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Background:Osteosarcoma is a highly aggressive type of bone cancer with a

poor prognosis. In the tumor immune microenvironment, T-cell exhaustion

can occur due to various factors, leading to reduced tumor-killing ability. The

purpose of this study was to construct a prognostic model based on T-cell

exhaustion-associated genes in osteosarcoma.

Methods: Patient data for osteosarcoma were retrieved from the TARGET

and GEO databases. Consensus clustering was employed to identify two

novel molecular subgroups. The dissimilarities in the tumor immune

microenvironment between these subgroups were evaluated using the

“xCell” algorithm. GO and KEGG analyses were conducted to elucidate the

underlying mechanisms of gene expression. Predictive risk models were

constructed using the least absolute shrinkage and selection operator

algorithm and Cox regression analysis. To validate the prognostic

significance of the risk gene expression model at the protein level,

immunohistochemistry assays were performed on osteosarcoma patient

samples. Subsequently, functional analysis of the key risk gene was carried

out through in vitro experimentation.

Results: Four gene expression signatures (PLEKHO2, GBP2, MPP1, and

VSIG4) linked to osteosarcoma prognosis were identified within the

TARGET-osteosarcoma cohort, categorizing patients into two subgroups.

The resulting prognostic model showed strong predictive capability, with

area under the receiver operating characteristic curve (AUC) values of 0.728/

0.740, 0.781/0.658, and 0.788/0.642 for 1, 3, and 5-year survival in both

training and validation datasets. Notably, patients in the low-risk group had

significantly higher stromal, immune, and ESTIMATE scores compared to

high-risk counterparts. Additionally, a nomogram was developed, exhibiting

high accuracy in predicting the survival outcome of osteosarcoma patients.

Immunohistochemistry, Kaplan-Meier, and time-dependent AUC analyses

consistently supported the prognostic value of the risk model within our
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osteosarcoma patient cohort. In vitro experiments provided additional

validation by demonstrating that the downregulation of GBP2 promoted

the proliferation, migration, and invasion of osteosarcoma cells while

inhibiting apoptosis.

Conclusion: The current study established a prognostic signature associated

with TEX-related genes and elucidated the impact of the pivotal gene GBP2

on osteosarcoma cells via in vitro experiments. Consequently, it introduces a

fresh outlook for clinical prognosis prediction and sets the groundwork for

targeted therapy investigations in osteosarcoma.
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1 Introduction

Osteosarcoma, a malignant bone tumor commonly diagnosed

in children and adolescents, poses a significant challenge due to its

high metastatic rate and poor survival outcomes. Accounting for

56% of all primary malignant bone tumors, osteosarcoma remains

one of the most aggressive forms of bone cancer (1, 2). Despite

extensive efforts to improve prognosis, the 5-year survival rate for

patients with metastatic osteosarcoma remains below 30% (3, 4).

The complex molecular mechanisms and genomic instability

associated with osteosarcoma have been identified as major

contributors to its unfavorable prognosis (5).

T-cell exhaustion (TEX), a state of cellular dysfunction resulting

from chronic infection or cancer, has emerged as a critical factor in

tumor-related immune dysfunction. TEX is characterized by the

upregulation of inhibitory receptors like programmed cell death 1

(PD-1), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4),

and T cell immunoglobulin domain and mucin domain-3 (TIM-3)

on T cells, impairing their function (6–9). Studies have implicated

TEX, particularly CD8+ T cell exhaustion, in tumor immune

evasion (10–12). In an osteosarcoma xenograft model, inhibiting

TIM-3 led to suppressed tumor growth and enhanced functional

activation of CD8+ T cells within the tumor (13). Alleviating TEX

has thus become a promising focus in cancer immuno-therapy

research (14). However, the establishment of a reliable prognostic

signature incorporating TEX-associated genes specific to

osteosarcoma remains an unmet need. By modulating immune

responses in the tumor microenvironment through strategies like

immune checkpoint blockade or immune cell-based therapies, there

exists potential for augmenting anti-tumor immune responses and

improving outcomes in high-risk osteosarcoma patients.

In this study, we aimed to develop an osteosarcoma prognostic

model centered around TEX-associated genes and explore its

correlation with immune status. Our findings not only shed light

on novel approaches for understanding the treatment and
02
prognosis of osteosarcoma but also pave the way for innovative

interventions targeting immune evasion mechanisms.
2 Materials and methods

2.1 Data collection

Osteosarcoma patients in the training cohort were identified

using clinical information and RNA sequencing data from the

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) database, which contained 88 samples.

We merged the sequencing data and clinical data from GSE21257

and GSE16091, a total of 87 samples, to construct the validation

cohort using material from the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) database. 40 T-cell exhaustion-

associated genes were obtained from the article by Zhang Z et al.

(15). The overall workflow in this study is presented in Figure 1.
2.2 Identification of molecular subgroups

After data collection and processing, it was found that six genes

(WAS, TLL1, SP140, PRKD2, PRF1, LOX) were associated with the

prognosis of osteosarcoma by univariate Cox regression analysis.

The “Consensus ClusterPlus” R package was used to perform the

cluster analysis based on the expression matrix of the six genes.
2.3 Immune analysis

To compare the differences in immune infiltration between the

two clusters, we selected the “xCell” algorithm to calculate the

immune cell infiltration abundance and immune scores based on

the gene expression of the samples in the TARGET training cohort
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using the “IOBR” R package. The “CIBERSORT” algorithm was

utilized to ascertain the correlation between genes implicated in

modeling and the infiltration patterns of immune cells.
2.4 Differentially expressed genes and
functional analysis

Using the “Limma” R package, differentially expressed genes

(DEGs) between the two clusters were found. The “ClusterProfiler”

R package was used to conduct functional studies, including Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses. Meanwhile, Genome Enrichment Analysis

(GSEA) was performed for the purpose of verifying functional

differences between the two clusters. In addition, we obtained

gene sets of Ferroptosis (16), Pyroptosis (17), Necroptosis (18),

and Immuno-genic cell death (19) from previous studies. After that,

these genes were analyzed by comparing the expression between the

two clusters.
2.5 Establishment of the risk model

2697 co-expressed genes of 40 TEX-associated genes were

found using the Stat R package, and 337 genes were screened by

crossing DEGs between the two clusters. Among the 337 genes,

Univariate and multivariate Cox regression analyses were used to

identify 72 genes associated with prognosis. After that, the “glmnet”

R package was used to run the Lasso-Cox regression analysis for 72

genes. In the end, we obtained four genes by setting lambda equal to

0.1402. The risk score of each patient is as follows: Risk score=-

0.2182 × expression value of PLEKHO2 - 0.0392 × expression value

of VSIG4 - 0.0022 × expression value of MPP1 - 0.0440 × expression

value of GBP2. Furthermore, we used the STRING database
Frontiers in Immunology 03
(https://cn.string-db.org/) to present the interactions of the four

genes used to establish the model and 40 T-cell exhaustion-

associated genes at the protein level and visualized in Cytoscape

version 3.9.1.
2.6 Evaluation and verification of the
risk model

Using the above formula, we calculated the risk scores of each

patient and divided them into high-risk and low-risk groups. The

“surviminer” R package was used to plot the KM curves to compare

survival between different groups. The “pROC” R package was used

to plot the time-related ROC curve. The “rms” R package was used

to build and verify the nomograph model and draw the calibration

curve. The “ggplot2” R package was used to create the risk score and

survival status distribution map.
2.7 Drug sensitivity analysis

The sensitivity score for each small molecule compound was

computed for individual patients in both the high-risk and low-risk

groups using the “oncoPredict” package.
2.8 scRNA-Seq data processing
and analysis

Single-cell RNA sequencing (scRNA-seq) data was retrieved

from the GSE152048 and GSE162454 datasets housed within the

GEO database, encompassing a collective of 17 osteosarcoma

samples. The standardized data underwent preprocessing via the

“seurat” package (version 4.0). Rigorous quality control measures
FIGURE 1

The flowchart of our research process.
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were applied, excluding cells with fewer than 300 or more than 2000

detected genes. To mitigate batch effects, the “CAA” package was

employed. Post-filtering, a total of 179,499 cells remained for

subsequent analyses. The identification of sample clusters was

accomplished using the FindClusters function (resolution = 0.6).

Dimensionality reduction techniques, namely t-distributed

stochastic neighbor embedding (t-SNE) and Uniform Manifold

Approximation and Projection (UMAP), were employed. AUCell

analysis was conducted utilizing the R package AUCell (version

1.20.5). Additionally, we obtained the CD8+ exhausted T cell-

related gene set (GSE9650_EXHAUSTED_vs_MEMORY_

CD8_TCELL_UP. v2023.2.Hs.gmt) from the GSEA database to

compute AUCell scores, specifically focusing on exhausted CD8 T

cells within each cell population.
2.9 Immunohistochemistry analysis

A total of 26 osteosarcoma specimens, collected from February

2012 to October 2016, were obtained from the Second Affiliated

Hospital of Nanchang University to serve as an external validation

cohort. These specimens were formalin-fixed and paraffin-embedded

blocks. To assess the predictive capability of the risk model for deter-

mining vitality, immunohistochemical analysis was conducted on

paraffin sections using PLEKHO2 (1:200, Proteintech, Cat. No

21356-1-AP, China), GBP2 (1:200, Proteintech, Cat. No 11854-1-AP,

China), MPP1 (1:100, Affinity Biosciences, Cat. No AF9115, China),

and VSIG4 (1:100, Affinity Biosciences, Cat. No DF14591, China)

antibodies following standardized protocols. The expression levels of

PLEKHO2, GBP2, MPP1, and VSIG4 were evaluated using H-scores.

The research that involved human subjects underwent review and

received approval from the Ethics Committee of The Second Affiliated

Hospital of Nanchang University [Review (2020) No. (086)].
2.10 Cell lines and transfection

The human osteosarcoma cell line HOS and SaOS-2 were

obtained from Wuhan Procell Life Science & Technology Co., Ltd

and cultured in a 5% CO2 incubator at 37°C. To knockdown the

expression of GBP2 (ENSG00000162645; GeneID: 2634), siRNA

(RiboBio, Cat. No siG000002634A-1-5, China) was synthesized

with the following sequence: 5′-GAGCCTCATTGATAACACT-
3′. The control group cells were transfected with negative control

siRNA (si-NC, RiboBio, Cat. No siN0000001-1-5, China). The

riboFECT CP Transfection Kit (RiboBio, Cat. No C10511-05,

China) was used for siRNA transfection.
2.11 RT-qPCR

Total RNA was extracted from the cells using the Trizol reagent

RNA extraction kit (Invitrogen, Cat. No 15596026, USA) following the

provided instructions. Reverse transcription of RNA was performed
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using the PrimeScript RT Master Mix Kit (Takara, Cat. No RR036B,

Japanp). The specific primers and a real-time PCR kit (Takara, Cat. No

RR820A, Japan) were used for quantitative PCR. The following primer

sequences were used for qRT-PCR: GBP2 forward primer: 5′-
GATTGGCCCGCT CCTAAGAA-3′ , reverse primer: 5′-
TTGACGTAGGTCAGCACCAG-3’, and GAPDH forward primer:

5′-GGAAATCCCATCACCATCTTC-3′, reverse primer: 5′-TGGAC
TCCACGAC-GTACTCAG-3′. The relative expression level of RNA

was analyzed using the 2^(-DDCt) method.
2.12 Western blotting

Proteins were extracted from cells using RIPA lysis buffer

(Beyotime, Cat. No P0013, China). Equal amounts of protein

were separated by 10% SDS-PAGE gel electrophoresis and then

transferred onto a PVDF membrane (BioRad, Cat. No 1620177,

USA). The PVDF membrane was blocked with 5% skim milk and

incubated overnight at 4°C with primary antibodies against GBP2

(1:1000, Proteintech, Cat. No 11854-1-AP, China) and GAPDH

(1:5000, Proteintech, Cat. No 60004-1-Ig, China). After washing

with TBST, the membrane was incubated with a secondary antibody

(1:2000, Proteintech, Cat. No SA00001-1/SA00001-2, China) for 1

hour at room temperature. The chemiluminescence of proteins was

detected using an ECL chemiluminescence kit (UElandy, Cat. No

S6009M, China) and analyzed using ImageJ software.
2.13 Cell proliferation assays

Cell proliferation was assessed using the cell counting kit-8

(CCK-8) obtained from TransGen Biotech Co., Ltd (Cat. No

FC101-02). Osteosarcoma cells were seeded at a density of 3000

cells per well in a 96-well plate. After the cells reached confluence,

they were transfected with si-GBP2 and si-NC. At 0, 24, 48, and 72

hours, 10 µL of CCK-8 reagent was added to each well. After

incubating for an additional 2 hours, the absorbance at 450 nm was

measured to determine cell viability.
2.14 Transwell assays

For cell migration and invasion assays, Transwell chambers

(Corning, Cat. No 3470, USA) were prepared with either uncoated

or matrigel-coated membranes. The transfected osteosarcoma cells

with si-GBP2 and si-NC were respectively trypsinized, collected,

and suspended in serum-free medium at a density of 1×105 cells/ml.

Subsequently, 200 µL of the cell suspension was added to the upper

chamber, while 600 µL of medium containing 20% FBS was added

to the lower chamber. Following a 24-hour incubation period, cells

in the lower chamber were fixed with 4% formaldehyde for 20

minutes and stained with 0.5% crystal violet for 15 minutes. The

number of cells was counted in several randomly selected areas

under an Olympus light microscope.
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2.15 Wound healing assays

The transfected osteosarcoma cells with si-GBP2 and si-NC

were respectively seeded onto six-well culture plates. When the cells

reached approximately 90% confluency, a sterile pipette tip was

used to create a scratch or gap on the cell monolayer. The cells were

then cultured in serum-free medium for 12 hours. The gaps at 0

hours and 12 hours were observed and photographed under an

inverted microscope.
2.16 Apoptosis detection

Apoptosis in osteosarcoma cells was assessed using the FITC

Annexin V apoptosis detection kit (BD Biosciences, Cat. No

559763, USA) and a flow cytometer. According to the

manufacturer’s instructions, the transfected osteosarcoma cells

with si-GBP2 and si-NC were respectively collected and stained.

Propidium iodide and An-nexin V-fluorescein-isothiocyanate

stains were used to measure late and early apoptosis. The data

were analyzed using FlowJo software.
2.17 Statistical analysis

The bioinformatics section underwent statistical analysis

utilizing R version 4.0.3. KM survival analysis was executed

employing the log-rank test, while comparisons between the two

groups were conducted using the Wilcoxon rank sum test.

In parallel, the statistical analysis for the in vitro experiments

was conducted through GraphPad Prism version 8.0.1, where

paired t-tests were employed for evaluation. A significance

threshold of p < 0.05 was set for determining statistical

significance (ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001,

**** p < 0.0001).
3 Results

3.1 Identification of two
molecular subtypes

Consensus clustering was employed to divide 42 patients into

Cluster 1 and 46 patients into Cluster 2, based on the six genes that

were screened and analyzed through univariate Cox regression

analysis (Figures 2A, B). The heat map (Figure 2C) illustrated the

expression profile of the TEX-associated genes in the two clusters

and indicated that there were significant differences in their

expression levels. Furthermore, patients in Cluster 1 displayed a

superior overall survival rate compared to those in Cluster 2

(Figure 2D), suggesting that patients classified into the two

subgroups based on TEX-associated genes exhibit divergent

prognostic survival.
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3.2 Immune difference between
two subtypes

To delve further into the immune differences between the two

clusters, the xCell algorithm was utilized to assess the enrichment

difference of 64 immune and stromal cell types. These results were

visualized as boxplots (Figures 3A, B) and indicated that patients

classified into the two subgroups based on TEX-associated genes

possess differing immune statuses.
3.3 DEGs and functional analysis

To examine the mechanisms by which TEX-associated genes

influence the prognosis of osteosarcoma patients, DEGs between

the two clusters were analyzed and functional analysis was

performed. Results showed that Cluster 1 had 547 DEGs in total,

with 512 genes upregulated and 45 genes downregulated

(Figures 4A, B). GO enrichment analysis revealed that the DEGs

were largely enriched in immune-related terms such as antigen

processing and presentation, T cell activation, and T cell

proliferation. Similarly, KEGG enrichment analysis indicated that

the DEGs were enriched in immune-related pathways, including

Th1 and Th2 cell differentiation, Th17 cell differentiation, and T cell

receptor signaling (Figures 4C, D). The results of GSEA analysis

also showed that antigen processing and presentation, natural killer

cell-mediated cytotoxicity, T cell receptor signaling pathway, Toll-

like receptor signaling pathway, B cell receptor signaling pathway,

and cytokine receptor interaction were more highly expressed in

Cluster 1 (Figure 4E). These findings suggest that TEX-associated

genes are closely linked to immune dysfunction, which might

contribute to the poor prognosis of osteosarcoma patients.

In addition, we analyzed the differential expression of

ferroptosis-, pyroptosis-, necroptosis-, and immunogenic cell

death (ICD)-related genes between the two clusters, and found

that almost all of these cell death phenotype-related genes were

expressed at higher levels in Cluster 1 compared to Cluster 2

(Figures 5A–D). KM analysis showed a significant correlation

between HMOX1, TLR4, CAPG, PYCARD, CASP1, TNFSF10,

MYC, and the prognostic survival of patients (Figures 5E–K).

These results suggest that TEX-associated genes might be

associated with the expression of cell death phenotype-related

genes, leading to different prognoses for patients.
3.4 Establishment of prognostic signature

First, we found 2697 co-expressed genes of 40 TEX-associated

genes, crossed these genes with the DEGs between the two clusters,

and screened 337 genes. Using univariate and multivariate

regression analysis, 72 genes that were prognostically relevant

were identified (Figure 6A). Subsequently, Lasso-Cox regression

analysis was per-formed on these 72 genes. When the value of l is
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0.14, the model is the most stable and accurate (Figure 6B). Finally,

a model containing four genes (PLEKHO2, VSIG4, MPP1, and

GBP2) was successfully established (Figure 6C). The significance of

these genes as prognostic indicators was confirmed through

Kaplan–Meier analysis and ROC curves (Figures 6D–K). To

further investigate the correlation between the expression of the

modeled genes and TEX-associated genes, we generated co-

expression heatmaps for these four genes and the 40 TEX-
Frontiers in Immunology 06
associated genes (Figures 7A–D). The heatmaps provided visual

evidence of the correlation between the expression of the modeled

genes and TEX-associated genes. Additionally, an upset plot was

created to illustrate the intersection of TEX-associated genes co-

expressed with each of the four modeled genes. The plot revealed

that 13 TEX-associated genes were co-expressed with all four

modeled genes (Figure 7E). Furthermore, we constructed a

protein-protein interaction (PPI) network using the STRING
B C

D

A

FIGURE 2

Identification of TEX-associated subtypes by consensus clustering. (A) Univariate Cox analysis revealed the presence of six genes that exhibit
prognostic significance in relation to TEX-associated genes. (B) The heatmap represents the consensus clustering solution (k = 2) applied to the
expression patterns of the aforementioned six genes across 88 osteosarcoma samples. (C) The heatmap visually represents the gene expression
levels of the six TEX-associated genes within two distinct subgroups, denoted as C1 and C2. (D) The Kaplan-Meier survival curve effectively
demonstrates that patients classified in the high-risk group (C2) exhibited a substantially lower overall survival rate compared to those in the
low-risk group (C1).
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database, which demonstrated the connections between these four

modeled genes and the 40 TEX-associated genes at the protein

level (Figure 7F).
3.5 Evaluation of prognostic signature

Using the risk score of each patient in the training cohort,

patients were classified into high and low-risk groups. The results

showed that patients in the low-risk group had a higher overall

survival rate compared to those in the high-risk group (Figure 8A).

The predictive ability of the risk model was evaluated for 1 to 5-year

survival and was found to have an area under the ROC curve (AUC)

of 0.728, 0.781, and 0.788 respectively for 1, 3, and 5 years

(Figure 8B). The differences in the immune status between the

high and low-risk groups were analyzed using the ESTIMATE

algorithm, and it was found that patients in the low-risk group

had significantly higher stromal and immune scores, as well as

ESTIMATE scores compared to those in the high-risk group

(Figure 8C). As the risk score increased, the number of deaths

increased and the survival time was significantly shorter
Frontiers in Immunology 07
(Figures 8D, E). These findings indicate that the risk model is a

predictive factor for osteosarcoma prognosis and has a significant

correlation with the tumor immune microenvironment (TIME) of

osteosarcoma patients. Additionally, we employed the CIBERSORT

algorithm to evaluate the association between immune infiltration

status and these four genes alongside the risk score (see

Supplementary Figure S2). Notably, all four genes exhibited a

positive correlation with the immune infiltration of CD8 T cells,

whereas the risk score displayed a negative correlation with CD8 T

cells. This alignment is consistent with the observed poorer

prognosis within the high-risk patient cohort.
3.6 Independence of the constructed
risk model

Univariate and multivariate Cox regression analysis revealed

that the risk score was an independent predictive marker for

osteosarcoma prognosis (Supplementary Table S1). The risk

model was further evaluated in patients with different metastasis

statuses and genders, and it was found to be an effective predictor in
B

A

FIGURE 3

Immune analysis of two subgroups. (A, B) The xCell algorithm reveals a pronounced upregulation of CD4+ T cells, CD8+ T cells, dendritic cells, and
macrophages in the low-risk group (C1), indicating an active and enhanced immune response within their tumor microenvironment. *p < 0.05,
**p < 0.01, ***p < 0.001.
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men, women, and metastatic patients, with lower risk scores

indicating a better prognosis (Supplementary Figures S1A–D).

There was no significant difference in risk scores among patients

with different genders and lesion sites, however, there was a
Frontiers in Immunology 08
significant difference in risk scores among patients with different

metastatic statuses (Supplementary Figures S1E–G). These findings

suggest that the risk model can serve as an independent prognostic

factor for patients with osteosarcoma.
B

C D

E

A

FIGURE 4

Differentially expressed genes (DEGs) and underlying signal pathways in different subtypes were identified. (A) The volcano plot showed the DEGs
between the two subgroups. (B) The heatmap showed the DEGs expression in two subgroups. (C, D) The GO and KEGG analyses indicate that there
is the enrichment of the proliferation and activity of T cells, antigen presentation, T cell receptor signaling, Toll-like receptor (TLR) signaling, and B
cell receptor signaling pathway. (E) GSEA analysis determined the significant suppression of crucial signaling pathways involved in T cell receptor
signaling, Toll-like receptor (TLR) signaling, B cell receptor signaling, antigen presentation, and cytokine receptor interaction in the high-risk
group (C2).
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3.7 Validation of the prognostic signature

The patients in the validation cohort were stratified into high- and

low-risk groups based on their respective risk scores. Results were

comparable to those observed in the training cohort, with patients in

the low-risk group exhibiting improved overall survival compared to

those in the high-risk group (Figure 9A). Time-dependent receiver

operating characteristic (ROC) curve analysis revealed an area under

the curve (AUC) of 0.740, 0.658, and 0.642 for 1, 3, and 5 years,
Frontiers in Immunology 09
respectively (Figure 9B). Analysis using the ESTIMATE algorithm

indicated that patients in the low-risk group had significantly higher

stromal and immune scores, as well as ESTIMATE scores compared to

those in the high-risk group (Figure 9C). Additionally, as the risk scores

increased, a corresponding increase in mortality and a significant

reduction in survival times were observed (Figures 9D, E). These

results demonstrate that the risk model has predictive utility for

osteosarcoma prognosis and is significantly associated with the

tumor immune microenvironment (TIME) in the validation cohort.
B

C D

E F G H

I J K

A

FIGURE 5

The differential expression of 4 types of cell death phenotype-related genes. (A–D) In the high-risk group (C2), the expression levels of numerous
cell death phenotype-related genes, such as fer-roptosis-related genes, pyroptosis-related genes, necroptosis-related genes, and genes related to
immunogenic cell death (ICD)-relevant damage-associated molecular patterns, were found to be significantly lower. (E–K) Kaplan Meier analysis
demonstrated a significant difference in prog-nosis between high and low-expression groups of these genes. ***p < 0.001.
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3.8 Prognostic nomogram

A nomogram was developed that integrates gender, metastasis

status, and risk scores for improved survival prediction

(Figure 10A). Patients can obtain their respective survival rate

scores based on their individual characteristics. Specifically, for

each osteosarcoma patient, three points can be assigned based on

their gender, metastatic status, and risk score. The sum of these

three scores yields the total points. By vertically drawing a line from

the corresponding point on the total points scale, it intersects with

the survival probability scales at 2, 4, and 6 years, enabling the

patient to determine their predicted survival probability. The

accuracy of the nomogram was verified using both the training

and validation cohorts, with observed survival rates depicted by
Frontiers in Immunology 10
blue, red, and green lines in Figures 10B, C, and the optimized

survival rate represented by the gray line. Results indicate a good

agreement between observed and optimized values in both the

training and validation cohorts.
3.9 Evaluation of therapeutic responses in
low-risk and high-risk groups

To assess the therapeutic responses in the low-risk and high-

risk groups, we conducted an analysis using the oncoPredict R

package to explore the drug therapy data available in the Genomics

of Drug Sensitivity in Cancer (GDSC) database based on the half-

maximal inhibitory concentration (IC50). With this algorithm, we
B
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FIGURE 6

Construction of 4-gene Risk Signature. (A) A total of 72 genes were identified as prognostically relevant, as depicted in the Venn diagram.
(B, C) LASSO analysis was performed with a minimal lambda value. The model achieved its highest stability and accuracy when lambda was set to
0.14. (D–G) Kaplan-Meier survival curves were successfully established for a model consisting of four genes: PLEKHO2, VSIG4, MPP1, and GBP2.
(H–K) The significance of these genes as prognostic indicators was confirmed through Kaplan-Meier analysis and ROC curves.
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identified 10 drugs, including AZD5991, BI-2536, CDK9_5576,

Dapoinad, Dinaciclib, NVP-ADW742, RO-3306, Tozasertib,

UMI-77, and XAV939, that exhibited significantly different

responses between the high-risk and low-risk groups. Specifically,

the high-risk group displayed significantly higher sensitivity to 9

drugs (Figures 11A–I) compared to the low-risk group, while the

low-risk group exhibited higher sensitivity to XAV939 (Figure 11J).

These findings suggest that these small molecule drugs may hold

potential as therapeutic options for osteosarcoma. However, further

analysis and investigation are required in future studies. Overall,

these results indicate that our risk model has practical implications

for guiding drug treatment selection in osteosarcoma patients.
3.10 ScRNA-Seq analysis in osteosarcoma

To comprehensively comprehend the distribution of model

genes within the osteosarcoma tumor microenvironment (TME),

we conducted an in-depth analysis of scRNA-seq data obtained

from osteosarcoma patients. After stringent quality control
Frontiers in Immunology 11
measures, we identified a total of 179,499 cells within

osteosarcoma samples, forming the basis for subsequent analyses.

Through the assessment of feature gene expression, we delineated

12 major clusters within the osteosarcoma TME (Supplementary

Figure S3A). The resulting t-SNE plot illustrated the annotation of

these 12 distinct cell clusters, encompassing various cell types such

as B cells (CD79A+, MS4A1+), chondroblastic osteosarcoma cells

(ACAN+, COL2A1+, SOX9+), endothelial cells (PECAM1+,

EGF17+, PLVAP+), fibroblast cells (COL3A1+), mast cell

(MS4A2+, TPSB2+, HPGDS+, GATA2+, TPSAB1+, CPA3+,

LTC4S+, RGS13+), myeloid cells (CD68+, LYZ+), neutrophil cells

(CSF3R+, CXCL8+, MNDA+, S100A8+), osteoblastic osteosarcoma

cells (COL1A1+, CDH11+, RUNX2+, ALPL+, IBSP+), osteoclastic

cells (CTSK+, MMP9+, ACP5+), plasma cells (IGHG1+, JCHAIN+,

MZB1+), proliferating osteoblastic osteosarcoma cells (PCNA+,

MKI67+) and T and NK cells (CD3D+, CD8A+, CD4+, GNLY+,

NKG7+), as illustrated in Supplementary Figure S3B.

Moreover, the authors further categorized the NK cell and T cell

clusters, leading to the classification of these cells into 10 distinct

clusters based on their characteristic gene expression patterns
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FIGURE 7

Correlation analysis of the four genes in the model and TEX-associated genes. (A–D) Gene expression-related heat maps of the four genes in the
model and TEX-associated genes. (E) The upset plot depicted the overlapping genes among four groups of TEX-associated genes that were co-
expressed with the modeling genes (PLEKHO2, VSIG4, MPP1, GBP2). (F) The interactions between the four modeling genes and 40 TEX-associated
genes at the protein level were presented using the STRING database. The modeling genes were indicated in blue, while the TEX-associated genes
that co-expressed with all four modeling genes were marked in red. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Supplementary Figure S4A). These subtypes included memory

CD4+ T cells (CD3G+, CD4+, S100A4+, ANXA1+, CD40LG+,

CXCR6+, CXCR3+), exhausted CD4+ T cells (CD3G+, CD4+,

HAVCR2+, LAG3+, TIGIT+, CzTLA4+, BTLA+), naive CD4+ T

cells (CD3G+, CD4+, CCR7+, SELL+, LEF1+, TCF7+, ZNF683+),

memory CD8+ T cells (CD3G+, CD8A+, S100A4+, ANXA1+,

CD40LG+, CXCR6+, CXCR3+), exhausted CD8+ T cells

(CD3G+, CD8A+,HAVCR2+, LAG3+, TIGIT+, CTLA4+,

BTLA+), naive CD8+ T cells (CD3G+, CD8A+, CCR7+, SELL+,

LEF1+, TCF7+, ZNF683+), proliferating CD8+ T cells (CD3G+,

CD8A+, MKI67+, CDK1+, STMN1+), NK cells (NCR1+, TYROBP

+, FCGR3A+, CX3CR1+, FGFBP2+, KLRG1+, ZEB2, TRGC2+,

XCL1+, XCL2+), mucosal-associated invariant T cells (MAIT,

CD3G+, SLC4A10+, NCR3, ZBTB16, KLRB1), and stress

response state T cells (CD3G+, HSPA6+, DNAJB1+, HSPH1+,

HSP90AA1+, BAG3+, HSPD1+, HSPE1+, HSPB1+, SERPINH1+,

ZFAND2A+), as shown in Supplementary Figure S4B.

Furthermore, to validate the precision of our clustering, we

utilized the AUCell algorithm, focusing on T cell exhaustion-related

gene sets sourced from the GSEA database. The resulting UMAP

plot showcased relatively higher T cell exhaustion gene AUCell

scores within the annotated CD4+ and CD8+ exhausted T cell

clusters compared to other identified clusters (Supplementary

Figure S4C). Correspondingly, the UMAP plot and violin plots

(Supplementary Figures S4D, E) emphasized that our risk gene
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GBP2 exhibited heightened expression in CD8+ proliferative T

cells, exhausted CD8+ T cells, and exhausted CD4+ T cells, with

minimal expression detected in stress response state (TSTR) cells.

Additionally, genes associated with cell proliferation, such as PCNA

and MKI67, displayed elevated expression specifically within CD8+

proliferative T cells.
3.11 Validation of the prognostic impact of
the four genes’ expression

To validate the prognostic impact of our four-gene expression

model at the protein level, we obtained paraffin tissue sections from

26 osteosarcoma patients. Immunohistochemistry (IHC)

experiments were conducted to assess the expression levels of the

four modeling genes: PLEKHO2, GBP2, MPP1, and VSIG4

(Figure 12A). The H-score was determined for each gene in each

patient, and these scores were used to calculate a risk score using the

risk score formula. Based on their risk scores, patients were

categorized into high-risk and low-risk groups. Kaplan-Meier

(KM) analysis demonstrated that patients in the high-risk group

had significantly worse prognoses compared to those in the low-risk

group (Figure 12B). This finding is consistent with the results

obtained from the TARGET and GEO cohorts. Time-dependent

ROC curve analysis showed AUCs of 0.800, 0.722, and 0.654 for 1,
B C

D E

A

FIGURE 8

Evaluation of the risk signature. (A) The Kaplan-Meier analysis demonstrated that the model, based on the four genes, successfully stratified
osteosarcoma patients in the TARGET training cohort into high and low-risk groups. (B) Additionally, time-dependent ROC curves were plotted in
the training cohort, showing the area under the curve (AUC) values at different time points: 1 year (AUC = 0.728), 3 years (AUC = 0.781), and 5 years
(AUC = 0.788). (C) The high-risk group in the training cohort displayed low immune infiltration levels, as evaluated by the Stromal score, immune
score, and ESTIMATE score derived from the ESTIMATE algorithm. (D, E) The distribution of risk scores, survival status of each patient, and a heatmap
depicting the prognostic 4-gene signature were analyzed in the TARGET cohort. ***p < 0.001.
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3, and 5 years, respectively (Figure 12C). Furthermore, as the risk

scores increased, there was a corresponding increase in mortality

and a significant decrease in survival times (Figures 12D, E). These

results provide further confirmation of the prognostic significance

of our risk model at the protein level.
3.12 The downregulation of GBP2
promoted the proliferation, migration, and
invasion of osteosarcoma cells and
inhibited apoptosis

We employed siRNA to downregulate GBP2 expression

(Figures 13A–C) and investigated its impact on cell proliferation,

migration, invasion, and apoptosis. CCK-8 assays revealed that the

downregulation of GBP2 resulted in increased cell proliferation in

HOS cells (Figure 13D). Transwell assays demonstrated that GBP2

downregulation significantly enhanced cell migration and invasion

in HOS cells (Figures 13E, F). Wound healing assays also indicated

that GBP2 downregulation markedly promoted cell migration

ability in HOS cells (Figures 13G, H). Moreover, flow cytometry

analysis revealed that GBP2 downregulation inhibited apoptosis in

HOS cells (Figures 13I, J). The afore-mentioned findings were

corroborated by an independent cell line (SaOS-2) (Figures 14A–

J). Collectively, these findings indicate that the downregulation of

GBP2 gene promotes cell proliferation, migration, and invasion in

HOS cells and SaOS-2 cells while suppressing apoptosis.
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4 Discussion

The tumor microenvironment is a complex ecosystem

comprising various cellular and molecular components that

collectively influence tumor growth and development, including

immune checkpoint-related molecules (20). Recent research has

emphasized the crucial role of the immune microenvironment

within the tumor microenvironment, highlighting the need for a

comprehensive understanding for effective immunotherapy. Our

study identified significant differences in the immune

microenvironment between two analyzed subgroups: the low-risk

osteosarcoma group (Cluster 1) and the high-risk osteosarcoma

group (Cluster 2). Patients in the low-risk group exhibited a

superior overall survival rate compared to those in the high-risk

group. Deeper analysis revealed a pronounced upregulation of

CD4+ T cells, CD8+ T cells, dendritic cells, and macrophages in

the low-risk group, indicating an active and enhanced immune

response within their tumor microenvironment. In contrast, the

high-risk group showed immune system inhibition, characterized

by lower expression levels of these immune cell populations.

Further analysis of gene ontology, KEGG pathways, and gene

set enrichment revealed the significant suppression of crucial

signaling pathways involved in T cell receptor signaling, Toll-like

receptor (TLR) signaling, B cell receptor signaling, antigen

presentation, as well as ferroptosis, pyroptosis, necroptosis, and

immunogenic cell death in the high-risk osteosarcoma group. The

inhibition of T cell receptor signaling suggests compromised
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FIGURE 9

Verification of the risk signature. (A–E) The reliability of the model was validated in the GEO validation cohort through several analyses. Firstly,
Kaplan-Meier analysis was performed to assess the model’s ability to stratify osteosarcoma patients into high and low-risk groups. Secondly, time-
dependent ROC curves were generated to evaluate the predictive performance of the model at different time points. The AUC values were
calculated to quantify the model’s accuracy. Finally, the stromal score, immune score, and ESTIMATE score were utilized to assess the tumor
microenvironment in the validation cohort, providing additional validation of the model’s reliability. *** p < 0.001.
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activation and functionality of T cells, which are essential for

effective anti-tumor immune responses. Additionally, the

suppression of TLR signaling implies a diminished ability of

immune cells to detect and respond to pathogenic signals within

the tumor microenvironment. The inhibition of antigen

presentation signifies a potential evasion mechanism employed by

osteosarcoma cells to evade immune surveillance. Moreover, the

suppression of ferroptosis, pyroptosis, necroptosis, and

immunogenic cell death in the high-risk group suggests the

disruption of multiple forms of cell death that can have

important implications for tumor development. These cellular

death pathways often play critical roles in eliminating cancer cells

and triggering immune responses against tumors. Their

suppression may contribute to tumor immune escape

and progression.

Collectively, the identified inhibition of T cell receptor

signaling, TLR signaling, B cell receptor signaling, antigen

presentation, and the suppression of ferroptosis, pyroptsis,
Frontiers in Immunology 14
necroptosis, and immunogenic cell death are closely associated

with T cell exhaustion in osteosarcoma. These intricate

interactions form a complex network of immune evasion

mechanisms that limit the immune system’s ability to effectively

target and eliminate tumors, ultimately fostering tumor

development and progression. Advancing our understanding of

these interactions can provide valuable insights into the

mechanisms of tumor immune evasion and facilitate the

development of novel therapeutic strategies to overcome T cell

exhaustion and enhance anti-tumor immune responses.

To elucidate key target genes, we developed a prognostic model

based on T-cell exhaustion-associated genes in osteosarcoma.

Notably, our analysis identified a significant correlation between

the prognosis of osteosarcoma patients and four genes: V-set and

Immunoglobulin Domain-containing Protein 4 (VSIG4),

Membrane Palmitoylated Protein 1 (MPP1), Pleckstrin

Homology-domain-containing family O member 2 (PLEKHO2),

and Guanylate Binding Protein 2 (GBP2). Subsequently, we
B C

A

FIGURE 10

Construction and calibration of the nomogram. (A) A nomogram was constructed, incorporating gender, metastasis status, and risk scores, to
enhance the prediction of survival outcomes. This nomogram serves as a graphical tool that combines multiple variables to estimate an individual’s
survival probability. (B, C) The accuracy of the nomogram was assessed using both the training and validation cohorts. The observed survival rates
were represented by blue, red, and green lines, while the optimized survival rate was illustrated by the gray line. The results demonstrated a
favorable agreement between the observed and optimized values in both the training and validation cohorts, indicating the nomogram’s reliability in
predicting survival outcomes.
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validated the model using our osteosarcoma patient cohort. Kaplan-

Meier analysis demonstrated that individuals classified as high-risk

according to our model experienced significantly worse prognoses

compared to those classified as low-risk. Furthermore, time-

dependent ROC curve analysis supported the prognostic utility of

our risk model. These findings were consistent with outcomes

observed in independent TARGET and GEO cohorts, providing

compelling evidence for the prognostic value of the four-gene

expression model in osteosarcoma. By incorporating key genes
Frontiers in Immunology 15
associated with T-cell exhaustion, our model offers improved

predictive accuracy for patient outcomes.

Although PLEKHO2, VSIG4, MPP1, and GBP2 have been

implicated in the pathogenesis of several cancers, their roles in

osteosarcoma have not been reported to date. VSIG4, a type 1

transmembrane protein of the B7-related immunoglobulin

superfamily, is normally expressed on tissue-resident

macrophages (21, 22). It has been shown to inhibit the

production of IL-2, the proliferation of effector CD8+ T cells, and
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FIGURE 11

The patients in the high- and low-risk groups showed different sensitivities to various drugs. (A–J) Using this algorithm, 10 drugs (AZD5991, BI-2536,
CDK9_5576, Dapoinad, Dinaciclib, NVP-ADW742, RO-3306, Tozasertib, UMI-77, and XAV939) were identified to have significantly different
responses between the high-risk and low-risk groups. The high-risk group demonstrated higher sensitivity to 9 drugs compared to the low-risk
group. The low-risk group showed higher sensitivity to XAV939. **p < 0.01; ***p < 0.001, ****p < 0.0001.
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induce regulatory T cells (Tregs) (23). The correlation between

VSIG4 expression and prognosis in various tumors has been

inconsistent across different studies. For example, overexpression

of VSIG4 in high-grade gliomas (24), gastric cancer (25), and

multiple myeloma (26) have been associated with poor prognosis,

while low VSIG4 expression in tumor tissue was related to poor

prognosis in patients with HBV-associated hepatocellular

carcinoma (27).

MPP1, also known as p55, is a member of the membrane-

associated guanylate kinase homologues family of signaling

proteins. Initially identified as a scaffolding protein in

erythrocytes, MPP1 forms a tripartite complex with protein 4.1R

and glycophorin C, which helps to stabilize the actin cytoskeleton

and its association with the plasma membrane (28, 29). Moreover,

MPP1 has been found to regulate the polarity of neutrophils (30). In

the context of neurofibromatosis type 2, MPP1 can bind to the

FERM structural domain of the NF2 protein, a tumor suppressor
Frontiers in Immunology 16
gene encoded by the NF2 gene, potentially leading to a tumor-

suppressive effect (31).

PLEKHO2, a member of the PH-domain-containing protein

superfamily, was found by Zhang et al. to play a critical role in

immune function and cell death. In their studies, the absence of

PLEKHO2 in mice resulted in significantly reduced numbers of

macrophages, and macrophages with PLEKHO2 deficiencies

produced more apoptosis and caspase-3 activity (32).

Additionally, PLEKHO2 was found to inhibit TNFa-induced cell

death by suppressing the activation of receptor interaction protein

kinase 1 (33).

GBP2 is a member of the p65 Guanyline Binding Protein (GBP)

family. A study by Godoy et al. found that high expression of GBP2

in breast cancer was correlated with a better prognosis and a robust

T-cell response (34). On the other hand, low expression of GBP2 in

patients with microsatellite stable colorectal cancer was associated

with poor prognosis and increased metastasis. More importantly,
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FIGURE 12

Validation of the prognostic model using the H-score obtained by immunohistochemistry (IHC). (A) Osteosarcoma patients were categorized into
low and high-risk groups based on the immunohistochemistry (IHC) results of PLEKHO2, VSIG4, MPP1, and GBP2. (B) The high-risk group exhibited
a poorer survival outcome compared to the low-risk group. (C) Time-dependent ROC curves were generated in the IHC validation cohort, with AUC
values of 0.800 at 1 year, 0.722 at 3 years, and 0.654 at 5 years. (D, E) The distribution of risk scores, the survival status of each patient, and a
heatmap depicting the prognostic 4-gene signature were analyzed in the IHC validation cohort.
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the knockout of GBP2 resulted in a reduction in CD8+ T cell

infiltration and blunted the efficacy of PD-1 blockade in tumor-

bearing mice (35). Zhang et al. analyzed the role of GBP2 in skin

cutaneous melanoma using data from the TCGA database and

found that GBP2 expression was positively correlated with

infiltration by B-cells, CD8+ T-cells, CD4+ T-cells, macrophages,
Frontiers in Immunology 17
neutrophils, and dendritic cells. Furthermore, higher levels of GBP2

expression were found in patients with metastatic skin cutaneous

melanoma, as well as in patients with better survival rates (36).

Another study by Geng et al. demonstrated the anti-tumor effects of

GBP2, which were achieved through the inhibition of the Wnt/b-
catenin pathway in skin cutaneous melanoma (37). Although the
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FIGURE 13

The effect of GBP2 on osteosarcoma cell line HOS proliferation, migration, invasion and apoptosis. (A–C) The expression of GBP2 was
downregulated using siRNA, as confirmed by Western blot and RT-qPCR analysis. (D) CCK-8 assays demonstrated that the downregulation of GBP2
led to increased cell proliferation in osteosarcoma cells. (E, F) Transwell assays showed that GBP2 downregulation significantly enhanced cell
migration and invasion in osteosarcoma cells. (G, H) Wound healing assays also indicated that GBP2 downregulation markedly promoted cell
migration ability in osteosarcoma cells. (I, J) Flow cytometry analysis revealed that GBP2 downregulation inhibited apoptosis in osteosarcoma cells.
*p < 0.05, **p < 0.01, ***p < 0.001.
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involvement of Guanylate Binding Protein 2 (GBP2) has been well

established in the pathogenesis of various tumor types, its specific

function in osteosarcoma remains largely unexplored. Thus, we

conducted an in-depth investigation into the role of GBP2

in osteosarcoma.

Our experimental results revealed that the downregulation of

GBP2 enhanced cell proliferation, as demonstrated by increased cell
Frontiers in Immunology 18
viability observed in CCK-8 assays. This finding suggests that GBP2

may exert a suppressive effect on cell growth in osteosarcoma.

Furthermore, the downregulation of GBP2 had a profound impact

on cell migration and invasion, as indicated by the enhanced

migratory and invasive abilities observed in Transwell assays.

Additionally, wound healing assays also confirmed the promotion

of cell migration ability upon GBP2 downregulation. These findings
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FIGURE 14

The effect of GBP2 on osteosarcoma cell line SaOS-2 proliferation, migration, invasion and apoptosis. (A–C) The expression of GBP2 was
downregulated using siRNA, as confirmed by Western blot and RT-qPCR analysis. (D) CCK-8 assays demonstrated that the downregulation of GBP2
led to increased cell proliferation in osteosarcoma cells. (E, F) Transwell assays showed that GBP2 downregulation significantly enhanced cell
migration and invasion in osteosarcoma cells. (G, H) Wound healing assays also indicated that GBP2 downregulation markedly promoted cell
migration ability in osteosarcoma cells. (I, J) Flow cytometry analysis revealed that GBP2 down-regulation inhibited apoptosis in osteosarcoma cells.
*p < 0.05, **p < 0.01, ***p < 0.001.
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collectively suggest that GBP2 may play a role in restraining the

migratory and invasive potential of HOS cells and SaOS-2 cells in

osteosarcoma. Moreover, flow cytometry analysis demonstrated

that GBP2 downregulation resulted in the inhibition of apoptosis

in HOS cells and SaOS-2 cells. This suggests that GBP2 may possess

pro-apoptotic properties in osteosarcoma, and its downregulation

may confer a survival advantage to the cancer cells. These results

indicate that GBP2 may function as a potential tumor suppressor in

osteosarcoma, and further investigations are warranted to elucidate

the underlying molecular mechanisms by which GBP2 modulates

these cellular processes. Understanding the precise role of GBP2 in

osteosarcoma could potentially pave the way for the development of

novel therapeutic strategies targeting this gene to inhibit tumor

progression and improve patient outcomes.

Meanwhile, our study also identified 10 drugs, including

AZD5991, BI-2536, CDK9_5576, Dapoinad, Dinaciclib, NVP-

ADW742, RO-3306, Tozasertib, UMI-77, and XAV939, that

exhibited significantly different responses between the high-risk

and low-risk osteosarcoma groups. Notably, the high-risk group

displayed significantly higher sensitivity to 9 of these drugs

compared to the low-risk group, while the low-risk group

exhibited higher sensitivity to XAV939. These findings suggest

that these small-molecule drugs may hold potential as therapeutic

options for osteosarcoma, with their efficacy varying based on the

risk profile of the patients. Further exploration of these drugs and

their mechanisms of action in osteosarcoma could provide valuable

insights for developing novel therapeutic strategies to inhibit tumor

progression and improve patient outcomes.

However, this study has some limitations that need to be

addressed. Firstly, while our bioinformatics analysis has indeed

revealed a positive correlation between the expression of the four

genes (PLEKHO2, VSIG4, MPP1, and GBP2) and the infiltration of

CD8+ T cells in osteosarcoma, the precise mechanism by which

these genes foster CD8+ T cell infiltration remains elusive. Wang

et al. similarly observed a positive correlation between GBP2 and

CD8+ T cell infiltration in colorectal cancer (34). Their experiments

demonstrated that the genetic knockout of GBP2 resulted in

diminished migration of CD8+ T cells, whereas supplementation

with CXCL10/11 restored T cell migration. Hence, they propose

that the heightened infiltration of CD8+ T cells might be ascribed to

the upregulation of CXCL10/11 facilitated by GBP2. Secondly,

single-cell RNA-seq analysis provides a profound understanding

of intra-tumoral diversity, facilitating the identification and

characterization of distinct tumor subtypes. This approach unveils

novel perspectives for devising more effective treatment strategies.

For example, Lin and Chai et al. classified melanoma into seven

subgroups using single-cell sequencing, revealing a significant

finding that C4 melanoma CORO1A might be more sensitive to

NK and T cells, whereas other subtypes of melanoma may exhibit

higher resistance to NK and T cells (38). Therefore, we conducted

single-cell RNA-seq analysis of GBP2 expression in osteosarcoma.

Although the single-cell RNA-seq analysis unveiled heightened

expression of GBP2 in CD8+ proliferative T cells, as well as

exhausted CD4+ and CD8+ T cells, the precise causal relationship

and biological implications of GBP2 in governing the proliferation

and exhaustion of CD4+ and CD8+ T cells remain ambiguous,
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demanding further exploration in forthcoming studies. Third,

throughout our validation process, inherent limitations within

bioinformatics analysis arose, notably stemming from the

utilization of diverse sequencing platforms across various

databases, consequently introducing inherent biases. To counter

these challenges, we employed a multi-faceted approach,

incorporating multiple datasets obtained from both the TARGET

and GEO databases, alongside data derived from our own cohort of

osteosarcoma patients. This concerted effort aimed to fortify the

stability of our bioinformatics analysis through data integration.

Finally, we focused on investigating the role of GBP2 in

osteosarcoma and did not extensively explore the functions of

PLEKHO2, VSIG4, and MPP1. Future cellular or animal

experiments are necessary to investigate the functional

mechanisms of these genes in osteosarcoma.
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