet and four a-helices (163). The
LOV domain derived from the AUREO1 of Vaucheria frigida

(VfAU1-LOV), noncovalently binds a flavin chromophore that,

upon blue light (lmax ≈ 470 nm) absorption, induces a

photochemical reaction that leads to the formation of a covalent

adduct between the conserved cysteine and the flavin ring. By fusing

this blue light-sensing protein domain to the TLR4 and stably

incorporating it into endothelial and pancreatic adenocarcinoma

cells, Stierschneider et al. developed two physiologically relevant in

vitro cell culture models in which the TLR4 can be turned on with

blue light (470 nm) and turned off in the dark. These newly

established optogenetic endothelial and pancreatic adenocarcinoma

cell lines allow TLR4-specific studies of the underlying molecular and

regulatory mechanisms in inflammation and cancer as well as high

content screening for compounds that block TLR4 signaling with

spatiotemporal precision (148, 164).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1264889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stierschneider and Wiesner 10.3389/fimmu.2023.1264889
5 Conclusion and perspectives

In ECs, activation of TLR4 by LPS ultimately leads to the

release of cytokines, chemokines, adhesion molecules, coagulation

and permeability factors, that are necessary for an immediate

immune response to invading pathogens and tissue injury (12,

165). However, their systemic secretion is a major driver of

autoimmune, acute and chronic inflammatory diseases (19).

Therefore, negative regulation of TLR4 signaling pathways is a

promising strategy to specifically target these pathologies (166).

The search for such modulation options requires cell culture

models with fast and unambiguous TLR4 signaling. Compared

to available standard cell culture models that rely on genetic

manipulation of TLR4 or the treatment with agonists such as

LPS, optogenetic cell lines with light-inducible TLR4 provide these

requirements. Hence, they are predestined for receptor-specific

fundamental studies as well as for high content screening of

biological active agents that negatively interfere with the TLR4

signaling pathway in inflammation.
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FIGURE 10

TLR4 modulation strategies. Common approaches used to study TLR4 signaling rely on genetic manipulation through gain- or loss-of-function
mutations of the TLR4 or downstream signaling molecules, treatment with its naturally occurring ligand LPS, or optogenetic manipulation. Created
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Endothelial cell phenotype, a major determinant of venous thrombo-inflammation.
Front Cardiovasc Med (2022) 9:864735. doi: 10.3389/fcvm.2022.864735

69. Muth H, Maus U,Wygrecka M, Lohmeyer J, Grimminger F, Seeger W, et al. Pro-
and antifibrinolytic properties of human pulmonary microvascular versus artery
endothelial cells: Impact of endotoxin and tumor necrosis factor-a. Crit Care Med
(2004) 32(1):217–26. doi: 10.1097/01.CCM.0000104941.89570.5F

70. Roth RI. Hemoglobin enhances the production of tissue factor by endothelial
cells in response to bacterial endotoxin. Blood (1994) 83(10):2860–5. doi: 10.1182/
blood.V83.10.2860.2860
Frontiers in Immunology 13
71. Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, et al. Cultured
human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest
(1983) 71(6):1893–6. doi: 10.1172/JCI110945

72. Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial
barrier: identifying and reconciling controversies. Trends Mol Med (2021) 27(4):314–
31. doi: 10.1016/j.molmed.2020.11.006
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