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Background: HIV infection induces a 75% increase in the risk of developing

neurocognitive impairment (NCI), which has been linked to immune activation.

We therefore looked for immune activation markers correlating with NCI.

Method: Sixty-five people aged 55-70 years living with controlled HIV-1

infection were enrolled in the study and their neurocognitive ability was

assessed according to the Frascati criteria. Fifty-nine markers of T4 cell, T8

cell, NK cell, and monocyte activation, inflammation and endothelial activation

were measured in their peripheral blood. White matter hyperintensities (WMH)

were identified by magnetic resonance imaging. Double hierarchical clustering

was performed for the activation markers and 240 patients including the 65

whose neurocognitive performance had been evaluated.

Results: Thirty-eight percent of volunteers presented NCI. Twenty-four percent

of them were asymptomatic and fourteen percent had a mild disorder. Strikingly,

activated (HLA-DR+) as well as senescent (CD57+CD28-CD27±) T4 cells and T8

cells were less prevalent in the peripheral blood of participants with NCI than in

participants without the disorder. Accordingly, the percentage of HLA-DR+ T4

cells was lower in volunteers with periventricular and deep WMH. The double

hierarchical clustering unveiled six different immune activation profiles. The

neurocognitive performances of participants with two of these six profiles

were poor. Here again, these two profiles were characterized by a low level of

T4 and T8 cell activation and senescence.
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Conclusion:Our observation of low circulating levels of activated and senescent

T cells in HIV-1 patients with NCI raises the interesting hypothesis that these

lymphocytes may be recruited into the central nervous system.
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Introduction

Neurocognitive impairment (NCI) may be observed in 20 to

30%, and up to 60% of efficiently treated people living with HIV

(PLWH) (1, 2). We recently published an almost 75% increase in

the risk of HIV-associated neurocognitive disorder (HAND) in

ageing PLWH after adjustment on age, sex, education,

comorbidities, depression and social confounding factors (2).

In the course of HIV infection under treatment, NCI may be

fuelled by various etiological factors. First, certain antiretroviral

drugs may be neurotoxic per se, or have important adverse

neurological effects (3). Second, depression (4), drug abuse (5) or

co-infections by, for instance, cytomegalovirus (6) or hepatitis C

virus (7) may also contribute to HAND. However, major potential

drivers of NCI are metabolic disorders and atherothrombosis.

Atherothrombosis is common in PLWH (8) and linked to

neurocognitive disorders, both in the general population (9) and

in PLWH (10–12). In line with the role of atherosclerosis in HIV-

induced NCI, an earlier decrease in cerebral blood flow has been

shown in PLWH than in healthy people (13). White matter

hyperintensity (WMH) identified by magnetic resonance imaging

(MRI) may also be associated with cerebrovascular disorders (14).

An increase in WMH has been reported in PLWH, and linked to

NCI, even in the setting of well-controlled infection (15, 16). After

controlling for age and history of tobacco use, Mina et al. observed

that PLWH had an almost 4-fold higher chance of increased WMH

compared to controls without HIV (16). Seider et al. showed the

importance of age in HIV-associated white matter damage (17).

Another major potential cause of NCI is neurodegeneration (18),

more frequently observed in PLWH than in non-infected

individuals (19). Here, HIV persistence in the central nervous

system (CNS) (20), particularly in microglial cells (21) seems to

play a role (22). HIV has direct toxic effects on the CNS via its

components, including trans-activators of transcription (tat), viral

protein R and glycoprotein120 (23). It also has indirect toxic effects

via the production of inflammatory cytokines and chemokines,

excitotoxins and nitric oxide radicals it induces (24). Thus,

microglial activation has been shown to be inversely linked to

cognition (25). Globally, NCI has been linked to systemic

monocyte activation and inflammation in aviremic PLWH under

treatment. For instance, high percentages of CD38-positive (26) and

IL-1b-expressing monocytes (27), as well as high levels of

circulating soluble CD14 (28) and soluble CD163 (28, 29) have

been reported in cognitively impaired patients. Likewise, peripheral
02
blood concentrations of the inflammatory chemokine MCP-1 has

been linked to HAND (30).

It is interesting to note that immune activation may drive other

causes of NCI, since it is known to favour metabolic disorders (31),

depression (32), atherothrombosis and neurodegeneration (33), and

also limit neurogenesis (34).

With the aim of better defining the types of immune activation

linked to NCI in PLWH, we used supervised and non-supervised

global approaches to look for biomarkers associated with clinical

and visual signs (MRI) of NCI among 80 peripheral immune

activation markers. To our surprise, NCI was preferentially

characterized by low levels of circulating activated and senescent

T cells. These findings raise the interesting hypothesis that T cell

recruitment in the CNS might play a pivotal role in NCI.
Materials and methods

Study design

This is a substudy of the ANRS EP58 HAND 55-70 study which

evaluated the prevalence of NCI in PLWH on efficient antiretroviral

therapy (2). Patients were sequentially recruited at the University

Hospitals of Montpellier and Nım̂es. Inclusion criteria were the

following: age 55-70 years, controlled HIV-1 infection (<50 copies/

mL and less than 2 viremic blips) for at least 24 months, and CD4

count ≥200 cells/mL. Confused, illiterate, vulnerable, or individuals
who were non-fluent in French, and individuals with brain,

sensorial, or psychiatric disease were not included. The CPP Sud

Méditerranée I Ethics Committee (Marseille, France) had approved

this study. All patients had provided written informed consent.
Cognitive and functional evaluations

Neuropsychologists carried out the following tests: the trail-

making test (TMT) A-B, the digital symbol substitution task of the

Wechsler Adult Intelligence Scale-IV (WAIS-IV), the digital finger-

tapping test, word fluency and formal lexical and semantic

evocation and the free and cued selective reminding test as

previously described (2). Functional capacities were evaluated

with the instrumental activities of daily living (IADL) scale.

Presence of NCI was assessed according to the Frascati criteria

(35). In asymptomatic neurocognitive impairment (ANI) and mild
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neurocognitive disorder (MND), there is mild neuropsychological

impairment in at least 2 domains of ability. ANI has no negative

effect on everyday life, whereas MND results in 2 or more signs of

decreased everyday functioning.
Flow cytometry

Monoclonal antibodies conjugated with fluorescein

isothiocyanate (FITC), phycoerythrin (PE), energy-coupled dye

(ECD), PE-Cyanine5.5 (PC5.5), PE-Cyanine7 (PC7), Alexa Fluor

647 (AF647), allophycocyanine (APC), APC/Alexa700, or APC/

Alexa750 were purchased from Beckman Coulter. The antibodies

were used in the following combinations; CD57-FITC/CD279-PE/

CD45RA-ECD/C28-PC5.5/CD27-PC7/CD8-APC/CD4-APC700/

CD3-APC750, CD8-APC/CD4-APC700/CD3-APC750/CD38-PE/

HLADR-PC7, CD3-APC750/CD16-APC/HLA-DR-PC7/CD56-

PC5.5/CD14-PE/CD57-FITC, CD4-FITC/CD45RA-ECD/CD25-

PC7/FOXP3-AF647/CD127-APC750. Whole blood collected in

EDTA tubes was stained within one hour for 10 minutes at room

temperature in the dark with a cocktail of antibodies and fixed using

an IMMUNOPREP reagent system kit and TQ Prep automate

(Beckman Coulter) according to the manufacturer’s protocol. For

FoxP3 intracellular labelling, cells were permeabilized and fixed

with PerFix-nc kit (Beckman Coulter) according to the

manufacturer’s guidelines. Cells were run on a Navios flow

cytometer and results were analyzed using Kaluza software

(Beckman Coulter). A minimum of 20,000 lymphocytes were

gated to analyze the subpopulations. We controlled the inter-run

variability with the same batch of FlowSet Pro Beads (Beckman

Coulter). During the study, no voltage adjustment was necessary to

keep the beads in their respective defined targets. We have

previously described the gating strategy (36), which is exemplified

in the Supplementary Figure 1.
Soluble markers in peripheral blood

ELISA was used to quantify soluble TNF receptor I (sTNFRI),

soluble CD163 (sCD163) (Quantikine, R&D systems), as well as

tissue Plasminogen Activator (tPA), and soluble Endothelial Protein

C Receptor (sEPCR) (Asserachrom, Stago, USA) in plasma

collected in EDTA vacutainer tubes (Becton Dickinson) and frozen.
Magnetic resonance imaging

Neuroimaging data were collected on a 3T MRI scanner

(MAGNETOM Skyra, Siemens Healthcare, Germany) using a 32-

channel head coil. A T1 anatomical image was acquired using a

sagittal 3D magnetization-prepared acquisition with a gradient-echo

(MPRAGE, TE = 2.9 ms, TR = 2300 ms, TI = 900 ms, flip angle = 9°,

voxel size = 0.98 x 0.98 x 1.2 mm3, number of slices = 176). To

evaluate WMH, an additional sagittal 3D T2-FLAIR acquisition was

performed (TE = 400 ms, TR = 5000 ms, TI = 1800 ms, turbo factor =

270, voxel size = 0,5 x 0.5 x 1,1 mm3, number of slices = 144).
Frontiers in Immunology 03
WMH were rated using the Fazekas visual scale. The Fazekas

score describes the different types of hyperintense signal

abnormalities observed. A score of 0 to 3 was used for

periventricular hyperintensities (0 = no lesions, 1 = pencil thin

lining, 2 = smooth halo, 3 = irregular with extension into deep white

matter) and 0 to 3 for deep WMH (0 = no lesions, 1 = punctate foci,

2 = beginning confluence of foci, 3 = large confluent areas) (37). All

3D T2-FLAIR images were reviewed and scored by two

neuroradiological observers, and combined in the event

of discordance.
Statistical analysis

Version 4.1.2 of R software was used to perform the statistical

analysis. Markers with missing values of more than 10% were

discarded. We imputed the remaining missing values with the

mean value of the two closest neighbors according to Euclidean

distance. Subsequently, when markers presented a correlation

higher than 95%, only the marker that best differentiated between

controls and neurocognitive troubles, according to a Student t-test,

was retained. Since not all markers satisfied normality, we ran a

non-parametric Kruskal Wallis test to select only those that were

significantly differently expressed in patients with neurocognitive

disorders versus controls. Multiple test correction was performed to

control the False Discovery Rate (FDR) using the Benjamini-

Hochberg method. Linear Discriminant Analysis (LDA) was

applied to each immunological marker combination using the

MASS R package (36). To avoid over-fitting, cross-validation was

used to evaluate the accuracy of prediction. To select an optimal

number of variables and create a parsimonious predictive model of

markers selected with the previous filter, we chose genetic

algorithms (36, 38). The genetic algorithm was run four times

and all solutions of the final generations were evaluated through 30

runs of independent linear discriminant analysis with 2-fold cross

validation. Solutions were ranked according to their average correct

classification rate during the cross-validation process. As previously

described (36), clustering analysis was carried out for patients, using

the Euclidian distance to measure the distance between individuals,

and another for markers, using 1-abs (correlation) as a distance. For

both of them, Ward’s minimum variance method was used as a

linkage method. We then generated a heat map based on patient

classification and markers. The possibility to cluster the data was

assessed using principal component analysis, and also by seeking a

cluster structure in the distance matrix. The Hopkins statistic was

calculated, with a value of 1 indicating the highest possibility to

cluster the data. We determined the optimal number of clusters

using Silhouette and Gap statistic.
Results

Study subjects

Sixty-five adults living with HIV-1 for a mean (SD) duration of

20.0 (8.0) years, were recruited at the University Hospitals of Nım̂es
frontiersin.org
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and Montpellier, France. Eleven percent of them were females, and

89% males. Their mean age was 62.2 (4.0) years. They were of

European, African, and Asian origin for 88%, 9% and 3%,

respectively. Their pretherapeutic CD4 count was 168 (140) cells/

mL, their current CD4 count was 633 (245) cells/mL, and their

current CD4/CD8 ratio 0.92 (0.46). All had undetectable viral loads,

except for a maximum of two blips (transient elevation of viral

load ≥ 200 copies/mL). Their educational level was grade school

(15%), high school (49%), or college (36%) and thirty-one of them

were being treated for depression. Frequencies of tobacco and drug

consumption were 42% and 38%, respectively. Eight percent were

HBV-infected and fifteen percent HCV-infected (Table 1). Their

prevalence of diabetes, high blood pressure and cardiovascular

disease is indicated in Table 1.
Correlations between activation markers
and clinical NCI

Thirty-eight percent of participants were classified as HAND, 24%

with ANI and 14%withMND; none presented dementia. There was no

difference in CD4 nadir between volunteers with ANI or MND or

without NCI (p = 0.390). Presence or absence of ANI or MND was

neither linked to antiretroviral therapy including a nucleotide reverse

transcriptase inhibitor (p = 0.104), a non-nucleotide reverse

transcriptase inhibitor (p = 0.826), a protease inhibitor (p = 0.463),

nor an integrase strand transfer inhibitor (p = 0.839).

We determined the proportions and absolute numbers of the

following subpopulations: (i) activated (CD38+, CD38hi, and/or

HLA-DR+), exhausted (PD-1+), senescent (CD57+, eventually

CD27- and eventually CD28-), naïve (CD45RA+CD27+), central

(CD45RA-CD27+) and effector (CD45RA-CD27-) memory CD4+

and CD8+ T cells, and (ii) activated (HLA-DR+), dysfunctional

(CD56-), and senescent (CD57+) NK cells. Monocyte activation

was evaluated by measuring sCD163. Inflammation was monitored

by quantifying sTNFRI. tPA, and sEPCR were used as markers of

endothelium activation. Fifty-nine activation markers were

thus quantified.

We searched for differences in the various markers we measured

between volunteers with or without cognitive impairments.

Participants without NCI tended to present higher lymphocyte

(1851 ± 656 vs. 1511 ± 820 cells/mL, p = 0.025, adjusted p non-

significant, Figure 1A) and T cell + (1292 ± 526 vs. 1120 ± 516 cells/

mL, p = 0.143, adjusted p non-significant, Figure 1B) counts than

participants with ANI or MND. Strikingly, the proportion of

activated, HLA-DR+, CD4+ T cells (19.0 ± 8.4 vs 27.5 ± 13.5%,

p = 0.004, adjusted p = 0.049, Figure 1C), was lower in patients with

ANI or MND than in patients without any NCI. Concerning T8

cells, the percentage of CD8+ T cell (46.0 ± 11.1 vs. 51.8 ± 11.1%,

p = 0.004, adjusted p = 0.049, Figure 1D), and the number of

activated, HLA-DR+ (290 ± 219 vs. 473 ± 263 cells/mL, p = 0.002,

adjusted p = 0.043, Figure 1E), and HLA-DR+CD38+ (106 ± 102 vs

169 ± 136 cells/mL, p = 0.001, adjusted p = 0.039, Figure 1F) CD8+

T cells was also lower in individuals with NCI than in individuals

without. In addition, senescent, CD57+CD28- CD4+ (108 ± 93 vs

223 ± 170 cells/mL, p = 0.001, adjusted p = 0.039, Figure 1G) and
Frontiers in Immunology 04
CD57+CD28-CD27- CD8+ (82 ± 83 vs 170 ± 148 cells/mL, p =

0.002, adjusted p = 0.043, Figure 1H) were less common in the

peripheral blood of NCI patients than in patients without

neurocognitive disorders.

In the search for potential confounding factors, we used linear

regression to test whether age, sex, education level, depression or

alcohol consumption were associated with NCI in our small cohort.

None of these variables were linked to ANI or MND (data

not shown).

A linear discriminant analysis showed that these 6 biomarkers

(percentages of CD8+ T cells and HLA-DR+ CD4+ T cells, numbers

of HLA-DR+ CD8+ T cells, HLA-DR+CD38+ CD8+ T cells,

CD57+CD28- CD4+ T cells and CD57+CD28-CD27- CD8+

T cells) were able to predict the presence of NCI with an

accuracy of 77%. Moreover, a genetic algorithm analysis revealed

that only two markers, the percentage of HLA-DR+ CD4+ T cells

and the number of CD57+CD28- CD4+ T cells were able to predict

ANI and MND with 73% accuracy, 76% sensitivity, and 70%

specificity. Other solutions are indicated in Table 2.
Correlations between activation and WMH

We also used magnetic resonance imaging to analyze

periventricular and deep WMH in the central nervous system

based on 3D FLAIR images. Lesions were scored using the

Fazekas scale in 56 participants. For periventricular lesions, 12,

54, 25, and 9% of participants scored 0, 1, 2, and 3, respectively. For

deep lesions, 9, 59, 16, and 16% participants scored 0, 1, 2, and 3,

respectively. Periventricular and deep white matter lesions were

strongly correlated (r = 0.891, p < 10-4). We then sought

correlations between the 6 activation markers identified as being

linked to NCI andWMH.We observed that the percentage of HLA-

DR+ T4 cells was higher in volunteers with a periventricular (29.2 ±

14.6 vs 18.5 ± 8.7%, p = 0.004, Figure 2A) or a deep (28.6 ± 15.0 vs.

19.3 ± 8.2%, p = 0.017, Figure 2B) Fazekas score of 0 or 1 than in

volunteers a with a periventricular Fazekas score of 2 or 3.
Identification of immune activation
profiles presented by 240
immunological responders

In a group of 140 virological responders, we previously showed

that different immune activation profiles may be distinguished

using a double hierarchical clustering analysis (39). Such a global

unsupervised approach offers an opportunity to have a look at the

links between causes, phenotypes, and consequences of immune

activation. Indeed, we have observed that some of these profiles may

be linked to different sources of immune activation, as microbial

translocation (39) or residual viremia (40). Moreover, some of these

profiles could pave the way to some comorbidities, as insulin

resistance for instance (41). Therefore, we wanted to test whether

NCI might be linked to one immune activation profile. To this aim,

we added the activation marker values of 100 PLWH, in order to

increase the robustness of the immune activation profiles, including
frontiersin.org
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TABLE 1 Bioclinical characteristics of the volunteers.

Characteristic All volunteers
(N=65)

No NCI
(N=40)

ANI
(N=16)

MND
(N=9)

p

Age (years) Mean (SD) 62.2 (4.0) 62.5 (4.1) 61.5 (4.0) 62.3 (4.4) 0.699

Sex

Female (%) 11 7 12 22

Male (%) 89 93 88 78 0.422

Ethnicity

Asian (%) 3 5 0 0

African (%) 9 5 19 11

Caucasian (%) 88 90 81 89 0.443

Education level

Primary (%) 15 12 12 33

Secondary (%) 49 53 50 34

Superior (%) 36 35 38 33 0.597

Physical activity

Null (%) 6 5 0 25

Faint (%) 27 22 20 63

Medium (%) 38 38 60 0

Intense (%) 29 35 20 12 0.112

Tobacco consumption (%) 42 33 70 33 0.120

Alcohol consumption (%) 23 15 35 37 0.147

Drug consumption (%) 38 42 37 22 0.526

Depression (%) 18 12 25 33 0.256

Diabetes (%) 15 15 12 25 0.689

High blood pressure (%) 34 40 29 12 0.293

Cardiovascular disease (%) 25 20 29 37 0.500

HBV infection (%) 8 12 0 0 0.184

HCV infection (%) 15 12 12 33 0.275

Pre-therapeutic CD4 count
(cells/mL) Mean (SD)

168 (140) 147 (120) 170 (111) 258 (228) 0.225

Infection duration
(years) Mean (SD)

20.0 (8.0) 21.0 (7.7) 18.6 (8.3) 18.3 (9.2) 0.478

Current CD4 count
(cells/mL) Mean (SD)

634 (245) 620 (216) 656 (317) 652 (238) 0.860

Current CD4:CD8 ratio
Mean (SD)

0.92 (0.46) 0.91 (0.46) 0.95 (0.55) 0.93 (0.33) 0.803

ART regimen

NRT11 (%) 86 87 94 62 0.104

NNRT12 (%) 33 32 37 25 0.826

P13 (%) 30 35 19 25 0.463

INSTI4 (%) 53 52 50 62 0.839
F
rontiers in Immunology
 05
 frontier
1P-value between the 3 patient groups (no NCI, ANI, and MND) calculated using Kruskal Wallis test. 1NRTI, nucleotide reverse transcriptase inhibitor; 2NNRTI, non-nucleotide reverse
transcriptase inhibitor; 3PI, protease inhibitor; 4INSTI, integrase strand transfer inhibitor.
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the 65 volunteers for whom we had measured neurocognitive ability

to those of the 140 PLWH we had previously analyzed to reach a

total of 240 PLWH for our analysis. These 41 females and 199 males

were 56.4 (9.2) years old. They had been living with HIV-1 for 16.5

(8.5) years. Their pre-therapeutic CD4 counts and current CD4

counts were 185 (138) and 710 (355) cells/mL, respectively. They

presented a CD4/CD8 ratio of 1.07 (0.76).

As previously described (36, 39–42), we then performed a double

hierarchical clustering analysis again, using the following activation
Frontiers in Immunology 06
markers: sCD163, sTNFRI, tPA, sEPCR, the percentage of

activated (CD38+, CD38hi, and/or HLA-DR+), exhausted (PD-1+),

senescent (CD57+, eventually CD27- and eventually CD28-), naïve

(CD45RA+CD27+), central (CD45RA-CD27+) and effector

(CD45RA-CD27-) memory CD4+ and CD8+ T cells, as well as

activated (HLA-DR+), dysfunctional (CD56-), and senescent

(CD57+) NK cells. Percentages were preferred to absolute numbers

as these are more stable over time. Figure 3 shows that 6 different

immune activation profiles could be identified in these 240 patients.
B

C D

E F

G H

A

FIGURE 1

Differences between the lymphocyte (A) and T cell (B) counts, and between the level of various T cell markers of activation or senescence in
participants with neurocognitive impairment (NCI+) or without neurocognitive impairment (NCI-) (C–H). P-values were calculated using a two-sided
unpaired student’s t test or Mann-Whitney test as appropriate.
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In this heat map, activation markers were classified vertically and

patients horizontally. Activation markers which tend to be increased

or decreased simultaneously were classified close to each other,

whereas independent markers were separated from one another.

Patients in the same horizontal cluster (“Profile”) are characterized

by the same marks of immune activation.

The hierarchical clustering gathered patients according to their

type of immune activation. We looked for one specific marker able to

characterize each profile. Patients with Profiles 1 and 2 had the lowest

percentages of CD4+ T cells expressing the senescent marker CD57

(2.2 ± 1.9 versus 8.8 ± 8.1%, p < 10-4, Figure 4A), and the highest

percentages of CD8+ T cells expressing the activation marker CD38

(57.3 ± 13.3 versus 37.1 ± 12.8%, p < 10-4, Figure 4B), respectively. In

Profile 3 patients, it was the low CD4 count that was most remarkable

(576 ± 250 versus 712 ± 382%, p = 0.044, Figure 4C). Patients with

Profiles 4 and 5 had the highest levels of the monocyte activation

marker sCD163 (974 ± 466 vs. 858 ± 535 pg/mL, p = 0.048, Figure 4D)

and the highest levels of the endothelial activation marker tPA (16.4 ±

9.8 versus 11.3 ± 7.0%, p = 0.007, Figure 4E), respectively. Finally,
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Profile 6 was characterized by the highest proportions of CD4+ T cells

expressing the activation marker HLA-DR (44.9 ± 13.7 versus 20.4 ±

9.6%, p < 10-4, Figure 4F).
Characterization of immune activation
profiles linked to neurocognitive disorder

Next, we focused on the 65 PLWHwhose neurocognition had been

evaluated. Compared with the other volunteers, patients with Profile 1

more often presented neurocognitive disorders (odds ratio 18.67, 95%

CI [0.984; 354.5] (p=0.010), Figure 5A). As Profile 1 is particularly

associated with neurocognitive impairment, we further characterized

this Profile by searching for additional immune activation markers

specific to it. In addition to a low proportion of senescent T4 cells

(Figure 5C), Profile 1 volunteers were remarkable for their low

frequency of senescent T8 cells (19.6 ± 8.7 versus 37.3 ± 11.4%, p <

10-4, Figure 5D), as well as the low frequency of activated (HLA-DR+)

T4 cells (14.5 ± 4.6 versus 24.8 ± 13.2%, p < 10-4, Figure 5E) and T8
TABLE 2 Results of genetic algorithm.

Solutions Marker 1 Marker 2 Marker 3 Number
of
markers

Prediction
accuracy

Sensitivity Specificity

2 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR
+CD38+

2 0,723 0,759 0,757

3 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR+ 2 0,721 0,759 0,730

4 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR+ HLA-DR+CD38- T8 cell
count

3 0,707 0,759 0,757

5 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR
+CD38+

%T4 HLA-DR+ 3 0,708 0,793 0,757

6 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR+ %T4 HLA-DR+CD38- 3 0,707 0,793 0,757

7 CD57+CD28- T4
cell count

%T8 HLA-DR
+CD38+

%T4 HLA-DR+CD38+ 3 0,707 0,759 0,757

8 CD57+CD28-CD27- T8 cell
count

%T4 HLA-DR+ CD57+CD28- T4
cell count

3 0,695 0,759 0,703
BA

FIGURE 2

Differences in percentages of peripheral blood activated (HLA-DR+) T4 cells according to the intensity of periventricular (A) and deep (B) white matter
lesions in the central nervous system. P-values were calculated using a two-sided unpaired student’s t test or Mann-Whitney test as appropriate.
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cells (44.7 ± 16.3 versus 60.0 ± 17.9%, p < 10-4, Figure 5F). We

compared these percentages with the standard values we had

previously established in an age-matched general population (36).

Strikingly, Profile 1 patients had proportions of activated T4 cells

(Figure 5E) and T8 cells (Figure 5F) similar to those of controls and

proportions of senescent T4 cells (2.2 ± 1.9 versus 5.9 ± 7.8%, p = 0.004,

Figure 5C) and T8 cells (19.0 ± 8.4 versus 29.2 ± 16.4%, p < 0.001,

Figure 5D) that were even lower than those of controls. Another group

of patients, with Profile 3, had the second highest frequency of NCI

(53%). Thus, Profile 1 and 3 patients more often presented

neurocognitive disorders than Profile 2, 4, 5 or 6 patients (odds ratio

4.727, 95% CI [1.492; 14.98] (p=0.010), p = 0.011, Figure 5B). Here

again, compared with Profile 2, 4, 5, and 6 patients, patients with Profile

3 were characterized by a low percentage of HLA-DR+ T4 cells (20.5 ±

9.1 versus 25.9 ± 13.9%, p = 0.021, Figure 5E), HLA-DR+ T8 cells (51.2

± 16.6 versus 62.3 ± 17.5%, p = 0.001, Figure 5F), CD57+ T4 cells (3.8 ±

3.1 versus 10.2 ± 8.5%, p < 10-4, Figure 5C), and CD57+ T8 cells (20.0 ±

9.0 versus 37.3 ± 11.4%, p < 10-4, Figure 5D).
Discussion

In this study using independent supervised and non-supervised

clustering, we unveiled the low frequency of activated and senescent

T4 and T8 cells in the peripheral blood of HIV patients with NCI. In

addition, we observed that WMH were more common in PLWH

with low frequencies of activated T4 cells. The main explanation for
Frontiers in Immunology 08
this paradoxical observation is that these T cell subpopulations are

rare in the blood because they have been recruited into the central

nervous system. Immune cells do patrol the central nervous system

(43). Moreover, activated lymphocytes are known to cross the blood

brain barrier more efficiently than non-activated lymphocytes (44).

In consonance with this, the presence of lymphocytes in the brain

and cerebrospinal fluid (CSF) is increased in HIV infection (45),

particularly in people with NCI (46). This phenomenon may be

exacerbated in immune reconstitution inflammatory syndrome

(47). Shacklett et al. reported that T8 lymphocytes in the CSF

expressed higher cell surface levels of very late antigen (VLA)-4,

leukocyte function antigen (LFA)-1, CCR5 and CXCR3 than

circulating T8 lymphocytes in PLWH (48). Accordingly, they also

observed a high concentration of the CXCR3-binding chemokine

CXCL10 in CSF (48). Price et al. proposed a push and pull model

(49) to account for this observation. The “pull” component would

be due to chemokines, including CCL3, CCL4, CCL5, and CXCL10,

produced in the brain as a consequence of the presence of the virus,

attracting CCR5- and CXCR3-expressing T cells. The “push”

component would be the consequence of HIV-driven immune

activation increasing blood brain barrier permeability and T cell

surface expression of adhesion molecules as VLA-4 (a4b1) and

LFA-1 (CD11a/CD18) facilitating the crossing of this barrier. It

should be noted that CD11a is overexpressed in PLWH (50).

As T lymphocytes in the CSF present activation markers on

their surfaces (51, 52), it is logical to assume that the peripheral

depletion in activated and senescent T cells we noticed in
FIGURE 3

Heat map showing the hierarchical clustering of activation markers as well as virological responders according to their activation profile.
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neurocognitively-impaired patients is due to their transfer to the

central nervous system.

Interestingly, lymphopenia has been reported in other NCI

diseases like Alzheimer’s disease for instance (53–56). In this

neurodegenerative disease, circulating lymphocytes infiltrate into

the CNS, where their number increases (57), and the peripheral

blood lymphocyte count has been positively associated with

cognition and negatively with brain damage (58). Likewise, a low

lymphocyte count is predictive of the onset of Parkinson’s disease

(59), and T lymphopenia correlates with Parkinson’s disease

severity (60). Baseline T lymphopenia even correlated with

subsequent cognitive decline in Parkinson disease, but only in

patients carrying the ApoE e4 allele, an allele responsible for

permeability of the blood brain barrier (61). This last observation

adds credit to the idea that T cell entry into the CNS drives
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peripheral T cytopenia. T lymphopenia has also been reported in

vascular dementia and frontotemporal dementia (62). It may be

noted that, in these diseases, lymphopenia is linked to blood brain

barrier damage (62), thus further supporting our hypothesis of a

causal link between CNS recruitment and peripheral T cytopenia.

Activated and senescent T cells overexpress CCR5, CXCR3 (63,

64), LFA-1, and VLA-4 (65–68). So, given the role of these adhesion

molecules and chemokine receptors in the recruitment of T cells in

the CNS, it is not surprising that activated and/or senescent T cells

are preferentially found in the brain and, therefore, depleted in

the circulation.

It would also be of interest to look for the drivers of activated

and senescent T cell entry into the CNS. For the “pull” component,

any increase in the CNS concentration of CCR5 and/or CXCR3

ligands might preferentially attract activated and senescent T cells.
B

C D

E F

A

FIGURE 4

Differences in levels of characteristic activation markers between patient profiles. Frequency of CD57-expressing T4 cells (A) and of CD38-
expressing T8 cells (B), CD4 count (C), plasma level of sCD163 (D) as well as tPA (E), and percentage of HLA-DR+ T4 cells (F) in the different
participant groups are shown.
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As tat (69) and nef viral proteins induce CXCL10 production in the

CNS (70), the presence of HIV in the brain might be a driver. It is

also possible that the recruitment of peripheral blood mononuclear

cells into the CNS via CXCR3, known to be triggered by amyloid-b
accumulation in the brain (71), is exacerbated in HIV patients. For

the “push” component, LFA-1 and VLA-4 inducers should be

sought. This hypothesis could be tested in a SHIV-infected non-

human primate model by infusing T cells overexpressing CCR5,

CXCR3, LFA-1, and/or VLA-4 T, and monitoring intracerebral
Frontiers in Immunology 10
entry and cognitive performances. In humans, a negative

correlation between the frequency of CCR5-, CXCR3-, LFA-1-,

and/or VLA-4-1-expressing T cells in blood and cerebrospinal fluid

could be looked for.

Alternative explanations for the low level of circulating

activated and senescent T cells in NCI patients we show here

appear to be less likely. Lee et al. reported that people recently

infected with HIV-1 present low levels of CD57+CD28- T8 cells,

and that this low level was predictive of mortality (72). They
B

C D

E F

A

FIGURE 5

Number of patients with neurocognitive impairment (NCI+) or without it (NCI-) in Profile 1 (#1, closed histogram) and other Profiles (#23456,
shaded histogram) (A), and in Profile 1 and 3 (#13, closed histogram) and other Profiles (#2456, shaded histogram) (B). P-values were calculated
using Fisher’s test. Proportions of senescent T4 (C) and T8 (D) cells, and activated T4 (E) and T8 (F) cells in HIV volunteers (HIV+) with different
immune activation profiles and in healthy controls (HIV-). P-values were calculated using two-sided unpaired student’s t test or Mann-Whitney test
as appropriate.
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hypothesized that this was due to a defect in T8 proliferation and

differentiation. Yet, they observed that antiretroviral therapy

restored this T8 subpopulation, and the PLWH that we analyzed

in our study had been on treatment for an extended period of time.

Another hypothesis would be, for any cause including genetics, that

the emergence of activated and senescent T cells and/or their life

expectancy is lower in HAND patients than in NCI-free patients.

But this scenario ought to prevent rather than favor brain damage.

Our work has several limitations. In particular, we analyzed the

neurocognition of a limited number of PLWH and, as stated in the

introduction, the pathophysiology of NCI is probably multiple. It

should also be underlined that our study was transversal, unveiling

correlations, but not causality.

However, our data are compatible with the interesting

hypothesis that activated and senescent T cells migrating into the

CNS might fuel NCI. Accordingly, it would be of interest to test

whether a low activated and senescent T cell blood count might be

predictive of the onset and progression of NCI, in the same way as T

lymphopenia in Parkinson’s disease.
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