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checkpoint inhibitors for
treatment of non-small
cell lung cancer
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Immunotherapy has changed the treatment strategy of non-small cell lung

cancer (NSCLC) in recent years, among which anti-PD-1/PD-L1 antibodies are

the most used. However, the majority of patients with NSCLC do not derive

benefit from immune checkpoint inhibitors (ICIs). Vascular abnormalities are a

hallmark of most solid tumors and facilitate immune evasion. Thus, combining

antiangiogenic therapies might increase the effectiveness of anti-PD-1/PD-L1

antibodies. In this paper, the mechanisms of anti-angiogenic agents combined

with anti-PD-1/PD-L1 antibodies are illustrated, moreover, relevant clinical

studies and predictive immunotherapeutic biomarkers are summarized and

analyzed, in order to provide more treatment options for NSCLC patients.
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1 Introduction

Lung cancer is a disease that seriously endangers human health, and it also remains the

leading cause of cancer death, including non-small cell lung cancer (NSCLC) and small cell

lung cancer (SCLC) (1). NSCLC accounts for 80% - 85% of all lung cancers (2). In recent

years, accurate treatment and combined therapies of lung cancer have made rapid progress,

including immune checkpoint inhibitors (ICIs), ICIs combined with cytotoxic

chemotherapies (Chemo), ICIs combined with ICIs and combined with anti-angiogenic

therapy (3). Anti-PD-1/PD-L1 antibodies are the most used among ICIs (4). Additionally,

the effects of ICIs + anti-angiogenic therapy are considerable, with accepted adverse events
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(AEs) (5). The results of a series of related clinical trials have been

announced, which have been summarized here. Tumor

angiogenesis provides nutrition for tumor growth, while

lymphocytes infiltrate into the tumor through tumor vessels, and

vascular growth interacts with tumor growth and tumor

microenvironment (TME) to form a complex tumor ecological

environment (6), so it is necessary to systematically review it.

From this perspective, we described the mechanisms and

summarized the latest progress of related clinical research of anti-

angiogenic drugs combined with immunotherapies in NSCLC.
2 Crosstalk between tumor
angiogenesis and immune
microenvironment

2.1 Inhibiting effect of tumor angiogenic
factors on tumor immune
microenvironment

Abnormal vasculature is the hallmark of solid tumors, and is

also involved in tumor immune escape (7). The abnormal vessels

and impaired perfusion can also restrict the entry of cytotoxic drugs

and immune cells from the circulation into tumors, limiting their

anticancer activity. The TME consists of numerous pro-angiogenic

factors, including vascular endothelial growth factor (VEGF),

fibroblast growth factor (FGF), and platelet-derived growth factor

(PDGF), which are secreted by tumor cells or tumor-infiltrating

lymphocytes (TILs) or macrophages (8). These factors can activate

pro-angiogenic signaling pathways to promote growth, invasion,

and metastasis of tumor (9). Through the production of various

cytokines and growth factors, such as VEGF, angiopoietin 2 (ANG-

2), the immune cells work in concert with tumor cells lining

abnormal tumor blood vessels to promote tumor angiogenesis

and immunosuppression.

VEGF has suppressive effects on tumor immunemicroenvironment,

by directly affect the differentiation, infiltration and cytotoxicity of

various types of immune cells and other indirect mechanisms (10).

VEGF could inhibit the differentiation of hematopoietic stem cells into

CD4+ and CD8+ T cells in thymus. VEGF promotes the recruitment

and proliferation of immunosuppressive cells such as regulatory T cells

(Tregs), bone myeloid-derived suppressor cells (MDSCs), and M2-like

tumor-associated macrophages (TAMs) (11). M2-like macrophages are

similar in phenotype to TAMs, which promote tumor growth and

metastasis, and are associated with poor prognosis of tumors (12). In

addition, VEGF inhibits T cell proliferation and cytotoxicity, binding to

VEGFR2 on T cell, and also up-regulates immune checkpoint molecules

such as the programmed cell death protein 1 (PD-1), programmed cell

death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated protein 4

(CTLA-4) to inhibit T cell activation (13). VEGF also can reduce the

ability of immune cells to adhere and pass through the blood vessel, by

down-regulating the integrin ligands intercellular adhesion molecule 1

(ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) of endothelial

cells or preventing them from accumulating on endothelial cells, thus
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prevent immune cells from entering the tumor (14). Dendritic cells

(DCs) play a crucial role in T cell activation. However, VEGF-VEGFR2

signaling inhibits antigen presenting by interfering with DCsmaturation,

thus indirectly inhibiting T cell activity and resulting in decreased T cell-

mediated anti-cancer activity (15). Moreover, VEGF could indirectly

affect the biochemical properties of TME and promotes angiogenesis that

results in an aberrant tumor vasculature, leading to hypoxia and a low

pH in the TME, which in turn fosters immunosuppression both locally

and systemically (16, 17).

In addition to VEGF, ANG-2 is another key vascular growth

immunomodulator. Activated ANG-2 signals can induce

immunosuppressive TME through a variety of mechanisms (18).

ANG-2 binds to Tie-2 expressed on monocytes, which recruits

monocytes and also stimulates monocytes to secrete IL-10. IL-10

suppresses CD8+ cytotoxic T lymphocytes (CTLs) proliferation and

cytotoxicity, and enhances Tregs infiltration (19). Moreover, ANG-

2 also inhibits the secretion of transforming growth factor a (TNF-

a), thereby limiting the anti-cancer activity of monocytes (18)

(Figure 1). Overall, abnormalities in cancer blood vessels can

cause immunosuppressive TME.
2.2 Promoting effect of tumor immune
microenvironment on tumor angiogenesis

Tumor angiogenesis involves not only cancer cells but also a

variety of immune cells, such as T cells, myeloid cell, and

interstitial cell in TME. For the above immune cells, the

release of proangiogenic cytokines is accompanied by a switch

to an immunosuppressive behavior. T cells do not directly

secrete VEGF, but they facilitate its effect by acquiring

neuropilin 1 (NRP1) during interaction with DCs, which binds

to VEGFA to promote angiogenesis (20). Both neutrophils and

TAMs promote angiogenesis by secreting proangiogenic factors,

such as VEGF, TNF-a, IL-8, and various chemokines including

CXCR-2, 4 and 12, CXCL-3, 4, 8, 9, 10, and CCL2-5 (21). MDSC

recruitment to the tumor can be induced by many different

factors, such as CSF-3, IL-1b, and IL-6, and subsequently lead to

activation of STAT3, rendering them potent as proangiogenic

and immunosuppressive cells (22). Besides, Tregs indirectly

inhibit tumor angiogenesis by inhibiting helper T cells (TH1)

cells, which express IFN-g (23). In short, immune cells in TME

can promote tumor angiogenesis.
3 The mechanism of antiangiogenic
drugs combined with immunotherapy

Anti-angiogenic drugs induced vascular normalization improve

immune cell infiltration and promote the transformation of “cold

tumors” into “hot tumors”, thus enhances the efficacy of

immunotherapy (24, 25). Anti-angiogenic drugs promote immune

cell maturation and improve infiltration by blocking the binding of

VEGF to VEGFR2 on the surface of macrophages and T cells (26).
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Tumor vascular normalization relieves hypoxia and reduces the

secretion of VEGF, thus reducing the recruitment of

immunosuppressive cells such as MDSCs and Tregs, and also reduce

the expression of PD-1, PD-L1, CTLA-4, TIM-3 and other immune

checkpoint molecules on the surface of immunosuppressive cells (27,

28). Besides, the vascular normalization effect is associated with more

efficient lymphocyte priming by antigen-presenting cells, TAM

polarization to an M1-like phenotype, and accumulation of activated,

IFN-g expressing CD8+ T cells within the perivascular space (29, 30)

M1-like TAMs are generally considered to be tumor-killing
Frontiers in Immunology 03
macrophages, primarily anti-tumor and immune-promoting (12)

(Figure 2). In current clinical practice, the most used

antiangiogenetic drugs include bevacizumab (targeting at VEGF-A),

ramucirumab (targeting at VEGFR2) (31). Multiple therapeutic agents

targeting VEGF and VEGF receptors have been developed and

approved for use in cancers. Moreover, tyrosine kinase inhibitors

(TKIs) can inhibit not only VEGFR but also FGFR, PDGFR and so

on (32). The commonly used TKI drugs are lenvatinib, apatinib and

anlotinib in NSCLC. Preclinical studies have proved that low-dose

apatinib combined with PD-1/PD-L1 inhibitors can enhance its anti-
FIGURE 2

Anti-angiogenic treatment reprograms the tumor microenvironment from immunosuppressive to immunosupportive and improves effects of
immunotherapy. Anti-angiogenic drugs induced vascular normalization improves immune cell infiltration and promotes the transformation of “cold
tumors” into “hot tumors”, facilitating the infiltration of T effector cells while reducing MDSC accumulation. In addition, improved vascular perfusion
polarizes TAMs to an immune stimulatory M1-like phenotype. Consequently, through anti-angiogenic treatment, vascular normalization could
potentially enhance the effectiveness of immunotherapy.
FIGURE 1

Inhibiting effect of tumor angiogenic factors on tumor immune microenvironment. Abnormalities in the tumor vasculature result in hypoxia
and acidosis of the TME. Tumor angiogenic factors, such as VEGF and ANG-2, modulate the functions of immune cells leading to tumor
immunosuppressive microenvironment, by increasing accumulation, activation, and expansion of Tregs; recruitment of inflammatory monocytes and
TAMs and reprogramming of TAMs from an anticancer M1-like phenotype towards the pro-tumor M2 phenotype; suppression of DC maturation,
which results in impaired antigen presentation and activation of CTLs, and expansion of MDSCs.
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tumor activity, and in the preliminary clinical application showed a

good therapeutic effect (33).

For ICIs, these drugs have been thought to mainly affect T

cells, which lead to activating T cells secret INF-g which decreased

endothelial VEGFA, and increased CXCL-9, CXCL-10 and CXCL-

11, induced tumor vascular normalization (34, 35). Thus, vascular

normalization in the setting of immune stimulation represents a

novel mechanism for the antitumor effects of immune checkpoint

blockade and provides a new understanding of tumor vascular

remodeling and immune reprogramming. As for ICI, antibodies

that block the interaction of PD-1 with its ligand PD-L1 and the

binding of CTLA-4 to its receptor have been approved for clinical

use (36). The former ones include atezolizumab and durvalumab,

inhibiting PD-L1, and pembrolizumab, cemiplimab, nivolumab,

camrelizumab, toripalimab, and sintilimab, inhibiting PD-1

receptors (Table 1).

To sum up, anti-angiogenesis therapy normalizes tumor blood

vessels and also improves tumor immune microenvironment. ICIs

can activate T lymphocytes to secrete IFN- g, to reduce local

hypoxia and promote the normalization of tumor vessels, which

demonstrates the synergistic effect of anti-PD-1/PD-L1 antibodies

combined with antiangiogenic drugs and provides a theoretical

basis for their combination in the treatment of NSCLC (37, 38).
4 Clinical practices of anti-PD-1/PD-
L1 antibodies plus antiangiogenic
therapy in NSCLC

Based on published clinical studies, generally, anti-PD-1/PD-L1

antibodies combined with antiangiogenetic therapy showed better

efficacy than ICIs alone, and prolonged progression free survival

(PFS) and overall survival (OS). Here, we focused only on NSCLC,

and summarized current clinical studies on combination therapy of

anti-PD-1/PD-L1 antibodies plus antiangiogenesis in patients

according to different clinical care scenarios.
4.1 Advanced first-line therapy

According to NCCN guidelines V1.2023 NSCLC, one of the

recommended first-line therapy for advanced adenocarcinoma,

large cell, and NSCLC not otherwise specified (NOS) patients is

carboplatin + paclitaxel + bevacizumab + atezolizumab (ABCP)

(39), with PD-L1 expression whether ≥50% or ranges between 1%-

49%. The recommendation was based on the result of

IMpower150, an international, open label, phase 3 study in

chemo-naive NSCLC patients. Compared with becacizumab plus

chemotherapy (BCP) group, ABCP group had longer median PFS

(mPFS) (8.3 months vs. 6.8 months; HR, 0.62; 95% CI, 0.52 to

0.74; P < 0.001) and median OS (19.2 months vs. 14.7 months; HR,

0.78; 95% CI, 0.64 to 0.96; P = 0.02) (40, 41). The combination of

pembrolizumab and ramucirumab for first-line treatment was

investigated in an expansion cohort of JDVF trial, and the

objective response rate (ORR) was 42.3% (42). Another cohort
Frontiers in Immunology 04
TABLE 1 The approved indications of anti-PD-1/PD-L1 antibodies and
anti-angiogenic drugs in the globe.

Agent/target Indication Approval

Nivolumab/anti–PD-1 SC
NSCLC
SCLC
RCC
HL
HNC
UC
CRC
HCC
ESC
MPM
GC
GEJC

2014-US
2015-EU
2018-PRC

Pembrolizumab/anti-PD-1 SC
NSCLC
SCLC
RCC
HL
HNC
UC
CRC
HCC
ESC
GC
GEJC
TNBC
BC
CC
EC

2014-US
2015-EU
2018-PRC

Toripalimab/anti-PD-1 SC
HNC
UC

2108-PRC

Sintilimab/anti-PD-1 NSCLC
HL
HCC

2018-PRC

Camrelizumab/anti-PD-1 NSCLC
HL
HNC
HCC
ESC

2019-PRC

Durvalumab/anti-PD-L1 NSCLC
SCLC
BC

2017-US
2018-EU
2019-PRC

Atezolizumab/anti-PD-L1 SC
NSCLC
SCLC

2016-US
2017-EU
2020-PRC

Avelumab/anti-PD-L1 SC
RCC
UC

2017-US
2017-EU

Cemiplimab/anti-PD-L1 SC
NSCLC

2018-US
2019-EU

Bevacizumab/anti-VEGFA CRC
MSCLC
RCC
BC
CC

2004-US
2005-EU
2010-PRC

Ramuciruma/anti-VEGFR2 GC
CRC

2014-US
2015-EU
2022-PRC

(Continued)
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in a three-arm prospective study (anlotinib combined with

erlotinib, carboplatin plus pemetrexed/gemcitabine, and

sintilimab) adopting anlotinib combined with sintilimab in

untreated locally advanced/metastatic NSCLC patients indicated

low incidences of adverse events and better clinical benefits than

previous reports with ORR 72.7%, and mPFS 15.6 months (43).

Other clinical studies and their results were briefly listed in

Table 2, and most of these researches showed positive evidence.

However, in a meta-analysis that involved 8278 patients from 16

randomized controlled trials (RCTs) comparing efficacy and safety of

different first-line immunotherapy combinations, including ABCP,

pembrolizumab-chemo, atezolizumab-chemo, camrelizumab-chemo,

tislelizumab-chemo, sintilimab-chemo, nivolumab-ipilimumab,

nivolumab-ipilimumab-chemo, durvalumab-tremelimumab, and

durva-tremelimumab-chemo, ABCP regimen showed best efficacy

in PFS and ORR, but the advantages in OS and toxicity were not

prominent (68). Similar findings were also revealed in a meta-analysis

enrolling 19 phase II/III RCTs in which the ABCP regimen was

ranked 5th among all 17 regimens including ABCP, 5 ICI-

monotherapy regimens, 7 ICI-Chemo regimens, 2 dual-ICI

strategies, 1 dual-ICI-Chemo combination, and 1 Beva-Chemo

regimen, in which overall OS, PFS, safety, and ORR were taken

into consideration (69). Furthermore, a cost-effectiveness analysis

from the perspective of the US health care sector showed that

adopting pembrolizumab monotherapy when PD-L1≥50%,

pembrolizumab combined with chemotherapy when PD-L1

between 1%-49%, and nivolumab plus ipilimumab when PD-

L1<1% were more cost-effective treatment options, whose

performance was better than ABCP (QALY 2.39) (70). Similar

results were revealed in several other cost-effectiveness analyses

(71). It should be emphasized that comparing treatment strategies

across studies is challenging, though, clinicians should be cautious,

prudent, and comprehensive when considering anti-PD-1/PD-L1

antibodies combined with antiangiogenic treatment, especially

when ICI monotherapy or dual-ICIs strategies are available at the

same time.
Frontiers in Immunology 05
4.2 Advanced later line therapy

Compared with traditional chemotherapy, immunotherapy has

achieved good benefits in patients with advanced NSCLC, but the

benefits are lower for patients receiving second or higher line treatment

(72). The resistance mechanisms are probably multifactorial, including

tumor expressing low levels of PD-L1 and immunosuppressive TME.

Based on the theoretical synergistic mechanism between vascular

normalization and immune promotion in TME, the combination of

antiangiogenetic agent and anti-PD-1/PD-L1 antibodies may be able to

show surprising antitumor activity in the subsequent line treatment.

Furthermore, the resistance mechanism in the late stage of targeted

therapy remains not well revealed (73). And the persistent toxicities

after initial treatment with cytotoxic chemotherapy not only cause

adverse events but also affect the response to later line therapy (44). In

the randomized phase II Lung-MAP substudy (S1800A), 136 patients

with progression after previous treatment with ICI and platinum-based

chemotherapy randomly received pembrolizumab plus ramucirumab

or standard care, and the former group showed an improved OS (14.5

months vs. 11.6 months) (59). Phase Ia/b JVDF trial assessed the safety

and antitumor activity of ramucirumab combined with

pembrolizumab treatment in previously treated solid tumor patients

(advanced gastric or gastro-esophageal junction adenocarcinoma, non-

small-cell lung cancer, or urothelial carcinoma). There was one, seven,

fifteen, and three of 27 NSCLC patients achieved CR, PR, SD, and PD,

respectively, with ORR 30% and mPFS 9.7 months, which was a

favorable result compared with anti-PD-1/PD-L1 antibody treatment

alone in other studies (44). Most randomized phase III clinical trials

using combined immunotherapy were designed for first-line therapy,

and there are few data for NSCLC patients in second-line or higher

settings. Further explorations for subsequent line treatment of

advanced NSCLC patients with multi-line resistance were needed.
4.3 Perioperative therapy

Apart from locally advanced or metastatic NSCLC patients,

whether patients in relatively early stages can benefit from the

combination therapy is also worth exploring. When investigating

the efficacy of the combination therapy, stage III patients are often

excluded, and there was little related research focusing on

perioperative NSCLC patients. Apart from efficacy, it is also

important to emphasize perioperative safety, as the inhibition of

angiogenesis might affect wound healing (74). As far as currently

known, an interval of ≥4 weeks between drug administration and

surgery is recommended (75). The major concerns of perioperative

patients such as neoadjuvant efficacy, postoperative recurrence and

metastasis, and wound bleeding and healing complications, have yet

not been well studied. As a theoretical basis, a pre-clinical study found

that the combination therapy of pembrolizumab and bevacizumab

could transform tumors into an inflamed condition, thus inhibiting

tumor growth and preventing postoperative recurrence and

metastasis in a humanized neoadjuvant mouse model (75).

The clinical studies that have been published so far on

perioperative patients are mainly case reports. Toripalimab +
frontiersin.or
TABLE 1 Continued

Agent/target Indication Approval

NSCLC
HCC

Lenvatinib RCC
HCC
TC

2015-US
2015-EU
2018-PRC

Apatinib GC
ESC
HCC
NSCLC

2014-PRC

Anlotinib NSCLC 2018-PRC
SC, skin cancer; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; HL, Hodgkin
lymphoma; HNC, head and neck cancer; UC, urothelial carcinoma; CRC, colorectal cancer;
HCC, hepatocellular carcinoma; ESC, esophageal carcinoma; MPM, malignant pleural
mesothelioma; GC, gastric cancer; GEJC, gastroesophageal junction cancer; TNBC, triple-
negative breast cancer; BC, bladder cancer; CC, cervical cancer; EC, endometrial cancer; TC,
thyroid carcinoma; EU, European Union; PRC, People’s Republic of China.
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TABLE 2 Clinical studies of anti-PD-1/PD-L1 antibodies plus antiangiogenetic therapy in NSCLC patients.

Research
type

Year
Country/
Race

Target
Combination

regimen
Sample
size (N)

Patients
Treatment

line

Outcomes

PFS OS ORR

First-line treatment

Phase III RCT
IMpower150

(NCT02366143)
2018 Multiple

PD-
L1&VEGF-

A

Atezo + Beva +
Carbo + Tax (40)

356 NSQ 1st
8.3

months
19.2

months
63.5%

Phase I trial
JVDF

(NCT02443324)
2021 Multiple

PD-1&
VEGFR2

Pembro + Ramu
(42, 44)

26 4SQ&22NSQ 1st
9.3

months
Not

reached
42.3%

Phase Ib four-
arm trial

2016 Japan
PD-1&
VEGF-A

Nivo + Beva +
Carbo + Tax (45)

6 NSQ 1st
Not

reached
N 100%

Phase III RCT
TASUKI-52

2021 Asian
PD-1&
VEGF-A

Nivo + Beva +
Carbo + Tax (46)

275 NSQ 1st
12.1

months
25.4

months
61.5%

Phase Ib/II trial
(NCT03083041)

2022 China
PD-1&
VEGFR2

Camre + Apa (47) 25
NSQ, hTMB,
EGFR/ALK-

1st
9.6

months
Not

reached
40.0%

Phase II single-
arm trial

2022 Japan
PD-L1&
VEGF-A

Atezo + Beva (48) 39
NSQ, hPD-L1,
EGFR/ALK/

ROS1-
1st

15.9
months

Not
reached

64.1%

Three-arm trial
(NCT03628521)

2022 China
PD-

1&Multi
Sinti + Anlo (43) 22

12SQ&10NSQ,
EGFR/ALK/

ROS1-
1st

15.6
months

Not
reached

72.7%

Phase II single-
armtrial
TELMA

(NCT03836066)

2022 Spain
PD-L1&
VEGF-A

Atezo + Beva (49) 38
NSQ, hTMB,
EGFR/ALK/

ROS1-
1st

13.0
months

Not
reached

42.1%

Phase II single-
arm trial

LUN17-139
2022 Multiple

PD-L1&
VEGF-A

Atezo + Beva +
Carbo + Pemx (50)

30 NSQ 1st
11.3

months
22.4

months
42.9%

Later-line treatment

Phase I trial 2014 USA
PD-1&
VEGF-A

Nivo + Beva (51) 12
NSQ, Chemo-

treated
2nd

37.1
weeks

Not
reached

8%

Phase I trial
JVDF

(NCT02443324)
2019 Multiple

PD-1&
VEGFR2

Pembro + Ramu
(42, 44)

27
4SQ&23NSQ,
Chemo-treated

≥2nd
9.7

months
26.2

months
30%

Phase Ib/II trial
(NCT02501096)

2020 Multiple
PD-

1&Multi
Pembro + Lenva

(52)
21 ≥2nd

5.9
months

N 33%

Phase Ia/b trial
JVDJ

(NCT02572687)
2020 Multiple

PD-L1&
VEGFR2

Durva + Ramu (53) 28
7SQ&21NSQ,
ICI/Ramu-

naïve
≥2nd

2.7
months

11.0
months

11%

Phase Ib/II trial
(NCT03083041)

2021 China
PD-1&
VEGFR2

Camre + Apa (54) 105
NSQ, Chemo-
treated, EGFR/

ALK-
≥2nd

5.7
months

15.5
months

30.9%

Phase Ib trial 2021 China
PD-

1&Multi
Camre + Anlo (55) 51 8SQ&43NSQ ≥2nd

8.2
months

12.7
months

13.3%

Perspective
control study

2021 China
PD-

1&Multi
Camre + Anlo (56) 44 3rd N N

TER
93.18%

Phase Ib trial
(NCT03006887)

2022 Japan
PD-

1&Multi
Pembro + Lenva

(57)
3 Metastatic ≥2nd

3.4
months

N 0

Phase II single-
arm trial

2022 USA
PD-L1&
VEGFR2

Atezo + Ramu (58) 21
6SQ&15NSQ,
Anti-PD-(L)1-

treated
≥2nd

3.4
months

16.5
months

4.8%

(Continued)
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apatinib + pemetrexed + nedaplatin has been reported for

preoperative induction therapy in a patient who achieved a PFS

of 7 months (76). Nivolumab + anlotinib and atezolizumab +

bevacizumab + chemotherapy have both been reported for

postoperative adjuvant therapy and have shown clinically

favorable responses (77, 78). These reports revealed the feasibility

of anti-PD-1/PD-L1 antibodies plus antiangiogenesis combination

therapy as either neoadjuvant or adjuvant therapy, but still further

clinical exploration is needed.
5 Immunotherapy combined with
antiangiogenic therapy in EGFR
positive patients

5.1 The tumor angiogenesis and
immune microenvironment in EGFR
positive patients

Epidermal growth factor receptor (EGFR)-activating mutations

represent the most frequent targetable alteration with a prevalence of
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nearly 20% in Caucasians with lung adenocarcinomas (79). Moreover,

EGFR mutations in NSCLC have immunosuppressive effects, and

previous studies have reported that the EGFRmutations can modulate

several factors to impact TME, such as TILs, Tregs, MDSCs, TAMs,

and immunoregulatory cytokines (80, 81). Preclinical studies have

revealed that the VEGF and EGFR pathways share common

downstream signaling, and these pathways can function exclusively

of one another during oncogenesis (82). Moreover, in EGFR-mutant

NSCLCs, EGFR activation may drive VEGF expression as EGFR-

mutant NSCLC cells constitutively up-regulate HIF-1a in a hypoxia-

independent manner (83). Therefore, mutant EGFR-driven NSCLC

has a unique immunosuppressive microenvironment, and EGFR

activation promotes the expression of VEGF, which is expected to

result in tumor angiogenesis.
5.2 Clinical practices

According to NCCN guidelines, results of molecular testing

including ALK, BRAF, EGFR, etc., should be obtained before

administering first-line immunotherapy if clinically feasible.
TABLE 2 Continued

Research
type

Year
Country/
Race

Target
Combination

regimen
Sample
size (N)

Patients
Treatment

line

Outcomes

PFS OS ORR

Phase II RCT
Lung-MAP
S1800A

(NCT03971474)

2022 Multiple
PD-1&
VEGFR2

Pembo + Ramu
(59)

69

28SQ&41NSQ,
Anti-PD-(L)
1&Chemo-
resistant

≥2nd
4.5

months
14.5

months
22%

Phase II trial 2022 China
PD-1&
VEGFR2

Camre + Apa (60) 25
SQ, ICI-naïve,
Chemo-treated

2nd
6

months
13.3

months
32.0%

Phase II
two-stage trial

2022 Korea
PD-L1&
VEGF-A Atezo + Beva (61) 24

1SQ&23NSQ,
Chemo&Atezo-

treated
≥3rd

5.6
months

14.0
months

12.5%

EGFR positive patients

Phase II single-
arm trial

2021 China
PD-L1&
VEGF-A

Atezo + Beva +
Carbo + Pemx (62)

40
NSQ, EGFR-
TKI resistant

≥2nd
9.4

months
Not

reached
62.5%

Phase Ib/II trial
(NCT03083041)

2022 China

PD-1&
VEGFR2

Camre + Apa (63) 43

2SQ&41NSQ,
Chemo-treated,
EGFR/ALK-
TKI resistant

≥2nd
2.8

months
Not

reached
18.6%

Phase III RCT
ORIENT-31

(NCT03802240)
2022 China

PD-1&
VEGF-A

Sinti + IBI305 +
Cis + Pemx (64)

148
NSQ, EGFR-
TKI resistant

≥2nd
6.9

months
Not

reached
44%

Retrospective study

Real-world
retrospective

study
2021 China

PD-
1&Multi

Anti-PD-1 + Anlo
(65)

62 29SQ&33NSQ ≥2nd
5.0

months
N 19.3%

Retrospective
analysis

2021 China
PD-

1&Multi
Anti-PD-1 + Anlo

(66)
67 26SQ&41NSQ ≥2nd

6.9
months

14.5
months

28.4%

Retrospective
analysis

2022 China
PD-1&
VEGFR2

Camre + Apa +
Radio (67)

53 Oligometastatic N N 79.2%
frontie
Atezo, atezolizumab; Beva, bevacizumab; Carbo, carboplatin; Tax, paclitaxel; Pembro, pembrolizumab; Ramu, ramucirumab; Nivo, nivolumab; (N)SQ, (non) squamous; Camre, camrelizumab;
Apa, apatinib; hTMB, high TMB; hPD-L1, high PD-L1; Sinti, sintilimab; Anlo, anlotinib; Pemx, pemetrexed; Chemo, chemotherapy; N, not found; Lenva, lenvatinib; Durva, durvalumab; TER,
total effective rate; Cis, cisplatin; Radio, radiotherapy.
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Patients with metastatic NSCLC and high PD-L1 expression level

who also have a molecular variant that targets the driver oncogene

should receive first-line targeted therapy rather than first-line

immunotherapy because the former choice yields higher response

rates and is better tolerated (39, 84). However, acquired resistance

to targeted drugs often occurs in these patients, and there is usually

no good treatment for the posterior line. As previously stated,

EGFR-positive patients have a special immunosuppressive TME.

What’s more, EGFR mutation can be associated with increased

VEGF expression (85), and a sharing downstream signaling

pathways of VEGF and EGFR was revealed (82), which brought

us interest in the efficacy of anti-PD-1/PD-L1 antibodies plus

antiangiogenetic therapy in EGFR positive patients.

In the subgroup analysis of Impower150, ABCP brought longer

PFS among patients with EGFR/ALK-mutant than BCP (40, 86). The

phase 3 ORIENT-31 research recruited 444 locally advanced or

metastatic NSCLC patients with EGFR-mutant who progressed after

previous EGFR-TKI treatment and categorized them into sintilimab +

IBI305 (a biosimilar of bevacizumab) + pemetrexed + cisplatin group,

sintilimab + pemetrexed + cisplatin group, and chemotherapy alone

group. After a median follow-up of 9.8 months, the first group

exhibited prolonged PFS relative to the chemotherapy alone group

(6.9 months vs. 4.3 months, HR 0.46) (64). Another phase Ib/II clinical

trial enrolled 43 advanced NSCLC patients with EGFR+/ALK+ who

had previously received targeted therapy. They received camrelizumab

plus apatinib and showed a confirmed ORR of 18.6%, a clinical benefit

response rate of 27.9%, and an mPFS of 2.8 months, assessed as

moderate antitumor activity and acceptable safety profile (63). There

was also research about uncommon EGFR mutations, enrolling 16

patients with EGFR mutations including Exon 18 (G719X, E709A), 20

insertion, 21 L861Q, and compound mutation and administrating

atezolizumab + bevacizumab + carboplatin + (nab-)paclitaxel as first

or further line treatment. ORR turned out to be 81.3%, disease control

rate (DCR) was 87.5%, and mPFS reached 13.6 months (87). However,

according to a meta-analysis evaluating the benefit-predicting factors

of metastatic NSCLC, chemoimmunotherapy led to longer PFS

regardless of EGFR or ALK status, whereas Impower130 exhibited

no significant PFS superiority with non-bevacizumab-based regimens

in EGFR/ALK+ subgroups (88, 89).

There were more studies enrolling patients with EGFR or with

other driver gene mutations, included in Table 2. Overall, the

efficacy of this combined regimen in treated or untreated EGFR+

patients has been proven, but further large-scale clinical trials are

needed to confirm its prominent advantages.
6 Immunotherapy combined with
antiangiogenic therapy in patients
with distant organ metastases

Clinical trials have demonstrated the activity of immunotherapy

in patients with brain and liver metastases (90, 91), and the activity

was preliminarily confirmed by subgroup analyses of later clinical

trials. The key subgroup analysis of Impower150 revealed a

prolonged PFS in ABCP arm compared with BCP arm (13.2
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months vs. 9.1 months) in liver metastatic ITT patients (92).

Relatively prolonged mPFS was observed in patients with all

bone, liver, and brain metastases in the phase III TASUKI-52 trial

(46). However, brain metastasis could still be a significant risk factor

for the combination therapy according to a phase Ib trial (55).

A retrospective study found the combination treatment of

camrelizumab, apatinib, and radiotherapy was associated with

lower levels of TRIM27, SCC-Ag, and CYFRA21-1, which might

promote tumor infiltration, proliferation, and activation (67). As

patients with oligometastases are in the transition from primary to

extensive metastases, these patients will benefit from treatment

effective for metastasis, which is worthy of further exploration.

Table 2 lists most searchable clinical studies on the combination

of immunotherapy and antiangiogenic therapy. Only prospective

trials and retrospective studies with more than 50 participants

were selected.
7 Predictive biomarkers of ICI plus
antiangiogenetic treatment

Immunotherapy has changed the treatment landscape of

NSCLC and has shown durable response rates in some refractory

tumors. However, some treated patients show no response and

serious immune-related side effects. Therefore, there is an urgent

need for immunotherapeutic markers to help select people who are

likely to benefit from immunotherapy, Multiple biomarkers have

been explored over the years, and some emerging biomarkers are

also under exploration (31). There are relatively mature studies of

biomarkers separately in the immunotherapy field and

antiangiogenetic field. However, few biomarkers focus specifically

on the field of combination therapy. Here we summarize all

common biomarkers, hoping to shed light on future treatments,

especially in the field of combination therapy.
7.1 PD-L1 expression

Based on extensive research, ICI treatment plays a better role in

immune inflamed tumors compared with noninflamed types (93).

Tumors under immune inflamed conditions are characterized by

high PD-L1 expression, high CD8+ T cell density, or strong IFN-g
cytolytic T cell signature (94). The expression of PD-L1 is the first

established biomarker that can predict the clinical efficacy of PD-1/

PD-L1 inhibitors, which has shown guiding significance in the

treatment of many tumors, and the NCCN treatment guidelines

recommend PD-L1 expression as a biomarker for immunotherapy

(39). Most clinical studies of anti-PD-1/PD-L1 antibodies plus

antiangiogenetic therapy included PD-L1 subgroup analysis. In

Impower150, PFS in ABCP group was 8.0 months among patients

with PD-L1<50% and 12.6 months for the subgroup with high PD-L1

expression (40). In another camrelizumab plus apatinib trial, a trend

of better efficacy was observed in PD-L1 positive subgroup defined as

TPS ≥1%, but without statistical significance (ORR 36.0% vs. 22.7%,

P=0.20; mPFS 6.8 vs. 5.1 months, P=0.29) (54). Although PD-L1
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expression is not the optimal biomarker, and its predictive role varies

between different studies, which might be attributed to different assay

methods, reagents sources, and selected thresholds, it is the best

available biomarker to assess whether a patient is a suitable candidate

in current clinical practice (39, 95, 96).
7.2 Tumor mutation burden

Tumor mutation burden (TMB), defined as the number of non-

synonymous somatic mutations in cancer cells, is used to be another

NCCN guideline recommended predictor in ICI therapy (39).

Patients with high TMB levels tend to express high neoantigen

levels on the surface of tumor cells that will activate the killing effect

of immune cells (39). In June 2020, the FDA approved

pembrolizumab for patients with unresectable or metastatic solid

tumors with high TMB levels (≥10muts/Mb) that had progressed

after prior therapy (97), which represented FDA acceptance of TMB

as an independent biomarker for immunotherapy. However, there

is a lack of consensus on the predictive value of TMB in clinical

research results (98), and the lack of agreement on cut-off value and

measurement standardization in clinical application led to its

removal from the recommended immune biomarker by the

NCCN panel in 2020 (99). In a phase Ib trial of 22 NSCLC

patients, sintilimab plus anlotinib exhibited an ORR showing no

significant association with TMB level (43).

Blood-based TMB (bTMB) provides a new way to measure

TMB in patients who are difficult to obtain tumor tissue samples.

Since high bTMB level can predict PFS benefit but not OS benefit in

previous studies, Wang et al. proposed the concept of low allele

frequence-bTMB (LAF-bTMB) and verified the prediction

efficiency of LAF-bTMB algorithm through several international

clinical cohorts (100). However, the predictor appears to have

limited value at times. In a pilot study, bTMB could not stratify

the PFS among 22 cases of second or further line camrelizumab plus

apatinib treatment (95).
7.3 VEGF and ANG-2

Solid predictive biomarkers for VEGF signaling pathway

targeted treatment have not been identified in tumor patients,

whereas VEGF and angiopoietins are the key targets in related

therapies (18). In the field of NSCLC, ANG-2, and bFGF was found

to contribute to worse prognosis (101, 102), and higher plasma

VEGF level might predict a better response to bevacizumab (102).

VEGF-related molecules need to be further investigated as a

potential predictive biomarker as data in response to anti-VEGF

therapy or antiangiogenetic combination therapy are scarce.
7.4 Mutations in specific genes

Tumor driver genes can affect the tumor immune

microenvironment and the response of immunotherapy. For

example, KRAS and TP53 mutated populations tend to express
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higher levels of PD-L1, and the combined treatment of ABCP led to

OS improvements in patients with KRAS and TP53 co-mutations in

a subgroup analysis of Impower150. On the contrary, in KRAS,

STK11, and KEAP1 co-mutated patients, the expression of PD-L1

was reduced, and no apparent OS improvement was observed (103).

However, the addition of apatinib to camrelizumab was reported to

have better clinical outcomes in patients with mutation of STK11

and/or KEAP1 in another research, which indicated that the

addition of antiangiogenetic drugs to ICI might also bring reverse

effect against mono-agent immunotherapy (54, 104). The

underlying reason might be attributed to the involvement of

STK11 and KEAP1 in angiogenesis.
7.5 Liquid biopsy biomarkers

Other circulating markers such as circulating tumor DNA

(ctDNA), circulating tumor cells (CTCs), exosomes, and

circulating immune cells have also attracted research interest as

surrogate markers of tumor burden (94). The concentration of

ctDNA was identified as one of the independent risk factors of

camrelizumab plus apatinib therapy in a multivariate Cox

regression analysis, while ctDNA mutational status indicated a

trend of difference but was not independent (95). Although many

studies have explored the predictive value of liquid biopsy in

immunotherapy, there is less exploration of combination therapy.
7.6 Others

There are also other genes, proteins, cells, or indexes that describe

their status that have been proposed as biomarkers in mono-agent

immunotherapy, including TIL, MSI-H/dMMR, CTLA4 expression,

diversity of gut microbiome, etc. (94, 96). But rarely were reported in

the field of combination immunotherapy. It also appears that no anti-

PD-1/PD-L1 antibody plus antiangiogenetic specific biomarker have

been identified. Further research on predictive biomarkers will

be necessary.
8 Conclusion

In summary, a series of clinical studies have shown that anti-

angiogenic drugs and ICIs have synergistic anti-tumor effects. On the

one hand, anti-angiogenic drugs can reverse the immunosuppressive

state of TME and enhance the efficacy of ICIs through immune

reprogramming. On the other hand, ICIs can restore the

immunosupportive microenvironment, promote vascular

normalization, and enhance the efficacy of anti-angiogenic drugs.

ICIs combined with antiangiogenic drugs have been widely and

increasingly prescribed, but they also have drug resistance leading to

treatment failure, and vascular normalization has a short specific time

window. Therefore, how to delay the generation of drug-resistant cells

is one of the urgent problems to be solved at present. Additionally,

how to extend the normalization window effectively and explore the

administration time, sequence, and optimal dosage of each drug in
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combination therapy may become the key for further research. Last

but not least, how to select the most appropriate treatment plan for

different patients to achieve the purpose of precise personalized

treatment is of great importance, so it is also the direction of future

research to find relevant biomarkers to predict the efficacy of patients

and identify potential benefit groups. To sum up, more in-depth basic

experiments and clinical studies are needed to optimize the treatment

regimen of ICIs combined with anti-angiogenic drugs, so as to further

improve patient prognosis with NSCLC.
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