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Comparison of different
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assays for PD-1/PD-L1
checkpoint inhibitors response:
a systematic review and
network meta-analysis

Haotong Shi1, Wenxia Zhang2, Lin Zhang2, Yawen Zheng2*

and Taotao Dong2*

1Cheeloo College of Medicine, Shandong University, Jinan, China, 2Department of Obstetrics and
Gynecology, Qilu Hospital of Shandong University, Jinan, China
Background: Accurate prediction of efficacy of programmed cell death 1 (PD-1)/

programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical

importance. To address this issue, a network meta-analysis (NMA) comparing

existing commonmeasurements for curative effect of PD-1/PD-L1 monotherapy

was conducted.

Methods: We searched PubMed, Embase, the Cochrane Library database, and

relevant clinical trials to find out studies published before Feb 22, 2023 that use

PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene

expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/

immunofluorescence (mIHC/IF), other immunohistochemistry and

hematoxylin-eosin staining (other IHC&HE) and combined assays to determine

objective response rates to anti–PD-1/PD-L1 monotherapy. Study-level data

were extracted from the published studies. The primary goal of this study was to

evaluate the predictive efficacy and rank these assays mainly by NMA, and the

second objective was to compare them in subgroup analyses. Heterogeneity,

quality assessment, and result validation were also conducted by meta-analysis.

Findings: 144 diagnostic index tests in 49 studies covering 5322 patients were

eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-

0.89), the second diagnostic odds ratio (DOR) (5.09, 95% CI: 1.35-13.90), and the

second superiority index (2.86). MSI had highest specificity (0.90, 95% CI: 0.85-

0.94), and DOR (6.79, 95% CI: 3.48-11.91), especially in gastrointestinal tumors.

Subgroup analyses by tumor types found that mIHC/IF, and other IHC&HE

demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC),

while PD-L1 IHC andMSI were highly efficacious in predicting the effectiveness in

gastrointestinal tumors. When PD-L1 IHCwas combined with TMB, the sensitivity

(0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in

all studies.
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Interpretation: Considering statistical results of NMA and clinical applicability,

mIHC/IF appeared to have superior performance in predicting response to anti

PD-1/PD-L1 therapy. Combined assays could further improve the predictive

efficacy. Prospective clinical trials involving a wider range of tumor types are

needed to establish a definitive gold standard in future.
KEYWORDS

anti-PD-1/PD-L1 inhibitors immunotherapy, biomarkers, predictive value of tests, solid
tumor, meta-analysis
1 Introduction

Since the approval of anti-PD-1/PD-L1 inhibitors in the

treatment of melanoma in 2014, the overall survival of patients

has improved significantly. However, anti-PD-1/PD-L1

immunotherapy still has many shortcomings, such as PD-1/L1-

induced immune-re lated adverse events ( irAEs) and

hyperprogression (1). It is important to predict patients’ response

to PD-1/PD-L1 immunotherapy based on the consideration of

medical economics.

Various testing assays have been approved to predict the

efficacy of anti-PD-1/PD-L1 immunotherapy response. Food and

Drug Administration (FDA) has approved PD-1/PD-L1 IHC, TMB,

proficient mismatch repair (pMMR) proteins, deficient mismatch

repair (dMMR), and MSI-high (MSI-H) for specific tumor types

and drugs as companion or complementary diagnostics (2).

Similarly, European Communities (CE) and National Medical

Products Administration (NMPA) have carried out their own

standards on companion diagnost ics and predict ion

assay applications.

PD-L1 IHC, the first approved companion diagnostic

biomarker, aims to detect PD-1/PD-L1 expression on tumor cells

or inflammatory cells. However, the efficacy of IHC may be

influenced by the experience of pathologists, tumor types

examined, and the used scoring methods. Researchers are now

exploring the optimal detecting assay and scoring methods for

specific tumors (3).

TMB has been found to increase neoantigens of major

histocompatibility complexes (MHC) in various cancers, which

leading to better immunotherapy response in patients. Increasing

evidence indicates that different tumor types own various

expression levels of TMB. TMB is usually assessed by next-

generation sequencing (NGS) platforms, though standards of

threshold and application methods need to be defined exactly to

enhance accuracy across different tumor types. This would entail

considerations such as genome coverage, workflow, and appropriate

cutoff values (4). MSI and GEP display the difference in gene

expression as well. MSI-H phenotype arises from numerous

frameshift mutations due to deficits of the MMR system (5).

Patients with MSI-H are more likely to suffer from various

cancers, including colorectal cancer. MMR proteins, which could

be detected by IHC, polymerase chain reaction (PCR), and gene
02
sequencing, are now being used to identify MSI-H patients in

various cancer types.

Detection and evaluation of tumor microenvironment (TME)

have also been explored in recent years (6). For example,

researchers have found that the epithelial-mesenchymal transition

(EMT)- and stroma-related gene expression status is related to

patients’ tumorigenesis and drug resistance (7, 8). mIHC/IF and

gene sequencing technique could offer more chances to verify (9).

GEP could also allow the integrations of different gene signatures

and training models to predict prognosis and drug response based

on the results of DNA-microarray and RNA sequencing (RNA-Seq)

(10–12). Some researchers have also explored the combined

approaches, such as TMB+GEP or TMB+IHC, since such

predictors could work through different mechanisms or may be

positively correlated with each other. All biomarker assays

mentioned above present novel opportunities to predict the

response rate of PD-1/PD-L1 inhibitors.

Assessment and evaluation of diagnostic tests could also benefit

from the increasing diagnostic test accuracy (DTA) studies and the

continuous development of statistical methods. In the era of evidence-

based medicine, meta-analysis plays an important role in integrating of

different studies with pairs of intervention using various

methodological methods. To enable the comparison of different

assays with limited data and generate a whole scale ranking results,

NMA turned out to be a better tool to indirectly compare and jointly

analyze three or more DTA studies simultaneously.

In this study, we compared the diagnostic accuracy of seven

biomarker testing assays, including PD-L1 IHC, TMB, GEP, MSI,

mIHC/IF, other IHC&HE, as well as combined assays for predicting

anti-PD-1/PD-L1 immunotherapeutic response. Diagnostic

accuracy measures used in this study included sensitivity,

specificity, relative sensitivity, relative specificity, PPV, NPV,

relative predictive values, DOR, and superiority index (13). It is

believed that the NMA performed here could provide stronger

clinical evidence for current medical practice.
2 Methods

This NMA was performed according to the Preferred Reporting

Items for Systematic Reviews and Meta-analyses (PRISMA)

NMA checklist.
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2.1 Eligibility criteria

The included research articles in this study were based on real-

world data, and English translations were available. The studies were

required to conduct PD-1/PD-L1 monotherapies and utilize at least

two predictive biomarker testing assays on pre-treatment tissue

samples. These assays could include PD-L1 IHC, TMB, GEP, MSI,

mIHC/IF, HE for tumor-infiltrating lymphocytes (TIL), or other IHC

methods. Each biomarker testing assay should provide sufficient

information to determine the objective response rate (ORR) or

non-progression rate (NPR) and allow for the calculation of

sensitivity and specificity. If any testing assay had fewer than 15

tissue samples, it would not be considered. Hematologic cancers and

flow cytometry studies on tumor lysates were excluded.
2.2 Search strategy and data collection

We systematically searched PubMed, Embase, and the Cochrane

Library database for relevant studies and their errata (till February

2023). Additionally, we manually searched articles related to relevant

clinical trials. For example, the search formula of Embase included:

(“Immunohistochemistry “ OR “ Tumor mutational burden “ OR “

gene expression profiling “OR “multiplex immunofluorescence “OR

“ neoantigen load “ OR “ Immunofluorescence “)[Find articles with

these terms] AND (“Pembrolizumab “ OR “ Nivolumab “ OR “

Durvalumab “ OR “ Toripalimab “ OR “ Camrelizumab “ OR “

Atezolizumab “ OR “ Avelumab “ OR “ Avelumab “ OR “

Budigalimab “)[Title, abstract or author-specified keywords] AND

(Research articles)[Filter]. The intact search formula and results were

in the Supplementary material.

Necessary information from eligible studies was extracted by

three researchers independently and all inconsistencies were settled

by discussion. The trial name, first author, year of publication, sample

size, trial phase, tumor type, PD-1/PD-L1 antibody, and index test

assay was recorded. To calculate sensitivity and specificity for each

index test, we organized ORR-related information into a 2x2 table.

We used Youden’s index, which combines values for sensitivity and

specificity to indicate test accuracy, to select the best-performing

threshold among multiple thresholds. If a clinical trial has multiply

publications, the one with most complete information was adopted.
2.3 Statistical analysis and
quality assessment

The main outcomes were calculated by NMA. As for Bayesian

NMA, the ANOVA model made it possible to use the original data

and arm-based (AB) model (14). The latter shows superiority to

contrast-based (CB) models by accommodating more complex

variance-covariance structures. NMA was mainly performed with

the R package “Rstan” (R version 4.2.2). In order to improve

accuracy and compare diagnostic assays one by one, calculations

were repeated 7 times (model_code = model, chains = 2, iterations =

10000, warmup = 5000, thin = 5), and then, we draw league tables
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for relative comparations. Given numerical variance, we chose the

median of sensitivity, specificity, PPV, NPV, SROC, and

superiority index.

The Midas module for DTA meta-analysis facilitated validation

of results and assessment of heterogeneity by forest plot and I2

analysis for every 7 biomarker modalities. Sensitivity, specificity,

DOR, and summary receiver operating characteristic (SROC)

curves and their associated area under the curve (AUC) were

analyzed by Midas, which employs a bivariate mixed-effects

logistic regression modeling framework and empirical Bayesian

predictions. Publication bias of studies was also evaluated by

Deeks’ funnel plot asymmetry test (p<0.05 indicating significant

asymmetry). The network graphs package on Stata were used to

draw the network graphs. Meta-analysis and drawing figures were

fulfilled in Stata (17.0 MP—Parallel Edition).

The QUADAS-C (Quality Assessment of Diagnostic Accuracy

Study) tool was used to assess the risk of bias and applicability in

each selected study. There were 4 sections for risk of bias: patient

selection, index test, reference standard, and flow and timing;

meanwhile, concerns regarding applicability were presented in 3

sections: patient selection, index test, and reference standard.
3 Results

3.1 Systematic review and characteristics of
the included studies

3652 articles from databases and an additional 304 articles

related to clinical trials were retrieved in total. After removing

duplicates and glancing at the abstracts and titles, 294 articles were

identified for full-text scrutiny. The literature search and study

selection flow were recorded in Figure 1. Ultimately, a total of 49

studies involving 5322 patients were included in our analysis. 144

diagnostic index tests were extracted across all 49 studies,

comprising PD-L1 IHC (n=46) (15–58), TMB (n=27) (15–33,

58–62), combined assays (n=22) (7, 16, 18, 20, 23, 31, 34–38, 61,

62), other IHC&HE (n=19) (7, 16–18, 21, 30, 33–35, 37–45), MSI

(n=13) (21, 39, 46-53, 58, 61), GEP (n=13) (7, 16, 20, 23, 51, 53–

56, 60, 62) and mIHC/IF (n=4)(36, 37, 43, 57). HE staining was

used to score TIL. The situation where testing assays had been

directly compared was represented by a network plot (Figure 2).

15 types of tumors accounted for the majority of the studies, while

7 studies (18, 20, 27, 31, 42, 60, 61) involved several solid tumors. 8

of 13 MSI tests (39, 46, 47, 50–53, 58) detected gastrointestinal

cancer. The summary of included articles and details of studies

can be found in Supplementary Tables 1, 2.
3.2 Sensitivity, specificity, PPV and NPV

The sensitivity and specificity of NMA were summarized in

Table 1. Among the diagnostic index tests, mIHC/IF (0.76, 95% CI:

0.57-0.89) exhibited the highest sensitivity, whereas GEP (0.52, 95%

CI: 0.42-0.63), multi-assay (0.46, 95% CI: 0.39-0.52) and MSI (0.42,
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95% CI: 0.30-0.53) have low efficacy. Other IHC&HE (0.66, 95% CI:

0.57-0.73), PD-L1 IHC (0.63, 95% CI: 0.59-0.67), and TMB (0.62,

95% CI: 0.56-0.68) presented similar sensitivities to rule out stable

disease and progressive disease. As for specificity, MSI (0.90, 95%

CI: 0.85-0.94) and combined assays (0.84, 95% CI: 0.79-0.87)

performed better than the others. The specificities of the

remaining testing assays were quite close, with TMB, other

IHC&HE, PD-L1 IHC, GEP, and mIHC/IF having specificities of

0.65 (95% CI: 0.60-0.70), 0.63 (95% CI: 0.55-0.69), 0.61 (95% CI:
Frontiers in Immunology 04
0.58-0.64), 0.61 (95% CI: 0.52-0.69) and 0.57 (95% CI: 0.39-

0.73), respectively.

Table 1 also revealed that the PPV for each assay was below

0.60, indicating that positive results may not correctly predict the

response to PD-1/PD-L1 checkpoint inhibitors. MSI (0.56, 95% CI:

0.45-0.67) had the highest PPV, while GEP (0.33, 95% CI: 0.28-0.38)

was the lowest. However, all assays provided relatively good

performance in NPV, with even the lowest being near 0.80 (GEP:

0.8, 95% CI: 0.77-0.83). This suggested that these assays were useful

in providing evidence to refuse immunologic therapy due to the

accuracy of figuring out non-responsive patients.
3.3 Rankings, DOR and superiority index

Relative sensitivity, relative specificity, relative PPV, and relative

NPV were shown in the league table (Table 2). From the league

table for relative sensitivity (lower triangle of Table 2 (A), we can see

that mIHC/IF, other IHC&HE, and PD-L1 IHC had similar efficacy

and performed better than TMB, GEP, combined assays, and MSI

according to the relative risk (RR) values. The upper triangle of

Table 2(A) represented the relative specificity, MSI and multi-assay

showed superiority to the other, meanwhile, the remaining tests

exhibited comparable efficacy. Similarly, MSI and combined assays

demonstrated higher relative PPVs among assays, as shown in the

lower triangle of Table 2(B). There was no difference among relative

NPVs (upper triangle of Table 2(B).

Table 1 presented the odds of responsive patients in test

positives versus the odds of responsive patients in test negatives

as measured by the DOR. MSI (6.79, 95% CI: 3.48-11.91) has the

highest DOR as its high specificity, followed by mIHC/IF (4.44, 95%

CI: 3.19-5.93), largely driven by its high sensitivity. In contrast, the

DOR for gene expression profiling (GEP) was noticeably lower at
FIGURE 2

Network Plot. Both nodes and lines are weighted according to the
number of studies involved in each treatment and direct comparison,
respectively. PD-L1 IHC, Programmed cell death ligand 1
immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene
expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other
Immunohistochemistry and hematoxylin-eosin staining.
FIGURE 1

Flowchart Showing Literature Search and Study Selection. The study process followed the PRISMA guidelines. NMA, network meta-analysis.
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1.81 (95% CI: 1.31-2.40). The high superiority index indicated

biomarkers modality performs comparatively well in both

sensitivity and specificity. In contrast, the low superiority index

represents biomarkers that had a poor performance of at least one

assessment measure. As Table 1 summarized, the ranks of

superiority index from highest to lowest were TMB, mIHC/IF,

other IHC&HE, MSI, PD-L1 IHC, combined assays, and GEP.
3.4 Heterogeneity and quality assessment

To further validate these present results, a meta-analysis was

conducted and revealed the same ranks of sensitivity, specificity,

and DOR as NMA (Table 3). The value of sensitivity and specificity

were very similar, indicating reliable results from the ANOVA

model used in the NMA. SROC generated through meta-analysis

displayed the AUC for each biomarker testing assay. mIHC/IF had

the largest AUC (0.80), while GEP exhibited the smallest (0.61) and

AUC of all others were close to 0.70 (Figure 3). Ranking trends for

AUC and DOR were similar, indicating the reliability of our ranking

results for NMA.

However, the heterogeneity for each biomarker was high due to

the absence of testing standards and various tumor types and

thresholds. Although we chose the best performance threshold, I2

was higher than 50% (Supplementary Figure 1). Nonetheless,

publication bias wasn ’t obvious (p>0.1), according to

Supplementary Figure 2. QUADAS-C tools allowed us to evaluate

the quality (Supplementary Table 3).
3.5 Subgroup analysis

We conducted NMA for two subgroups of studies: 10 studies

focused on non-small cell lung cancer (NSCLC) (7, 23, 32–34, 45,

54, 58) and 12 studies centered around gastrointestinal tumors (19,

33, 39, 46, 47, 50–53, 58, 59) as reported in Table 4 and Table 5. For

NSCLC, mIHC/IF and multi-assay had high sensitivity (0.90, 95%

CI: 0.44-1.00) and specificity (0.90, 95% CI: 0.84-0.95) separately.

mIHC/IF, with only one study available, exhibited both high

sensitivity and specificity (0.89, 95% CI: 0.69-0.98), suggesting its

potential as a reliable biomarker modality. Further analysis based

on the ranks of DOR and superiority index suggested mIHC/IF,

multi-assay and other IHC&HE were better among the 6 testing

assays investigated.

In the case of gastrointestinal cancers, MSI had high specificity

(0.89, 95% CI: 0.82-0.92) and low sensitivity (0.40, 95% CI: 0.27-

0.54). PD-L1 IHC along with other IHC&HE demonstrated

relatively high DOR and superiority index, besides MSI.

Concerning that the majority of combined assays contained 3

models, namely, TMB+GEP (n=6) (16, 20, 23), TMB+PD-L1 IHC

(n=6) (18, 20, 30), and PD-L1 IHC+other IHC&HE (n=5) (34–38).

A meta-analysis was performed to explore sensitivity, specificity,

DOR, and AUC (Supplementary Figure 3) in these models.

TMB+PD-L1 IHC showed the best balance between sensitivity

(0.89, 95% CI: 0.82-0.94) and specificity (0.68, 95% CI: 0.53-0.81)

with high DOR (18, 95% CI: 9-37) and AUC (0.87, 95% CI: 0.84-
T
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TABLE 3 Result validation by meta-analysis.

Ranks Test Sensitivity Test Specificity Test DOR

1 mIHC/IF 0.83 (0.14-0.99) MSI 0.96 (0.88-0.99) MSI 13 (6-9)

2 other IHC&HE 0.66 (0.55-0.75) combined assays 0.85 (0.79-0.89) mIHC/IF 12 (1-243)

3 PD-L1 IHC 0.63 (0.55,0.70) TMB 0.68 (0.60-0.74) multi-assay 5 (4-7)

4 TMB 0.63 (0.56-0.70) other IHC&HE 0.63 (0.57-0.69) other IHC&HE 3 (2-5)

5 GEP 0.58 (0.38-0.76) PD-L1 IHC 0.63 (0.57.0.69) TMB 4 (3,5)

6 combined assays 0.47 (0.39-0.55) GEP 0.61 (0.51-0.69) PD-L1 IHC 3 (2,4)

7 MSI 0.36 (0.23-0.52) mIHC/IF 0.71 (0.45-0.88) GEP 2 (1,4)
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DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
TABLE 2 Relative sensitivity, relative specificity, relative PPV, and relative NPV by network meta-analysis.

(A)

mIHC/IF 0.92 (0.69,1.21) 0.96 (0.83,1.17) 0.85 (0.62,1.19) 0.87 (0.60,1.15) 0.67 (0.46,0.90) 0.63 (0.43,0.83)

RANK7 GEP 1.03 (0.99,1.11) 1.00 (0.83,1.17) 0.94 (0.79,1.08) 0.73 (0.62,0.83) 0.68 (0.57,0.78)

RANK6 PD-L1 IHC 0.99 (0.88,1.12) 0.94 (0.86,1.04) 0.73 (0.68,0.79) 0.68 (0.63,0.73)

RANK1 RANK5 other IHC&HE 0.95 (0.82,1.10) 0.74 (0.65,0.84) 0.69 (0.60,0.78)

mIHC/IF RANK2 RANK4 TMB 0.78 (0.71,0.85) 0.72 (0.65,0.79)

0.90 (0.70,1.21) other IHC&HE RANK3 RANK3 combined assays 0.93 (0.87,0.99)

0.86 (0.69,1.14) 1.00 (0.85,1.10) PD-L1 IHC RANK4 RANK2 MSI

0.85 (0.66,1.15) 0.96 (0.81,1.11) 1.01 (0.95,1.12) TMB RANK5 RANK1

0.72 (0.53,0.97) 0.78 (0.64,0.99) 0.79 (0.69,0.91) 0.85 (0.68,1.04) GEP RANK6

0.63 (0.48,0.85) 0.73 (0.58,0.84) 0.70 (0.65,0.83) 0.74 (0.61,0.90) 0.80 (0.67,1.08) combined assays RANK7

0.57 (0.38,0.81) 0.63 (0.46,0.82) 0.74 (0.68,0.81) 0.67 (0.48,0.88) 0.78 (0.56,1.05) 0.89 (0.61,1.21) MSI

(B)

GEP 0.99 (0.94,1.03) 0.97 (0.91,1.04) 0.96 (0.92,1.00) 0.96 (0.91,1.00) 0.94 (0.89,0.99) 0.94 (0.87,1.03)

RANK7 combined assays 0.99 (0.93,1.05) 0.98 (0.94,1.01) 0.97 (0.94,1.00) 0.96 (0.92,10.0) 0.96 (0.90,1.04)

RANK6 MSI 0.99 (0.93,1.04) 0.98 (0.93,1.03) 0.97 (0.91,1.03) 0.97 (0.89,1.06)

RANK1 RANK5 PD-L1 IHC 1.00 (0.97,1.03) 0.98 (0.94,1.02) 0.98 (0.92,1.07)

MSI RANK2 RANK4 TMB 0.99 (0.94,1.03) 0.99 (0.92,1.08)

0.86 (0.70,1.09) combined assays RANK3 RANK3 other IHC&HE 1.00 (0.93,1.09)

0.68 (0.54,0.85) 0.79 (0.68,0.90) TMB RANK4 RANK2 mIHC/IF

0.64 (0.50,0.81) 0.74 (0.62,0.88) 0.95 (0.78,1.12) other IHC&HE RANK5 RANK1

0.61 (0.50,0.77) 0.72 (0.62,0.81) 0.91 (0.81,1.03) 0.97 (0.82,1.14) PD-L1 IHC RANK6

0.60 (0.38,0.86) 0.70 (0.46,0.96) 0.89 (0.59,1.22) 0.94 (0.64,1.31) 0.97 (0.65,1.32) mIHC/IF RANK7

0.59 (0.46,0.76) 0.69 (0.58,0.81) 0.88 (0.74,1.05) 0.94 (0.75,1.15) 0.96 (0.80,1.13) 1.02 (0.69,1.50) GEP
(A) Relative risk (RR) values and 95% CIs for sensitivity (lower triangle) and specificity (upper triangle) were in Table 2.
(B) Relative risk (RR) values and 95% CIs for PPV (lower triangle) and NPV (upper triangle) were in Table 2.
The values highlighted in bold indicated a significant difference between the two compared assays. Relative risk (RR) values <1.00 provided better predictive efficacy.
PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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0.90). Conversely, the other models yielded higher sensitivity but

lower specificity compared to a single assay in the meta-analysis

(Supplementary Figure 3).
4 Discussion

In this article, we compared 7 common biomarker testing assays

to assess their efficacy in predicting response to PD-1/PD-L1

checkpoint inhibitors. mIHC/IF had the highest sensitivity (0.76,

95% CI: 0.57-0.89) and AUC (0.80), the second highest DOR (5.09,

95% CI: 1.35-13.90) and superiority index (2.86), but relative lower

specificity (0.57, 95% CI: 0.39-0.73). Although MSI exhibited the

highest DOR (6.79, 95% CI: 3.48-11.91), its application is mainly

limited to gastrointestinal tumors. Despite being the most

commonly used method in clinical practice, PD-L1 IHC had not

demonstrated obvious advantages in terms of sensitivity, specificity,

DOR, as well as superiority index. Yet, when PD-L1 IHC is

combined with TMB, a notable increase in sensitivity (0.89, 95%

CI: 0.82-0.94) was observed.

Our conclusion is in alignment with those from a previous

meta-analyses that had addressed similar topics (63, 64), which

indicated that mIHC/IF was superior to PD-L1 IHC, TMB and GEP

in predicting response to PD-1/PD-L1 checkpoint inhibitors and

that combinatorial assays could improve predictive efficacy. Yet, to

our best of knowledge, our study was the first to use NMA to

demonstrate the objective benefits of mIHC/IF in predicting
Frontiers in Immunology 07
patients’ response to PD-1/PD-L1 checkpoint inhibitors. Upon

stratifying by tumor types, we also observed that mIHC/IF had

both remarkable sensitivity and specificity in NSCLC. PD-L1,

mIHC/IF and IHC also manifested relatively high DOR and

superiority index in gastrointestinal cancers, which further

substantiated the strengths of mIHC/IF.

To address the challenge of ranking multiple diagnostic tests

simultaneously, statistical scientists have developed several new

models based on the Bayesian setting for NMA of DTA studies

(65), since traditional meta-analysis and NMA of intervention were

not efficient enough to handle this issue. Multivariate extensions of

meta-analysis models of DTA had been applied to NMA. In

addition, the ANOVA model used in this NMA could facilitate

ORR to be compared indirectly and rank testing assays directly (14).

Researchers could also compare multiple thresholds per testing

assay using certain models (66).

High sensitivity, DOR, and AUC of mIHC/IF collectively

indicated its superiority in identification of potential patients who

may benefit most from immunotherapy. mIHC/IF facilitates the

acquisition of quantitative multiplexed data, which plays a pivotal

role in deciphering the intricate relationship between tumor cells,

their microenvironment, and antigen expressions at the single-cell

level. This capability assumes paramount importance in

understanding tumorigenesis, cancer progression, and

immunotherapy responses. In all instances of mIHC/IF index

testing, CD8 was included, and T cell antigen expression was

examined. Various studies have established a link between T cells’

cytotoxicity and pro-inflammatory activity with patients prognosis

through its regulation of inherent immunological function by

tumor antigens like CD8 or PD-1 (67–70), which further

supports the potency of antigens on tumor-infiltrating

lymphocytes (TILs). However, false negative results obtained from

mIHC/IF screening may exclude some patients who may could

benefit from immunotherapy, suggesting the need to explore

additional proteins and combined assays to improve specificity.

To enhance the precision in scoring staining, many researchers have

incorporated artificial intelligence with mIHC/IF, rendering it a

relatively convenient and cost-effective method when compared to

combined assays (71). Thus, our study has concluded that mIHC/IF

had the best performance and a broad range of applications.

PD-L1 IHC, the most widely used assay, exhibited suboptimal

performance in sensitivity, specificity, and DOR. As previously

mentioned, TME is excessively intricate and heterogeneous to be

comprehensively elucidated by a singular mechanism. Furthermore,

expressions of PD-1 and PD-L1 exhibit considerable interpatient

variability. These two factors collectively contribute to the

suboptimal performance of PD-L1 IHC as a predictive marker.

The possible reasons for such unsatisfactory results varied,

including the lack of experience for pathologists, sample type

examined, and IHC assays used (72). A meta-analysis that

scrutinized and compared different IHC assays using tumor

proportion score (TPS) revealed that the sensitivity and specificity

values were similar except SP142 with lower sensitivity (73). The

quantification and assessment of PD-1 protein expression through
FIGURE 3

SROC Plot of “mIHC/IF” “combined assays” “MSI “ “TMB” “other
IHC&HE” “PDL1 IHC” and “GEP” by Meta-analysis. SROC, Summary
receiver operating characteristic curves; AUC, Area under the curve;
PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry;
TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI,
Microsatellite instability; mIHC/IF, Multiplex immunohistochemistry/
immunofluorescence; other IHC&HE, Other Immunohistochemistry
and hematoxylin-eosin staining.
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TABLE 5 Subgroup analysis of gastrointestinal tumors by network meta-analysis.

Rank Test Sensitivity Rank Test Relative Sensitivity Rank Test DOR

1 other IHC&HE 0.72 (0.35,0.95) 1 other IHC&HE 1.00 (1.00,1.00) 1 other IHC&HE 7.24 (0.35,37.15)

2 PD-L1 IHC 0.56 (0.44,0.68) 2 PD-L1 IHC 0.84 (0.52,1.61) 2 MSI 5.73 (2.49,10.59)

3 TMB 0.55 (0.33,0.76) 3 TMB 0.82 (0.41,1.64) 3 PD-L1 IHC 2.73 (1.45,4.76)

4 MSI 0.40 (0.27,0.54) 4 MSI 0.60 (0.33,1.20) 4 mIHC/IF 1.92 (0.03,11.96)

5 mIHC/IF 0.37 (0.04,0.84) 5 mIHC/IF 0.55 (0.06,1.48) 5 TMB 1.62 (0.39,4.56)

6 GEP 0.06 (0.00,0.39) 6 GEP 0.10 (0.00,0.64) 6 GEP 0.45 (0,30,0.86)

Rank Test Specificity Rank Test Relative Sensitivity Rank Test Superiority Index

1 MSI 0.89 (0.82,0.92) 1 MSI 1.91 (1.09,4.19) 1 MSI 4.17 (1.00,7.00)

2 GEP 0.70 (0.28,0.96) 2 GEP 1.50 (0.49,3.52) 2 PD-L1 IHC 3.44 (0.33,7.00)

3 PD-L1 IHC 0.67 (0.60,0.73) 3 PD-L1 IHC 1.44 (0.81,3.14) 3 other IHC&HE 3.09 (0.14,9.00)

4 mIHC/IF 0.56 (0.17,0.91) 4 mIHC/IF 1.19 (0.32,2.88) 4 TMB 1.30 (0.14,7.00)

5 TMB 0.52 (0.32,0.71) 5 TMB 1.13 (0.50,2.65) 5 mIHC/IF 1.17 (0.11,7.00)

6 other IHC&HE 0.52 (0.21,0.82) 6 other IHC&HE 1.00 (1.00,1.00) 6 GEP 0.47 (0.09,3.00)
F
rontiers in
 Immunology
 08
DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
TABLE 4 Subgroup analysis of NSCLC by network meta-analysis.

Rank Test Sensitivity Rank Test Relative Sensitivity Rank Test DOR

1 mIHC/IF
0.90
(0.44,1.00)

1 mIHC/IF 1.42 (0.68,1.74) 1 mIHC/IF
1607584.12
(5.95,833493.27)

2 PD-L1 IHC
0.64
(0.56,0.72)

2 PD-L1 IHC 1.00 (1.00,1.00) 2
combined
assays

6.55 (2.96,12.88)

3 TMB
0.59
(0.48,0.69)

3 TMB 0.92 (0.73,1.11) 3 other IHC&HE 6.20 (2.67,12.45)

4 other IHC&HE
0.55
(0.42,0.69)

4 other IHC&HE 0.87 (0.63,1.11) 4 PD-L1 IHC 3.30 (2.10,4.96)

5 GEP
0.44
(0.31,0.56)

5 GEP 0.68 (0.48,0.89) 5 TMB 2.88 (1.57,5.15)

6
combined
assays

0.39
(0.27,0.50)

6
combined
assays

0.61 (0.43,0.80) 6 GEP 1.68 (0.79,3.13)

Rank Test Specificity Rank Test
Relative Specific-
ity

Rank Test Superiority Index

1
combined
assays

0.90
(0.84,0.95)

1
combined
assays

1.41 (1.25,1.59) 1 mIHC/IF 9.02 (1.00,11.00)

2 mIHC/IF
0.89
(0.69,0.98)

2 mIHC/IF 1.38 (1.06,1.61) 2 other IHC&HE 1.90 (0.33,7.00)

3 other IHC&HE
0.82
(0.71,0.89)

3 other IHC&HE 1.27 (1.08,1.47) 3
combined
assays

1.07 (0.20,3.00)

4 GEP
0.67
(0.55,0.78)

4 GEP 1.04 (0.84,1.25) 4 PD-L1 IHC 0.83 (0.20,3.00)

5 TMB
0.66
(0.55,0.75)

5 TMB 1.02 (0.84,1.22) 5 TMB 0.65 (0.14,3.00)

6 PD-L1 IHC
0.64
(0.58,0.70)

6 PD-L1 IHC 1.00 (1.00,1.00) 6 GEP 0.18 (0.09,0.33)
DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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scoring methods varied among different assays, such as TPS,

combined positivity score (CPS), and immune cell (IC) score (3).

Gastrointestinal tumors were characterized by their most extensive

proportions of MSI-H/dMMR, therefore, MSI status detection

could be a reasonable approach to predict the response to

immunotherapy. Subgroup analysis of gastrointestinal tumors

indicated that MSI detection offered a valuable method for ruling

out non-responsive patients due to its high specificity performance.

MSI detection was also conducted in other solid tumors, including

endometrial cancer, adrenocortical carcinomas, and multiple

endocrine neoplasias (MENs). High specificity, DOR, and AUC of

MSI suggested its potential applications in some other tumor types.

Regrettably, generalization of MSI detections to a wider range of

tumors may be prevented by the fact that most tumors in fact

exhibit microsatellite stability (MSS) status.

Our efficacy rankings placed TMB and other IHC&HE in the

middle, while GEP was ranked last, although they are closely related

to crucial aspects of tumor immunology such as neoantigen, TME,

and inflammatory gene signature. Nevertheless, it is important to

note that the MSI status, TMB, and GEP serve as indicators of the

gene phenotype, which is not directly associated with the primary

mechanism of PD-1/PD-L1 immunotherapy compared to protein

expression. The measurements obtained through MSI, TMB, and

GEP reflect events upstream of gene expression, which may

potentially diminish their predictive efficacy. Uncovering specific

and precise gene pathways solely through these indicators can prove

to be challenging. Whereas thresholds for TMB and GEP were

mainly determined by proportions, other IHC&HE methods

typically detected CD8 and TILs with different methods. This

highlights the potential impossibility that some immature tests

could have covered all types of tumors.

Combined assays provided more chances to improve the

prediction accuracy in current challenging scenario. When TMB

was combined with PD-L1 IHC, the performance of sensitivity was

improved noticeably without sacrificing specificity. Ricciuti, B. et al.

have explored the association of high TMB with other biomarkers

and found that high TMB was related to higher proportions of

tumor-infiltrating CD8+, PD1+ T cells, and high PD-L1 expression in

cancer cells (74). Fumet, J.-D. et al. reported that tumors displaying

high PD-L1/low CD8 TILs developed microenvironments conducive

to tumor proliferation and exhibited poor outcomes (75). This may

explain the enhanced efficacy of combined assays. Yet,

the shortcomings of combined assays were high cost and

technical complexity.

Despite nearly a decade of research on companion or

complementary diagnostics for prediction purposes, the most

effective indicators for PD-1/PD-L1 inhibitors have not yet been

established for most tumors. While some testing assays such as

mIHC/IF and combined tests hold potential values, there was still

no perfect test with satisfactory sensitivity and specificity

simultaneously in our analysis. Consequently, clinicians should

exert appropriate caution when detecting predictive biomarkers

and interpreting associated results. Additionally, it is believed that

our NMA could provide supporting evidence to researchers and

clinicians for amelioration of predictive tests in future.
Frontiers in Immunology 09
5 Limitations

It is crucial to note that a high ORR doesn’t necessarily translate

into a high OS. It is essential to take care when interpreting results

based on studies that relied solely on ORR which may not take into

account of OS or progressive rate. To mitigate bias, it is worth

noting that the threshold we chose with Youden’s index may favor

higher sensitivity and specificity. An article with two or more

biomarker tests was selected, which may cause bias by giving up

some robust data in each test. Moreover, there was a significant

disparity between the number of studies conducted in PD-L1 IHC

versus mIHC/IF. Last but not least, although our study mainly

covered 15 types of tumors, the generalization of the conclusion still

requires deliberation.
6 Conclusion

Various large prospective and retrospective studies have

investigated biomarkers for the prediction of PD-1/PD-L1

checkpoint inhibitors response. According to our network meta-

analysis, mIHC/IF had the best performance and a large range of

applications. Given the diverse employment of mIHC/IF with

different biomarkers across various studies, further investigations

involving precise combinations are warranted to enhance

prognostic prediction. When considering the selection of specific

markers, it is crucial to take into account not only their efficiency

and cost-effectiveness but also rely on substantiation from evidence

derived from molecular mechanisms. Further exploration was

required in combined assays of the high efficacy of TMB+PD-L1

IHC. Currently, there is a lack of studies or consensus regarding the

workflow of companion or complementary diagnostics in this

context. The existing approach is primarily based on clinicians’

acknowledgment, and we anticipate that future research will

provide more foundational evidence to support these practices.

What’ more, more evidence based medicine are needed to

determine detailed testing modalities and thresholds for all types

of tumors, e.g. advanced ovarian cancer. Clinicians should be

cautious that the prognostic accuracy of each index test should be

interpreted in a particular situation.
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