Check for updates

OPEN ACCESS

EDITED BY Yutian Zou, Sun Yat-sen University Cancer Center (SYSUCC), China

REVIEWED BY Jean-Marc Barret, GamaMabs Pharma, France Marion Ferreira, Centre Hospitalier Universitaire de Tours, France

*CORRESPONDENCE Jie Wang Zlhuxi@163.com Hua Bai baihuahb@sina.com

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 24 July 2023 ACCEPTED 26 September 2023 PUBLISHED 16 October 2023

CITATION

He D, Wang L, Xu J, Zhao J, Bai H and Wang J (2023) Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer. *Front. Immunol.* 14:1265865. doi: 10.3389/fimmu.2023.1265865

COPYRIGHT

© 2023 He, Wang, Xu, Zhao, Bai and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer

Danming He[†], Lu Wang[†], Jiachen Xu, Jie Zhao, Hua Bai^{*} and Jie Wang^{*}

Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China

Immunotherapy has changed the treatment strategy of non-small cell lung cancer (NSCLC) in recent years, among which anti-PD-1/PD-L1 antibodies are the most used. However, the majority of patients with NSCLC do not derive benefit from immune checkpoint inhibitors (ICIs). Vascular abnormalities are a hallmark of most solid tumors and facilitate immune evasion. Thus, combining antiangiogenic therapies might increase the effectiveness of anti-PD-1/PD-L1 antibodies. In this paper, the mechanisms of anti-angiogenic agents combined with anti-PD-1/PD-L1 antibodies are illustrated, moreover, relevant clinical studies and predictive immunotherapeutic biomarkers are summarized and analyzed, in order to provide more treatment options for NSCLC patients.

KEYWORDS

lung cancer, immunology, anti-angiogeneic therapy, research advance, immune checkpoint inhibitors

1 Introduction

Lung cancer is a disease that seriously endangers human health, and it also remains the leading cause of cancer death, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) (1). NSCLC accounts for 80% - 85% of all lung cancers (2). In recent years, accurate treatment and combined therapies of lung cancer have made rapid progress, including immune checkpoint inhibitors (ICIs), ICIs combined with cytotoxic chemotherapies (Chemo), ICIs combined with ICIs and combined with anti-angiogenic therapy (3). Anti-PD-1/PD-L1 antibodies are the most used among ICIs (4). Additionally, the effects of ICIs + anti-angiogenic therapy are considerable, with accepted adverse events

10.3389/fimmu.2023.1265865

(AEs) (5). The results of a series of related clinical trials have been announced, which have been summarized here. Tumor angiogenesis provides nutrition for tumor growth, while lymphocytes infiltrate into the tumor through tumor vessels, and vascular growth interacts with tumor growth and tumor microenvironment (TME) to form a complex tumor ecological environment (6), so it is necessary to systematically review it. From this perspective, we described the mechanisms and summarized the latest progress of related clinical research of antiangiogenic drugs combined with immunotherapies in NSCLC.

2 Crosstalk between tumor angiogenesis and immune microenvironment

2.1 Inhibiting effect of tumor angiogenic factors on tumor immune microenvironment

Abnormal vasculature is the hallmark of solid tumors, and is also involved in tumor immune escape (7). The abnormal vessels and impaired perfusion can also restrict the entry of cytotoxic drugs and immune cells from the circulation into tumors, limiting their anticancer activity. The TME consists of numerous pro-angiogenic factors, including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF), which are secreted by tumor cells or tumor-infiltrating lymphocytes (TILs) or macrophages (8). These factors can activate pro-angiogenic signaling pathways to promote growth, invasion, and metastasis of tumor (9). Through the production of various cytokines and growth factors, such as VEGF, angiopoietin 2 (ANG-2), the immune cells work in concert with tumor cells lining abnormal tumor blood vessels to promote tumor angiogenesis and immunosuppression.

VEGF has suppressive effects on tumor immune microenvironment, by directly affect the differentiation, infiltration and cytotoxicity of various types of immune cells and other indirect mechanisms (10). VEGF could inhibit the differentiation of hematopoietic stem cells into CD4+ and CD8+ T cells in thymus. VEGF promotes the recruitment and proliferation of immunosuppressive cells such as regulatory T cells (Tregs), bone myeloid-derived suppressor cells (MDSCs), and M2-like tumor-associated macrophages (TAMs) (11). M2-like macrophages are similar in phenotype to TAMs, which promote tumor growth and metastasis, and are associated with poor prognosis of tumors (12). In addition, VEGF inhibits T cell proliferation and cytotoxicity, binding to VEGFR2 on T cell, and also up-regulates immune checkpoint molecules such as the programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) to inhibit T cell activation (13). VEGF also can reduce the ability of immune cells to adhere and pass through the blood vessel, by down-regulating the integrin ligands intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) of endothelial cells or preventing them from accumulating on endothelial cells, thus prevent immune cells from entering the tumor (14). Dendritic cells (DCs) play a crucial role in T cell activation. However, VEGF-VEGFR2 signaling inhibits antigen presenting by interfering with DCs maturation, thus indirectly inhibiting T cell activity and resulting in decreased T cell-mediated anti-cancer activity (15). Moreover, VEGF could indirectly affect the biochemical properties of TME and promotes angiogenesis that results in an aberrant tumor vasculature, leading to hypoxia and a low pH in the TME, which in turn fosters immunosuppression both locally and systemically (16, 17).

In addition to VEGF, ANG-2 is another key vascular growth immunomodulator. Activated ANG-2 signals can induce immunosuppressive TME through a variety of mechanisms (18). ANG-2 binds to Tie-2 expressed on monocytes, which recruits monocytes and also stimulates monocytes to secrete IL-10. IL-10 suppresses CD8+ cytotoxic T lymphocytes (CTLs) proliferation and cytotoxicity, and enhances Tregs infiltration (19). Moreover, ANG-2 also inhibits the secretion of transforming growth factor α (TNF- α), thereby limiting the anti-cancer activity of monocytes (18) (Figure 1). Overall, abnormalities in cancer blood vessels can cause immunosuppressive TME.

2.2 Promoting effect of tumor immune microenvironment on tumor angiogenesis

Tumor angiogenesis involves not only cancer cells but also a variety of immune cells, such as T cells, myeloid cell, and interstitial cell in TME. For the above immune cells, the release of proangiogenic cytokines is accompanied by a switch to an immunosuppressive behavior. T cells do not directly secrete VEGF, but they facilitate its effect by acquiring neuropilin 1 (NRP1) during interaction with DCs, which binds to VEGFA to promote angiogenesis (20). Both neutrophils and TAMs promote angiogenesis by secreting proangiogenic factors, such as VEGF, TNF- α , IL-8, and various chemokines including CXCR-2, 4 and 12, CXCL-3, 4, 8, 9, 10, and CCL2-5 (21). MDSC recruitment to the tumor can be induced by many different factors, such as CSF-3, IL-1 β , and IL-6, and subsequently lead to activation of STAT3, rendering them potent as proangiogenic and immunosuppressive cells (22). Besides, Tregs indirectly inhibit tumor angiogenesis by inhibiting helper T cells (TH1) cells, which express IFN- γ (23). In short, immune cells in TME can promote tumor angiogenesis.

3 The mechanism of antiangiogenic drugs combined with immunotherapy

Anti-angiogenic drugs induced vascular normalization improve immune cell infiltration and promote the transformation of "cold tumors" into "hot tumors", thus enhances the efficacy of immunotherapy (24, 25). Anti-angiogenic drugs promote immune cell maturation and improve infiltration by blocking the binding of VEGF to VEGFR2 on the surface of macrophages and T cells (26).

Tumor vascular normalization relieves hypoxia and reduces the secretion of VEGF, thus reducing the recruitment of immunosuppressive cells such as MDSCs and Tregs, and also reduce the expression of PD-1, PD-L1, CTLA-4, TIM-3 and other immune checkpoint molecules on the surface of immunosuppressive cells (27, 28). Besides, the vascular normalization effect is associated with more efficient lymphocyte priming by antigen-presenting cells, TAM polarization to an M1-like phenotype, and accumulation of activated, IFN- γ expressing CD8+ T cells within the perivascular space (29, 30) M1-like TAMs are generally considered to be tumor-killing

macrophages, primarily anti-tumor and immune-promoting (12) (Figure 2). In current clinical practice, the most used antiangiogenetic drugs include bevacizumab (targeting at VEGF-A), ramucirumab (targeting at VEGFR2) (31). Multiple therapeutic agents targeting VEGF and VEGF receptors have been developed and approved for use in cancers. Moreover, tyrosine kinase inhibitors (TKIs) can inhibit not only VEGFR but also FGFR, PDGFR and so on (32). The commonly used TKI drugs are lenvatinib, apatinib and anlotinib in NSCLC. Preclinical studies have proved that low-dose apatinib combined with PD-1/PD-L1 inhibitors can enhance its anti-

FIGURE 2

Anti-angiogenic treatment reprograms the tumor microenvironment from immunosuppressive to immunosupportive and improves effects of immunotherapy. Anti-angiogenic drugs induced vascular normalization improves immune cell infiltration and promotes the transformation of "cold tumors" into "hot tumors", facilitating the infiltration of T effector cells while reducing MDSC accumulation. In addition, improved vascular perfusion polarizes TAMs to an immune stimulatory M1-like phenotype. Consequently, through anti-angiogenic treatment, vascular normalization could potentially enhance the effectiveness of immunotherapy.

tumor activity, and in the preliminary clinical application showed a good therapeutic effect (33).

For ICIs, these drugs have been thought to mainly affect T cells, which lead to activating T cells secret INF-γ which decreased endothelial VEGFA, and increased CXCL-9, CXCL-10 and CXCL-11, induced tumor vascular normalization (34, 35). Thus, vascular normalization in the setting of immune stimulation represents a novel mechanism for the antitumor effects of immune checkpoint blockade and provides a new understanding of tumor vascular remodeling and immune reprogramming. As for ICI, antibodies that block the interaction of PD-1 with its ligand PD-L1 and the binding of CTLA-4 to its receptor have been approved for clinical use (36). The former ones include atezolizumab and durvalumab, inhibiting PD-L1, and pembrolizumab, cemiplimab, nivolumab, camrelizumab, toripalimab, and sintilimab, inhibiting PD-1 receptors (Table 1).

To sum up, anti-angiogenesis therapy normalizes tumor blood vessels and also improves tumor immune microenvironment. ICIs can activate T lymphocytes to secrete IFN- γ , to reduce local hypoxia and promote the normalization of tumor vessels, which demonstrates the synergistic effect of anti-PD-1/PD-L1 antibodies combined with antiangiogenic drugs and provides a theoretical basis for their combination in the treatment of NSCLC (37, 38).

4 Clinical practices of anti-PD-1/PD-L1 antibodies plus antiangiogenic therapy in NSCLC

Based on published clinical studies, generally, anti-PD-1/PD-L1 antibodies combined with antiangiogenetic therapy showed better efficacy than ICIs alone, and prolonged progression free survival (PFS) and overall survival (OS). Here, we focused only on NSCLC, and summarized current clinical studies on combination therapy of anti-PD-1/PD-L1 antibodies plus antiangiogenesis in patients according to different clinical care scenarios.

4.1 Advanced first-line therapy

According to NCCN guidelines V1.2023 NSCLC, one of the recommended first-line therapy for advanced adenocarcinoma, large cell, and NSCLC not otherwise specified (NOS) patients is carboplatin + paclitaxel + bevacizumab + atezolizumab (ABCP) (39), with PD-L1 expression whether \geq 50% or ranges between 1%-49%. The recommendation was based on the result of IMpower150, an international, open label, phase 3 study in chemo-naive NSCLC patients. Compared with becacizumab plus chemotherapy (BCP) group, ABCP group had longer median PFS (mPFS) (8.3 months vs. 6.8 months; HR, 0.62; 95% CI, 0.52 to 0.74; P < 0.001) and median OS (19.2 months vs. 14.7 months; HR, 0.78; 95% CI, 0.64 to 0.96; P = 0.02) (40, 41). The combination of pembrolizumab and ramucirumab for first-line treatment was investigated in an expansion cohort of JDVF trial, and the objective response rate (ORR) was 42.3% (42). Another cohort

TABLE 1 The approved indications of anti-PD-1/PD-L1 antibodies and anti-angiogenic drugs in the globe.

Agent/target	Indication	Approval
Nivolumab/anti-PD-1	SC NSCLC SCLC RCC HL HNC UC CRC HCC ESC MPM GC GEJC	2014-US 2015-EU 2018-PRC
Pembrolizumab/anti-PD-1	SC NSCLC SCLC RCC HL HNC UC CRC HCC ESC GC GEJC TNBC BC CC EC	2014-US 2015-EU 2018-PRC
Toripalimab/anti-PD-1	SC HNC UC	2108-PRC
Sintilimab/anti-PD-1	NSCLC HL HCC	2018-PRC
Camrelizumab/anti-PD-1	NSCLC HL HNC HCC ESC	2019-PRC
Durvalumab/anti-PD-L1	NSCLC SCLC BC	2017-US 2018-EU 2019-PRC
Atezolizumab/anti-PD-L1	SC NSCLC SCLC	2016-US 2017-EU 2020-PRC
Avelumab/anti-PD-L1	SC RCC UC	2017-US 2017-EU
Cemiplimab/anti-PD-L1	SC NSCLC	2018-US 2019-EU
Bevacizumab/anti-VEGFA	CRC MSCLC RCC BC CC	2004-US 2005-EU 2010-PRC
Ramuciruma/anti-VEGFR2	GC CRC	2014-US 2015-EU 2022-PRC

(Continued)

TABLE 1 Continued

Agent/target	Indication	Approval
	NSCLC HCC	
Lenvatinib	RCC HCC TC	2015-US 2015-EU 2018-PRC
Apatinib	GC ESC HCC NSCLC	2014-PRC
Anlotinib	NSCLC	2018-PRC

SC, skin cancer; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; HL, Hodgkin lymphoma; HNC, head and neck cancer; UC, urothelial carcinoma; CRC, colorectal cancer; HCC, hepatocellular carcinoma; ESC, esophageal carcinoma; MPM, malignant pleural mesothelioma; GC, gastric cancer; GEJC, gastroesophageal junction cancer; TNBC, triple-negative breast cancer; BC, bladder cancer; CC, cervical cancer; C, endometrial cancer; TC, thyroid carcinoma; EU, European Union; PRC, People's Republic of China.

in a three-arm prospective study (anlotinib combined with erlotinib, carboplatin plus pemetrexed/gemcitabine, and sintilimab) adopting anlotinib combined with sintilimab in untreated locally advanced/metastatic NSCLC patients indicated low incidences of adverse events and better clinical benefits than previous reports with ORR 72.7%, and mPFS 15.6 months (43). Other clinical studies and their results were briefly listed in Table 2, and most of these researches showed positive evidence.

However, in a meta-analysis that involved 8278 patients from 16 randomized controlled trials (RCTs) comparing efficacy and safety of different first-line immunotherapy combinations, including ABCP, pembrolizumab-chemo, atezolizumab-chemo, camrelizumab-chemo, tislelizumab-chemo, sintilimab-chemo, nivolumab-ipilimumab, nivolumab-ipilimumab-chemo, durvalumab-tremelimumab, and durva-tremelimumab-chemo, ABCP regimen showed best efficacy in PFS and ORR, but the advantages in OS and toxicity were not prominent (68). Similar findings were also revealed in a meta-analysis enrolling 19 phase II/III RCTs in which the ABCP regimen was ranked 5th among all 17 regimens including ABCP, 5 ICImonotherapy regimens, 7 ICI-Chemo regimens, 2 dual-ICI strategies, 1 dual-ICI-Chemo combination, and 1 Beva-Chemo regimen, in which overall OS, PFS, safety, and ORR were taken into consideration (69). Furthermore, a cost-effectiveness analysis from the perspective of the US health care sector showed that adopting pembrolizumab monotherapy when PD-L1≥50%, pembrolizumab combined with chemotherapy when PD-L1 between 1%-49%, and nivolumab plus ipilimumab when PD-L1<1% were more cost-effective treatment options, whose performance was better than ABCP (QALY 2.39) (70). Similar results were revealed in several other cost-effectiveness analyses (71). It should be emphasized that comparing treatment strategies across studies is challenging, though, clinicians should be cautious, prudent, and comprehensive when considering anti-PD-1/PD-L1 antibodies combined with antiangiogenic treatment, especially when ICI monotherapy or dual-ICIs strategies are available at the same time.

4.2 Advanced later line therapy

Compared with traditional chemotherapy, immunotherapy has achieved good benefits in patients with advanced NSCLC, but the benefits are lower for patients receiving second or higher line treatment (72). The resistance mechanisms are probably multifactorial, including tumor expressing low levels of PD-L1 and immunosuppressive TME. Based on the theoretical synergistic mechanism between vascular normalization and immune promotion in TME, the combination of antiangiogenetic agent and anti-PD-1/PD-L1 antibodies may be able to show surprising antitumor activity in the subsequent line treatment. Furthermore, the resistance mechanism in the late stage of targeted therapy remains not well revealed (73). And the persistent toxicities after initial treatment with cytotoxic chemotherapy not only cause adverse events but also affect the response to later line therapy (44). In the randomized phase II Lung-MAP substudy (S1800A), 136 patients with progression after previous treatment with ICI and platinum-based chemotherapy randomly received pembrolizumab plus ramucirumab or standard care, and the former group showed an improved OS (14.5 months vs. 11.6 months) (59). Phase Ia/b JVDF trial assessed the safety and antitumor activity of ramucirumab combined with pembrolizumab treatment in previously treated solid tumor patients (advanced gastric or gastro-esophageal junction adenocarcinoma, nonsmall-cell lung cancer, or urothelial carcinoma). There was one, seven, fifteen, and three of 27 NSCLC patients achieved CR, PR, SD, and PD, respectively, with ORR 30% and mPFS 9.7 months, which was a favorable result compared with anti-PD-1/PD-L1 antibody treatment alone in other studies (44). Most randomized phase III clinical trials using combined immunotherapy were designed for first-line therapy, and there are few data for NSCLC patients in second-line or higher settings. Further explorations for subsequent line treatment of advanced NSCLC patients with multi-line resistance were needed.

4.3 Perioperative therapy

Apart from locally advanced or metastatic NSCLC patients, whether patients in relatively early stages can benefit from the combination therapy is also worth exploring. When investigating the efficacy of the combination therapy, stage III patients are often excluded, and there was little related research focusing on perioperative NSCLC patients. Apart from efficacy, it is also important to emphasize perioperative safety, as the inhibition of angiogenesis might affect wound healing (74). As far as currently known, an interval of \geq 4 weeks between drug administration and surgery is recommended (75). The major concerns of perioperative patients such as neoadjuvant efficacy, postoperative recurrence and metastasis, and wound bleeding and healing complications, have yet not been well studied. As a theoretical basis, a pre-clinical study found that the combination therapy of pembrolizumab and bevacizumab could transform tumors into an inflamed condition, thus inhibiting tumor growth and preventing postoperative recurrence and metastasis in a humanized neoadjuvant mouse model (75).

The clinical studies that have been published so far on perioperative patients are mainly case reports. Toripalimab +

TABLE 2 Clinical studies of anti-PD-1/PD-L1 antibodies plus antiangiogenetic therapy in NSCLC patients.

Research , type	Veer	Country/ Race	Target	Combination regimen	Sample size (N)	Patients	Treatment line	Outcomes		
	rear							PFS	OS	ORR
First-line treatment										
Phase III RCT IMpower150 (NCT02366143)	2018	Multiple	PD- L1&VEGF- A	Atezo + Beva + Carbo + Tax (40)	356	NSQ	1 st	8.3 months	19.2 months	63.5%
Phase I trial JVDF (NCT02443324)	2021	Multiple	PD-1& VEGFR2	Pembro + Ramu (42, 44)	26	4SQ&22NSQ	1 st	9.3 months	Not reached	42.3%
Phase Ib four- arm trial	2016	Japan	PD-1& VEGF-A	Nivo + Beva + Carbo + Tax (45)	6	NSQ	1^{st}	Not reached	Ν	100%
Phase III RCT TASUKI-52	2021	Asian	PD-1& VEGF-A	Nivo + Beva + Carbo + Tax (46)	275	NSQ	1^{st}	12.1 months	25.4 months	61.5%
Phase Ib/II trial (NCT03083041)	2022	China	PD-1& VEGFR2	Camre + Apa (47)	25	NSQ, hTMB, <i>EGFR/ALK-</i>	1^{st}	9.6 months	Not reached	40.0%
Phase II single- arm trial	2022	Japan	PD-L1& VEGF-A	Atezo + Beva (48)	39	NSQ, hPD-L1, EGFR/ALK/ ROS1-	1^{st}	15.9 months	Not reached	64.1%
Three-arm trial (NCT03628521)	2022	China	PD- 1&Multi	Sinti + Anlo (43)	22	12SQ&10NSQ, EGFR/ALK/ ROS1-	1 st	15.6 months	Not reached	72.7%
Phase II single- armtrial TELMA (NCT03836066)	2022	Spain	PD-L1& VEGF-A	Atezo + Beva (49)	38	NSQ, hTMB, EGFR/ALK/ ROS1-	1^{st}	13.0 months	Not reached	42.1%
Phase II single- arm trial LUN17-139	2022	Multiple	PD-L1& VEGF-A	Atezo + Beva + Carbo + Pemx (50)	30	NSQ	1^{st}	11.3 months	22.4 months	42.9%
Later-line trea	tment									
Phase I trial	2014	USA	PD-1& VEGF-A	Nivo + Beva (51)	12	NSQ, Chemo- treated	2 nd	37.1 weeks	Not reached	8%
Phase I trial JVDF (NCT02443324)	2019	Multiple	PD-1& VEGFR2	Pembro + Ramu (42, 44)	27	4SQ&23NSQ, Chemo-treated	$\geq 2^{nd}$	9.7 months	26.2 months	30%
Phase Ib/II trial (NCT02501096)	2020	Multiple	PD- 1&Multi	Pembro + Lenva (52)	21		≥2 nd	5.9 months	Ν	33%
Phase Ia/b trial JVDJ (NCT02572687)	2020	Multiple	PD-L1& VEGFR2	Durva + Ramu (53)	28	7SQ&21NSQ, ICI/Ramu- naïve	≥2 nd	2.7 months	11.0 months	11%
Phase Ib/II trial (NCT03083041)	2021	China	PD-1& VEGFR2	Camre + Apa (54)	105	NSQ, Chemo- treated, EGFR/ <i>ALK</i> -	≥2 nd	5.7 months	15.5 months	30.9%
Phase Ib trial	2021	China	PD- 1&Multi	Camre + Anlo (55)	51	8SQ&43NSQ	$\geq 2^{nd}$	8.2 months	12.7 months	13.3%
Perspective control study	2021	China	PD- 1&Multi	Camre + Anlo (56)	44		3 rd	Ν	Ν	TER 93.18%
Phase Ib trial (NCT03006887)	2022	Japan	PD- 1&Multi	Pembro + Lenva (57)	3	Metastatic	≥2 nd	3.4 months	N	0
Phase II single- arm trial	2022	USA	PD-L1& VEGFR2	Atezo + Ramu (58)	21	6SQ&15NSQ, Anti-PD-(L)1- treated	≥2 nd	3.4 months	16.5 months	4.8%

(Continued)

TABLE 2 Continued

Research	Veer	ar Country/ Target Combination Sample Patien Race Patien	Toward	Combination	Sample	Detiente	Treatment	Outcomes		
type	rear		Patients	line	PFS	OS	ORR			
Phase II RCT Lung-MAP S1800A (NCT03971474)	2022	Multiple	PD-1& VEGFR2	Pembo + Ramu (59)	69	28SQ&41NSQ, Anti-PD-(L) 1&Chemo- resistant	≥2 nd	4.5 months	14.5 months	22%
Phase II trial	2022	China	PD-1& VEGFR2	Camre + Apa (60)	25	SQ, ICI-naïve, Chemo-treated	2 nd	6 months	13.3 months	32.0%
Phase II two-stage trial	2022	Korea	PD-L1& VEGF-A	Atezo + Beva (61)	24	1SQ&23NSQ, Chemo&Atezo- treated	≥3 rd	5.6 months	14.0 months	12.5%
EGFR positive	patients	;								
Phase II single- arm trial	2021	China	PD-L1& VEGF-A	Atezo + Beva + Carbo + Pemx (62)	40	NSQ, <i>EGFR-</i> TKI resistant	≥2 nd	9.4 months	Not reached	62.5%
Phase Ib/II trial (NCT03083041)	2022	China	PD-1& VEGFR2	Camre + Apa (63)	43	2SQ&41NSQ, Chemo-treated, <i>EGFR/ALK-</i> TKI resistant	≥2 nd	2.8 months	Not reached	18.6%
Phase III RCT ORIENT-31 (NCT03802240)	2022	China	PD-1& VEGF-A	Sinti + IBI305 + Cis + Pemx (64)	148	NSQ, <i>EGFR-</i> TKI resistant	≥2 nd	6.9 months	Not reached	44%
Retrospective	study									
Real-world retrospective study	2021	China	PD- 1&Multi	Anti-PD-1 + Anlo (65)	62	29SQ&33NSQ	≥2 nd	5.0 months	Ν	19.3%
Retrospective analysis	2021	China	PD- 1&Multi	Anti-PD-1 + Anlo (66)	67	26SQ&41NSQ	≥2 nd	6.9 months	14.5 months	28.4%
Retrospective analysis	2022	China	PD-1& VEGFR2	Camre + Apa + Radio (67)	53	Oligometastatic		Ν	Ν	79.2%

Atezo, atezolizumab; Beva, bevacizumab; Carbo, carboplatin; Tax, paclitaxel; Pembro, pembrolizumab; Ramu, ramucirumab; Nivo, nivolumab; (N)SQ, (non) squamous; Camre, camrelizumab; Apa, apatinib; hTMB, high TMB; hPD-L1, high PD-L1; Sinti, sintilimab; Anlo, anlotinib; Pemx, pemetrexed; Chemo, chemotherapy; N, not found; Lenva, lenvatinib; Durva, durvalumab; TER, total effective rate; Cis, cisplatin; Radio, radiotherapy.

apatinib + pemetrexed + nedaplatin has been reported for preoperative induction therapy in a patient who achieved a PFS of 7 months (76). Nivolumab + anlotinib and atezolizumab + bevacizumab + chemotherapy have both been reported for postoperative adjuvant therapy and have shown clinically favorable responses (77, 78). These reports revealed the feasibility of anti-PD-1/PD-L1 antibodies plus antiangiogenesis combination therapy as either neoadjuvant or adjuvant therapy, but still further clinical exploration is needed.

5 Immunotherapy combined with antiangiogenic therapy in *EGFR* positive patients

5.1 The tumor angiogenesis and immune microenvironment in *EGFR* positive patients

Epidermal growth factor receptor (EGFR)-activating mutations represent the most frequent targetable alteration with a prevalence of

nearly 20% in Caucasians with lung adenocarcinomas (79). Moreover, *EGFR* mutations in NSCLC have immunosuppressive effects, and previous studies have reported that the *EGFR* mutations can modulate several factors to impact TME, such as TILs, Tregs, MDSCs, TAMs, and immunoregulatory cytokines (80, 81). Preclinical studies have revealed that the VEGF and EGFR pathways share common downstream signaling, and these pathways can function exclusively of one another during oncogenesis (82). Moreover, in *EGFR*-mutant NSCLCs, *EGFR* activation may drive VEGF expression as *EGFR*-mutant NSCLC cells constitutively up-regulate HIF-1 α in a hypoxia-independent manner (83). Therefore, mutant *EGFR*-driven NSCLC has a unique immunosuppressive microenvironment, and *EGFR* activation promotes the expression of VEGF, which is expected to result in tumor angiogenesis.

5.2 Clinical practices

According to NCCN guidelines, results of molecular testing including *ALK*, *BRAF*, *EGFR*, etc., should be obtained before administering first-line immunotherapy if clinically feasible.

10.3389/fimmu.2023.1265865

Patients with metastatic NSCLC and high PD-L1 expression level who also have a molecular variant that targets the driver oncogene should receive first-line targeted therapy rather than first-line immunotherapy because the former choice yields higher response rates and is better tolerated (39, 84). However, acquired resistance to targeted drugs often occurs in these patients, and there is usually no good treatment for the posterior line. As previously stated, *EGFR*-positive patients have a special immunosuppressive TME. What's more, *EGFR* mutation can be associated with increased VEGF expression (85), and a sharing downstream signaling pathways of VEGF and EGFR was revealed (82), which brought us interest in the efficacy of anti-PD-1/PD-L1 antibodies plus antiangiogenetic therapy in *EGFR* positive patients.

In the subgroup analysis of Impower150, ABCP brought longer PFS among patients with EGFR/ALK-mutant than BCP (40, 86). The phase 3 ORIENT-31 research recruited 444 locally advanced or metastatic NSCLC patients with EGFR-mutant who progressed after previous EGFR-TKI treatment and categorized them into sintilimab + IBI305 (a biosimilar of bevacizumab) + pemetrexed + cisplatin group, sintilimab + pemetrexed + cisplatin group, and chemotherapy alone group. After a median follow-up of 9.8 months, the first group exhibited prolonged PFS relative to the chemotherapy alone group (6.9 months vs. 4.3 months, HR 0.46) (64). Another phase Ib/II clinical trial enrolled 43 advanced NSCLC patients with EGFR+/ALK+ who had previously received targeted therapy. They received camrelizumab plus apatinib and showed a confirmed ORR of 18.6%, a clinical benefit response rate of 27.9%, and an mPFS of 2.8 months, assessed as moderate antitumor activity and acceptable safety profile (63). There was also research about uncommon EGFR mutations, enrolling 16 patients with EGFR mutations including Exon 18 (G719X, E709A), 20 insertion, 21 L861Q, and compound mutation and administrating atezolizumab + bevacizumab + carboplatin + (nab-)paclitaxel as first or further line treatment. ORR turned out to be 81.3%, disease control rate (DCR) was 87.5%, and mPFS reached 13.6 months (87). However, according to a meta-analysis evaluating the benefit-predicting factors of metastatic NSCLC, chemoimmunotherapy led to longer PFS regardless of EGFR or ALK status, whereas Impower130 exhibited no significant PFS superiority with non-bevacizumab-based regimens in EGFR/ALK+ subgroups (88, 89).

There were more studies enrolling patients with EGFR or with other driver gene mutations, included in Table 2. Overall, the efficacy of this combined regimen in treated or untreated *EGFR*+ patients has been proven, but further large-scale clinical trials are needed to confirm its prominent advantages.

6 Immunotherapy combined with antiangiogenic therapy in patients with distant organ metastases

Clinical trials have demonstrated the activity of immunotherapy in patients with brain and liver metastases (90, 91), and the activity was preliminarily confirmed by subgroup analyses of later clinical trials. The key subgroup analysis of Impower150 revealed a prolonged PFS in ABCP arm compared with BCP arm (13.2 months vs. 9.1 months) in liver metastatic ITT patients (92). Relatively prolonged mPFS was observed in patients with all bone, liver, and brain metastases in the phase III TASUKI-52 trial (46). However, brain metastasis could still be a significant risk factor for the combination therapy according to a phase Ib trial (55).

A retrospective study found the combination treatment of camrelizumab, apatinib, and radiotherapy was associated with lower levels of TRIM27, SCC-Ag, and CYFRA21-1, which might promote tumor infiltration, proliferation, and activation (67). As patients with oligometastases are in the transition from primary to extensive metastases, these patients will benefit from treatment effective for metastasis, which is worthy of further exploration.

Table 2 lists most searchable clinical studies on the combination of immunotherapy and antiangiogenic therapy. Only prospective trials and retrospective studies with more than 50 participants were selected.

7 Predictive biomarkers of ICI plus antiangiogenetic treatment

Immunotherapy has changed the treatment landscape of NSCLC and has shown durable response rates in some refractory tumors. However, some treated patients show no response and serious immune-related side effects. Therefore, there is an urgent need for immunotherapeutic markers to help select people who are likely to benefit from immunotherapy, Multiple biomarkers have been explored over the years, and some emerging biomarkers are also under exploration (31). There are relatively mature studies of biomarkers separately in the immunotherapy field and antiangiogenetic field. However, few biomarkers focus specifically on the field of combination therapy. Here we summarize all common biomarkers, hoping to shed light on future treatments, especially in the field of combination therapy.

7.1 PD-L1 expression

Based on extensive research, ICI treatment plays a better role in immune inflamed tumors compared with noninflamed types (93). Tumors under immune inflamed conditions are characterized by high PD-L1 expression, high CD8+ T cell density, or strong IFN-y cytolytic T cell signature (94). The expression of PD-L1 is the first established biomarker that can predict the clinical efficacy of PD-1/ PD-L1 inhibitors, which has shown guiding significance in the treatment of many tumors, and the NCCN treatment guidelines recommend PD-L1 expression as a biomarker for immunotherapy (39). Most clinical studies of anti-PD-1/PD-L1 antibodies plus antiangiogenetic therapy included PD-L1 subgroup analysis. In Impower150, PFS in ABCP group was 8.0 months among patients with PD-L1<50% and 12.6 months for the subgroup with high PD-L1 expression (40). In another camrelizumab plus apatinib trial, a trend of better efficacy was observed in PD-L1 positive subgroup defined as TPS ≥1%, but without statistical significance (ORR 36.0% vs. 22.7%, P=0.20; mPFS 6.8 vs. 5.1 months, P=0.29) (54). Although PD-L1

expression is not the optimal biomarker, and its predictive role varies between different studies, which might be attributed to different assay methods, reagents sources, and selected thresholds, it is the best available biomarker to assess whether a patient is a suitable candidate in current clinical practice (39, 95, 96).

7.2 Tumor mutation burden

Tumor mutation burden (TMB), defined as the number of nonsynonymous somatic mutations in cancer cells, is used to be another NCCN guideline recommended predictor in ICI therapy (39). Patients with high TMB levels tend to express high neoantigen levels on the surface of tumor cells that will activate the killing effect of immune cells (39). In June 2020, the FDA approved pembrolizumab for patients with unresectable or metastatic solid tumors with high TMB levels (≥10muts/Mb) that had progressed after prior therapy (97), which represented FDA acceptance of TMB as an independent biomarker for immunotherapy. However, there is a lack of consensus on the predictive value of TMB in clinical research results (98), and the lack of agreement on cut-off value and measurement standardization in clinical application led to its removal from the recommended immune biomarker by the NCCN panel in 2020 (99). In a phase Ib trial of 22 NSCLC patients, sintilimab plus anlotinib exhibited an ORR showing no significant association with TMB level (43).

Blood-based TMB (bTMB) provides a new way to measure TMB in patients who are difficult to obtain tumor tissue samples. Since high bTMB level can predict PFS benefit but not OS benefit in previous studies, Wang et al. proposed the concept of low allele frequence-bTMB (LAF-bTMB) and verified the prediction efficiency of LAF-bTMB algorithm through several international clinical cohorts (100). However, the predictor appears to have limited value at times. In a pilot study, bTMB could not stratify the PFS among 22 cases of second or further line camrelizumab plus apatinib treatment (95).

7.3 VEGF and ANG-2

Solid predictive biomarkers for VEGF signaling pathway targeted treatment have not been identified in tumor patients, whereas VEGF and angiopoietins are the key targets in related therapies (18). In the field of NSCLC, ANG-2, and β FGF was found to contribute to worse prognosis (101, 102), and higher plasma VEGF level might predict a better response to bevacizumab (102). VEGF-related molecules need to be further investigated as a potential predictive biomarker as data in response to anti-VEGF therapy or antiangiogenetic combination therapy are scarce.

7.4 Mutations in specific genes

Tumor driver genes can affect the tumor immune microenvironment and the response of immunotherapy. For example, *KRAS* and *TP53* mutated populations tend to express higher levels of PD-L1, and the combined treatment of ABCP led to OS improvements in patients with *KRAS* and *TP53* co-mutations in a subgroup analysis of Impower150. On the contrary, in *KRAS*, *STK11*, and *KEAP1* co-mutated patients, the expression of PD-L1 was reduced, and no apparent OS improvement was observed (103). However, the addition of apatinib to camrelizumab was reported to have better clinical outcomes in patients with mutation of *STK11* and/or *KEAP1* in another research, which indicated that the addition of antiangiogenetic drugs to ICI might also bring reverse effect against mono-agent immunotherapy (54, 104). The underlying reason might be attributed to the involvement of *STK11* and *KEAP1* in angiogenesis.

7.5 Liquid biopsy biomarkers

Other circulating markers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, and circulating immune cells have also attracted research interest as surrogate markers of tumor burden (94). The concentration of ctDNA was identified as one of the independent risk factors of camrelizumab plus apatinib therapy in a multivariate Cox regression analysis, while ctDNA mutational status indicated a trend of difference but was not independent (95). Although many studies have explored the predictive value of liquid biopsy in immunotherapy, there is less exploration of combination therapy.

7.6 Others

There are also other genes, proteins, cells, or indexes that describe their status that have been proposed as biomarkers in mono-agent immunotherapy, including TIL, MSI-H/dMMR, CTLA4 expression, diversity of gut microbiome, etc. (94, 96). But rarely were reported in the field of combination immunotherapy. It also appears that no anti-PD-1/PD-L1 antibody plus antiangiogenetic specific biomarker have been identified. Further research on predictive biomarkers will be necessary.

8 Conclusion

In summary, a series of clinical studies have shown that antiangiogenic drugs and ICIs have synergistic anti-tumor effects. On the one hand, anti-angiogenic drugs can reverse the immunosuppressive state of TME and enhance the efficacy of ICIs through immune reprogramming. On the other hand, ICIs can restore the immunosupportive microenvironment, promote vascular normalization, and enhance the efficacy of anti-angiogenic drugs. ICIs combined with antiangiogenic drugs have been widely and increasingly prescribed, but they also have drug resistance leading to treatment failure, and vascular normalization has a short specific time window. Therefore, how to delay the generation of drug-resistant cells is one of the urgent problems to be solved at present. Additionally, how to extend the normalization window effectively and explore the administration time, sequence, and optimal dosage of each drug in combination therapy may become the key for further research. Last but not least, how to select the most appropriate treatment plan for different patients to achieve the purpose of precise personalized treatment is of great importance, so it is also the direction of future research to find relevant biomarkers to predict the efficacy of patients and identify potential benefit groups. To sum up, more in-depth basic experiments and clinical studies are needed to optimize the treatment regimen of ICIs combined with anti-angiogenic drugs, so as to further improve patient prognosis with NSCLC.

Author contributions

DH: Writing – original draft, Writing – review & editing. LW: Writing – original draft, Writing – review & editing. JX: Writing – review & editing. JZ: Writing – review & editing. HB: Writing – review & editing. JW: Funding acquisition, Writing – review & editing.

Funding

This work was supported by National key R&D program of China (2022YFC2505000); NSFC general program (82272796);

References

1. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The effect of advances in lung-cancer treatment on population mortality. *N Engl J Med* (2020) 383(7):640–9. doi: 10.1056/NEJMoa1916623

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin (2022) 72(1):7–33. doi: 10.3322/caac.21708

3. Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. *Nat Rev Clin Oncol* (2020) 17(12):725–41. doi: 10.1038/s41571-020-0413-z

4. Atanackovic D, Luetkens T. Biomarkers for checkpoint inhibition in hematologic Malignancies. *Semin Cancer Biol* (2018) 52(Pt 2):198-206. doi: 10.1016/j.semcancer.2018.05.005

 Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. *Nat Rev Clin Oncol* (2021) 18(8):527–40. doi: 10.1038/ s41571-021-00496-y

6. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. *Cell Mol Life Sci* (2020) 77(9):1745–70. doi: 10.1007/s00018-019-03351-7

7. Ren S, Xiong X, You H, Shen J, Zhou P. The combination of immune checkpoint blockade and angiogenesis inhibitors in the treatment of advanced non-small cell lung cancer. *Front Immunol* (2021) 12:689132. doi: 10.3389/fimmu.2021.689132

8. Komi DEA, Redegeld FA. Role of mast cells in shaping the tumor microenvironment. *Clin Rev Allergy Immunol* (2020) 58(3):313–25. doi: 10.1007/s12016-019-08753-w

9. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. *J Exp Clin Cancer Res* (2020) 39(1):204. doi: 10.1186/s13046-020-01709-5

10. Cho HD, Kim JH, Park JK, Hong SM, Kim DH, et al. Kochia scoparia seed extract suppresses VEGF-induced angiogenesis via modulating VEGF receptor 2 and PI3K/AKT/mTOR pathways. *Pharm Biol* (2019) 57(1):684–93. doi: 10.1080/13880209.2019.1672753

11. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancerassociated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. *Mol Cancer* (2021) 20(1):131. doi: 10.1186/s12943-021-01428-1

12. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. *Annu Rev Pathol* (2020) 15:123–47. doi: 10.1146/annurev-pathmechdis-012418-012718

NSFC special program (82241229); CAMS Innovation Fund for Medical Sciences (CIFMS 2022-I2M-1-009; CAMS Key Laboratory of Translational Research on Lung Cancer (2018PT31035); Ministry of Education Innovation Team development project (3332018002) and Aiyou foundation (KY201701).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

13. Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. *J Immunol* (2007) 178(3):1505–11. doi: 10.4049/jimmunol.178.3.1505

14. Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities. *Front Immunol* (2020) 11:598877. doi: 10.3389/fimmu.2020.598877

15. Mennitto A, Huber V, Ratta R, Sepe P, de Braud F, Procopio G, et al. Angiogenesis and immunity in renal carcinoma: can we turn an unhappy relationship into a happy marriage? *J Clin Med* (2020) 9(4):930. doi: 10.3390/jcm9040930

 Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. *Cancer Res* (2013) 73(10):2943– 8. doi: 10.1158/0008-5472.CAN-12-4354

 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. *Nature* (1992) 359(6398):843– 5. doi: 10.1038/359843a0

18. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. *Nat Rev Clin Oncol* (2018) 15(5):325–40. doi: 10.1038/nrclinonc.2018.29

19. Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, et al. Immunity, hypoxia, and metabolism-the ménage à Trois of cancer: implications for immunotherapy. *Physiol Rev* (2020) 100(1):1–102. doi: 10.1152/physrev.00018.2019

20. Chuckran CA, Liu C, Bruno TC, Workman CJ, Vignali D. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. *J Immunother Cancer* (2020) 8(2):967–78. doi: 10.1136/jitc-2020-000967

21. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. *Clin Dev Immunol 2012.* (2012) p:948098. doi: 10.1155/2012/948098

22. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. *Trends Immunol* (2016) 37(3):208–20. doi: 10.1016/j.it.2016.01.004

23. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. *Nat Rev Cancer* (2017) 17(8):457–74. doi: 10.1038/nrc.2017.51

24. Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL, Jiang W. Improving immune-vascular crosstalk for cancer immunotherapy. *Nat Rev Immunol* (2018) 18 (3):195–203. doi: 10.1038/nri.2017.145

25. Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. *Theranostics* (2021) 11(11):5365–86. doi: 10.7150/thno.58390

26. Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H, Fitzpatrick S, et al. An HIF- 1α /VEGF-A axis in cytotoxic T cells regulates tumor progression. *Cancer Cell* (2017) 32(5):669–683.e5. doi: 10.1016/j.ccell.2017.10.003

27. Pircher A, Wolf D, Heidenreich A, Hilbe W, Pichler R, Heidegger I. Synergies of targeting tumor angiogenesis and immune checkpoints in non-small cell lung cancer and renal cell cancer: from basic concepts to clinical reality. *Int J Mol Sci* (2017) 18 (11):2291–305. doi: 10.3390/ijms18112291

28. Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. *Angiogenesis* (2017) 20(4):409–26. doi: 10.1007/s10456-017-9562-9

29. Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. *Sci Transl Med* (2017) 9 (385):eaak9670. doi: 10.1126/scitranslmed.aak9670

30. Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, et al. Ang-2/ VEGF bispecific antibody reprograms macrophages and resident microglia to antitumor phenotype and prolongs glioblastoma survival. *Proc Natl Acad Sci U.S.A.* (2016) 113(16):4476–81. doi: 10.1073/pnas.1525360113

31. Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. *Mol Cancer* (2019) 18(1):60. doi: 10.1186/s12943-019-0974-6

32. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. *Mol Cancer* (2018) 17(1):38. doi: 10.1186/s12943-018-0777-1

33. Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, et al. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. *Cancer Immunol Res* (2019) 7(4):630–43. doi: 10.1158/2326-6066.CIR-17-0640

34. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. *Nature* (2017) 544(7649):250-4. doi: 10.1038/nature21724

35. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon- γ resembles physiological blood vessel regression. *Nature* (2017) 545(7652):98–102. doi: 10.1038/nature22311

36. Zhao Y, Guo S, Deng J, Shen J, Du F, Wu X, et al. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: targeting the tumor microenvironment. *Int J Biol Sci* (2022) 18(9):3845–58. doi: 10.7150/ijbs.70958

37. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial. *Lancet Respir Med* (2021) 9 (3):305–14. doi: 10.1016/S2213-2600(20)30365-9

38. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. *N Engl J Med* (2020) 383(14):1328–39. doi: 10.1056/NEJMoa1917346

39. Network NCC. NCCN guidelines version 1.2023 non-small cell lung cancer. (2022).

40. Socinski MA, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. *N Engl J Med* (2018) 378(24):2288–301. doi: 10.1056/NEJMoa1716948

41. Socinski MA, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, et al. IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC. *J Thorac Oncol* (2021) 16 (11):1909–24. doi: 10.1016/j.jtho.2021.07.009

42. Herbst RS, Arkenau HT, Bendell J, Arrowsmith E, Wermke M, Soriano A, et al. Phase 1 expansion cohort of ramucirumab plus pembrolizumab in advanced treatment-naive NSCLC. *J Thorac Oncol* (2021) 16(2):289–98. doi: 10.1016/j.jtho.2020.10.004

43. Chu T, Zhong R, Zhong H, Zhang B, Zhang W, Shi C, et al. Phase 1b study of sintilimab plus anlotinib as first-line therapy in patients with advanced NSCLC. J Thorac Oncol (2021) 16(4):643–52. doi: 10.1016/j.jtho.2020.11.026

44. Herbst RS, Arkenau HT, Santana-Davila R, Calvo E, Paz-Ares L, Cassier PA, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. *Lancet Oncol* (2019) 20(8):1109–23. doi: 10.1016/S1470-2045(19)30458-9

45. Kanda S, Goto K, Shiraishi H, Kubo E, Tanaka A, Utsumi H, et al. Safety and efficacy of nivolumab and standard chemotherapy drug combination in patients with advanced non-small-cell lung cancer: a four arms phase Ib study. *Ann Oncol* (2016) 27 (12):2242–50. doi: 10.1093/annonc/mdw416

46. Sugawara S, Lee JS, Kang JH, Kim HR, Inui N, Hida T, et al. Nivolumab with carboplatin, paclitaxel, and bevacizumab for first-line treatment of advanced nonsquamous non-small-cell lung cancer. *Ann Oncol* (2021) 32(9):1137–47. doi: 10.1016/j.annonc.2021.06.004

47. Ren S, He J, Fang Y, Chen G, Ma Z, Chen J, et al. Camrelizumab plus apatinib in treatment-naive patients with advanced nonsquamous NSCLC: A multicenter, open-

label, single-arm, phase 2 trial. JTO Clin Res Rep (2022) 3(5):100312. doi: 10.1016/j.jtocrr.2022.100312

48. Seto T, Nosaki K, Shimokawa M, Toyozawa R, Sugawara S. Phase II study of atezolizumab with bevacizumab for non-squamous non-small cell lung cancer with high PD-L1 expression (@Be Study). *J Immunother Cancer* (2022) 10(2):4025–33. doi: 10.1136/jitc-2021-004025

49. Provencio M, Ortega AL, Coves-Sarto J, Calvo V, Marsé-Fabregat R, Dómine M, et al. Atezolizumab plus bevacizumab as first-line treatment for patients with metastatic nonsquamous non-small cell lung cancer with high tumor mutation burden: A nonrandomized controlled trial. *JAMA Oncol* (2022) 9(3):344–53. doi: 10.1001/jamaoncol.2022.5959

50. Ardeshir-Larijani F, Althouse SK, Leal T, Feldman LE, Hejleh TA. A phase II trial of atezolizumab plus carboplatin plus pemetrexed plus bevacizumab in the treatment of patients with stage IV non-squamous non-small cell lung cancer: big ten cancer research consortium (BTCRC)- LUN 17-139. *Clin Lung Cancer* (2022) 23 (7):578–84. doi: 10.1016/j.cllc.2022.07.001

51. Rizvi NA, Antonia SJ, Shepherd FA, Chow LQ, Goldman J, Shen Y. Nivolumab (Anti-PD-1; BMS-936558, ONO-4538) maintenance as monotherapy or in combination with bevacizumab (BEV) for non-small cell lung cancer (NSCLC) previously treated with chemotherapy: metastatic non-small cell lung cancer. *Int J Radiat OncologyBiologyPhysics* (2014) 90(5, Supplement):S32. doi: 10.1016/j.ijrobp.2014.08.206

52. Taylor MH, Lee CH, Makker V, Rasco D, Dutcus CE, Wu J, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. *J Clin Oncol* (2020) 38 (11):1154–63. doi: 10.1200/JCO.19.01598

53. Bang YJ, Golan T, Dahan L, Fu S, Moreno V, Park K, et al. Ramucirumab and durvalumab for previously treated, advanced non-small-cell lung cancer, gastric/gastro-oesophageal junction adenocarcinoma, or hepatocellular carcinoma: An open-label, phase Ia/b study (JVDJ). *Eur J Cancer* (2020) 137:272–84. doi: 10.1016/j.ejca.2020.06.007

54. Zhou C, Wang Y, Zhao J, Chen G, Liu Z, Gu K, et al. Efficacy and biomarker analysis of camrelizumab in combination with apatinib in patients with advanced nonsquamous NSCLC previously treated with chemotherapy. *Clin Cancer Res* (2021) 27(5):1296–304. doi: 10.1158/1078-0432.CCR-20-3136

55. Zhou N, Jiang M, Li T, Zhu J, Liu K, Hou H, et al. Anlotinib combined with anti-PD-1 antibody, camrelizumab for advanced NSCLCs after multiple lines treatment: An open-label, dose escalation and expansion study. *Lung Cancer* (2021) 160:111–7. doi: 10.1016/j.lungcan.2021.08.006

56. Wang Y, Shi X, Qi Q, Ye B, Zou Z. Safety of anlotinib capsules combined with PD-1 inhibitor camrelizumab in the third-line treatment of advanced non-small-cell lung cancer and their effect on serum tumor markers. *J Healthc Eng* (2021) 2021:2338800. doi: 10.1155/2021/2338800

57. Kitano S, Fujiwara Y, Shimizu T, Iwasa S, Yonemori K, Kondo S, et al. A feasibility study of lenvatinib plus pembrolizumab in Japanese patients with advanced solid tumors. *Cancer Chemother Pharmacol* (2022) 90(6):523–9. doi: 10.1007/s00280-022-04480-w

58. Herzog BH, Waqar SN, Devarakonda S, Ward JP, Gao F, Govindan R, et al. Ramucirumab plus atezolizumab in patients with stage IV non-small cell lung cancer previously treated with immune checkpoint inhibitors. *Lung Cancer* (2022) 173:101–6. doi: 10.1016/j.lungcan.2022.09.011

59. Reckamp KL, Redman MW, Dragnev KH, Minichiello K VII. Phase II randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy-lung-MAP S1800A. *J Clin Oncol* (2022) 40(21):2295–306. doi: 10.1200/JCO.22.00912

60. Gao G, Zhao J, Ren S, Wang Y, Chen G, Chen J, et al. Efficacy and safety of camrelizumab plus apatinib as second-line treatment for advanced squamous non-small cell lung cancer. *Ann Transl Med* (2022) 10(8):441. doi: 10.21037/atm-21-4792

61. Lee J, Koh J, Kim HK, Hong S, Kim K, Park S, et al. Bevacizumab plus atezolizumab after progression on atezolizumab monotherapy in pretreated patients with NSCLC: an open-label, two-stage, phase 2 trial. *J Thorac Oncol* (2022) 17(7):900–8. doi: 10.1016/j.jtho.2022.04.001

62. Lam TC, Tsang KC, Choi HC, Lee VH, Lam KO, Chiang CL, et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure. *Lung Cancer* (2021) 159:18–26. doi: 10.1016/j.lungcan.2021.07.004

63. Gao G, Ni J, Wang Y, Ren S, Liu Z, Chen G, et al. Efficacy and safety of camrelizumab plus apatinib in previously treated patients with advanced non-small cell lung cancer harboring EGFR or ALK genetic aberration. *Transl Lung Cancer Res* (2022) 11 (6):964–74. doi: 10.21037/tlcr-22-22

64. Lu S, Wu L, Jian H, Chen Y, Wang Q, Fang J, et al. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial. *Lancet Oncol* (2022) 23(9):1167–79. doi: 10.1016/S1470-2045(22)00382-5

65. Zhang X, Zeng L, Li Y, Xu Q, Yang H, Lizaso A, et al. Anlotinib combined with PD-1 blockade for the treatment of lung cancer: a real-world retrospective study in China. *Cancer Immunol Immunother* (2021) 70(9):2517–28. doi: 10.1007/s00262-021-02869-9

66. Wang P, Fang X, Yin T, Tian H, Yu J, Teng F. Efficacy and safety of anti-PD-1 plus anlotinib in patients with advanced non-small-cell lung cancer after previous systemic treatment failure-A retrospective study. *Front Oncol* (2021) 11:628124. doi: 10.3389/fonc.2021.628124

67. Ye W, Song Z, Lin Z. Camrelizumab and apatinib combined with radiotherapy is effective in advanced oligometastatic non-small-cell lung cancer. *Evid Based Complement Alternat Med* (2022) 2022:5067402. doi: 10.1155/2022/5067402

68. Liu L, Bai H, Wang C, Seery S, Wang Z, Duan J, et al. Efficacy and safety of firstline immunotherapy combinations for advanced NSCLC: A systematic review and network meta-analysis. *J Thorac Oncol* (2021) 16(7):1099–117. doi: 10.1016/ j.jtho.2021.03.016

69. Siciliano MA, Caridà G, Ciliberto D, d'Apolito M, Pelaia C, Caracciolo D. Efficacy and safety of first-line checkpoint inhibitors-based treatments for non-oncogene-addicted non-small-cell lung cancer: a systematic review and meta-analysis. *ESMO Open* (2022) 7(3):100465. doi: 10.1016/j.esmoop.2022.100465

70. Yang SC, Ou HT, Su WC, Wang SY. Cost-effectiveness of first-line immunotherapies for advanced non-small cell lung cancer. *Cancer Med* (2023) 12 (7):8838–50. doi: 10.1002/cam4.5632

71. Criss SD, Mooradian MJ, Watson TR, Gainor JF, Reynolds KL, Kong CY. Costeffectiveness of atezolizumab combination therapy for first-line treatment of metastatic nonsquamous non-small cell lung cancer in the United States. *JAMA Netw Open* (2019) 2(9):e1911952. doi: 10.1001/jamanetworkopen.2019.11952

72. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. *Lancet* (2017) 389(10066):255–65. doi: 10.1016/S0140-6736(16)32517-X

73. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. *Br J Cancer* (2019) 121(9):725–37. doi: 10.1038/s41416-019-0573-8

74. Bose D, Meric-Bernstam F, Hofstetter W, Reardon DA, Flaherty KT, Ellis LM. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. *Lancet Oncol* (2010) 11(4):373–82. doi: 10.1016/S1470-2045(09)70341-9

75. Qiao T, Zhao J, Xin X, Xiong Y, Guo W, Meng F, et al. Combined pembrolizumab and bevacizumab therapy effectively inhibits non-small-cell lung cancer growth and prevents postoperative recurrence and metastasis in humanized mouse model. *Cancer Immunol Immunother* (2022) 72(5):1169–81. doi: 10.1007/s00262-022-03318-x

76. Zhai P, Niu X, Zheng K. A dramatic response to toripalimab with chemotherapy and antiangiogenic agent followed by surgery in a stage IIIB lung adenocarcinoma patient with an uncommon EGFR mutation: A case report. *Front Oncol* (2022) 12:915628. doi: 10.3389/fonc.2022.915628

77. Jin C, Yang B. Dramatic response of pulmonary sarcomatoid carcinoma to nivolumab combined with anlotinib: A case report. *Case Rep Oncol* (2020) 13(2):601–5. doi: 10.1159/000507568

78. Akaba T, Shiota Y, Onizawa F, Isaka T, Nagashima Y, Tagaya E. Recurrent spindle cell carcinoma of the lung successfully treated by chemoimmunotherapy. *Respirol Case Rep* (2021) 9(6):e00757. doi: 10.1002/rcr2.757

79. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* (2018) 29(Suppl 4):iv192–237. doi: 10.1093/annonc/mdy275

80. Jia Y, Li X, Jiang T, Zhao S, Zhao C, Zhang L, et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: Implications for combination therapies. *Int J Cancer* (2019) 145(5):1432–44. doi: 10.1002/ijc.32191

81. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. *Oncoimmunology* (2017) 6 (11):e1356145. doi: 10.1080/2162402X.2017.1356145

82. Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, et al. Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol (2021) 16(2):205–15. doi: 10.1016/j.jtho.2020.10.006

83. Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z, et al. Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxiainducible factor-1alpha in non-small cell lung cancer cells. *Oncogene* (2010) 29 (18):2616–27. doi: 10.1038/onc.2010.16

84. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. *Ann Oncol* (2019) 30 (8):1321–8. doi: 10.1093/annonc/mdz167

85. Reinmuth N, Jauch A, Xu EC, Muley T, Granzow M, Hoffmann H, et al. Correlation of EGFR mutations with chromosomal alterations and expression of EGFR, ErbB3 and VEGF in tumor samples of lung adenocarcinoma patients. *Lung Cancer* (2008) 62(2):193–201. doi: 10.1016/j.lungcan.2008.03.011

86. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer

(IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. *Lancet Respir Med* (2019) 7 (5):387–401. doi: 10.1016/S2213-2600(19)30084-0

87. Trummer A, Bethge A, Dickgreber N, Dittrich I, Golpon H, Hoffknecht P. NSCLC with uncommon EGFR mutations treated with atezolizumab plus bevacizumab and chemotherapy. *Lung Cancer* (2022) 174:141–5. doi: 10.1016/j.lungcan.2022.11.006

88. El-Osta HE, Mott FE, Burt BM, Wang DY, Sabichi AL. Predictors of benefits from frontline chemoimmunotherapy in stage IV non-small-cell lung cancer: a metaanalysis. *Oncoimmunology* (2019) 8(12):e1665974. doi: 10.1080/2162402X. 2019.1665974

89. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. *Lancet Oncol* (2019) 20(7):924–37. doi: 10.1016/S1470-2045 (19)30167-6

90. Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. *Lancet Oncol* (2020) 21(5):655–63. doi: 10.1016/S1470-2045(20) 30111-X

91. Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. *J Clin Oncol* (2020) 38(14):1505–17. doi: 10.1200/JCO.19.03136

92. Socinski MA, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Abstract CT216: IMpower150 final analysis: Efficacy of atezolizumab (atezo) + bevacizumab (bev) and chemotherapy in first-line (1L) metastatic nonsquamous (nsq) non-small cell lung cancer (NSCLC) across key subgroups. *Cancer Res* (2020) 80(16_Supplement):CT216-6. doi: 10.1158/1538-7445.AM2020-CT216

93. Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, et al. PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. *Ann Surg* (2019) 269(3):471–8. doi: 10.1097/SLA.00000000002616

94. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. *Clin Cancer Res* (2016) 22(8):1865–74. doi: 10.1158/1078-0432.CCR-15-1507

95. Chen Y, Li X, Liu G, Chen S, Xu M, Song L, et al. ctDNA concentration, MIKI67 mutations and hyper-progressive disease related gene mutations are prognostic markers for camrelizumab and apatinib combined multiline treatment in advanced NSCLC. Front Oncol (2020) 10:1706. doi: 10.3389/fonc.2020.01706

96. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* (2014) 515(7528):563–7. doi: 10.1038/nature14011

97. Nassar AH, Adib E, Abou Alaiwi S, El Zarif T, Groha S, Akl EW, et al. Ancestrydriven recalibration of tumor mutational burden and disparate clinical outcomes in response to immune checkpoint inhibitors. *Cancer Cell* (2022) 40(10):1161–1172.e5. doi: 10.1016/j.ccell.2022.08.022

98. Sholl LM, Hirsch FR, Hwang D, Botling J, Lopez-Rios F, Bubendorf L, et al. The promises and challenges of tumor mutation burden as an immunotherapy biomarker: A perspective from the international association for the study of lung cancer pathology committee. *J Thorac Oncol* (2020) 15(9):1409–24. doi: 10.1016/j.jtho.2020.05.019

99. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw (2021) 19(3):254–66. doi: 10.6004/jnccn.2021.0013

100. Wang Z, Duan J, Wang G, Zhao J, Xu J, Han J, et al. Allele frequency-adjusted blood-based tumor mutational burden as a predictor of overall survival for patients with NSCLC treated with PD-(L)1 inhibitors. *J Thorac Oncol* (2020) 15(4):556–67. doi: 10.1016/j.jtho.2019.12.001

101. Coelho AL, Gomes MP, Catarino RJ, Rolfo C, Medeiros RM, Araújo AM. CSF-1 and Ang-2 serum levels - prognostic and diagnostic partners in non-small cell lung cancer. *ESMO Open* (2018) 3(5):e000349. doi: 10.1136/esmoopen-2018-000349

102. Farhat FS, Tfayli A, Fakhruddin N, Mahfouz R, Otrock ZK, Alameddine RS, et al. Expression, prognostic and predictive impact of VEGF and bFGF in non-small cell lung cancer. *Crit Rev Oncol Hematol* (2012) 84(2):149–60. doi: 10.1016/j.critrevonc.2012.02.012

103. West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated nonsmall cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. *J Immunother Cancer* (2022) 10(2):3027–38. doi: 10.1136/jitc-2021-003027

104. Ricciuti B, Arbour KC, Lin JJ, Vajdi A, Vokes N, Hong L, et al. Diminished efficacy of programmed death-(Ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. *J Thorac Oncol* (2022) 17 (3):399–410. doi: 10.1016/j.jtho.2021.10.013