
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Christoph Schaniel,
Icahn School of Medicine at Mount Sinai,
United States

REVIEWED BY

Ezhilarasi Chendamarai,
Washington University in St. Louis,
United States
Fang-Min Zhong,
Second Affiliated Hospital of Nanchang
University, China
Marjanu Hikmah Elias,
Universiti Sains Islam Malaysia, Malaysia

*CORRESPONDENCE

Chao Lin

linch26@mail2.sysu.edu.cn

Bo Lu

lubo5@mail.sysu.edu.cn

Tian-Tian Sun

suntt6@mail.sysu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 27 July 2023

ACCEPTED 06 November 2023
PUBLISHED 22 November 2023

CITATION

Wang Y, Bin T, Tang J, Xu X-J, Lin C, Lu B
and Sun T-T (2023) Construction of an
acute myeloid leukemia prognostic
model based on m6A-related
efferocytosis-related genes.
Front. Immunol. 14:1268090.
doi: 10.3389/fimmu.2023.1268090

COPYRIGHT

© 2023 Wang, Bin, Tang, Xu, Lin, Lu and Sun.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 22 November 2023

DOI 10.3389/fimmu.2023.1268090
Construction of an acute
myeloid leukemia prognostic
model based on m6A-related
efferocytosis-related genes

Ying Wang1†, Ting Bin1†, Jing Tang1†, Xiao-Jun Xu1, Chao Lin2*,
Bo Lu1* and Tian-Tian Sun1*

1Department of Haematology. The Seventh Affiliated Hospital, Sun Yat-Sen University,
Shenzhen, China, 2Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics. The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
Background: One of the most prevalent hematological system cancers is acute

myeloid leukemia (AML). Efferocytosis-related genes (ERGs) and N6-

methyladenosine (m6A) have an important significance in the progression of

cancer, and the metastasis of tumors.

Methods: The AML-related data were collected from The Cancer Genome Atlas

(TCGA; TCGA-AML) database and Gene Expression Omnibus (GEO; GSE9476,

GSE71014, and GSE13159) database. The “limma” R package and Venn diagram

were adopted to identify differentially expressed ERGs (DE-ERGs). The m6A

related-DE-ERGs were obtained by Spearman analysis. Subsequently, univariate

Cox and Least Absolute Shrinkage and Selection Operator (LASSO) were used to

construct an m6A related-ERGs risk signature for AML patients. The possibility of

immunotherapy for AML was explored. The pRRophetic package was adopted to

calculate the IC50 of drugs for the treatment of AML. Finally, the expression of

characterized genes was validated by quantitative reverse transcription-PCR

(qRT-PCR).

Results: Based on m6A related-DE-ERGs, a prognostic model with four

characteristic genes (UCP2, DOCK1, SLC14A1, and SLC25A1) was constructed.

The risk score of model was significantly associated with the immune

microenvironment of AML, with four immune cell types, 14 immune

checkpoints, 20 HLA family genes and, immunophenoscore (IPS) all showing

differences between the high- and low-risk groups. A total of 56 drugs were

predicted to differ between the two groups, of which Erlotinib, Dasatinib, BI.2536,

and bortezomib have been reported to be associated with AML treatment. The

qRT-PCR results showed that the expression trends of DOCK1, SLC14A1 and

SLC25A1 were consistent with the bioinformatics analysis.

Conclusion: In summary, 4 m6A related- ERGs were identified and the

corresponding prognostic model was constructed for AML patients. This

prognostic model effectively stratified the risk of AML patients.
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1 Introduction

Acute myeloid leukemia (AML) refers to a kind of malignant

disease originated from haemopoietic stem cells and features clonal

expansion of blasts of myeloid lineage under abnormal

differentiation. Upon the proliferation of immature myeloid cells,

immature progenitors (blasts) are accumulated and normal

hemopoiesis is impaired, resulting in the occurrence of serious

infection, anemia and hemorrhage (1). AML accounts for 1.3% of

newly diagnosed cancer cases in the U.S (2). The rising AML

incidences are partially a result of rising prevalence of AML

related to therapy, because the primary malignancy of increasing

numbers of cancer patients who received cytotoxic chemotherapy

have been cured (3). AML is one of the most fatal type of

hematologic malignancy, with the 5-year survival rate < 30%.

Hence, new prognostic biomarkers shall be urgently identified for

well monitoring patient outcomes as well as more deeply explaining

the AML pathogenesis.

Recent researchers have ident ified revers ible N6-

methyladenosine (m6A) RNA methylation regulators as a new way

to achieve the post-transcriptional regulation (4). Geneticists

confirmed that m6A was methylated in eukaryotic messenger RNA

(mRNA). RNAmethylation modification takes up over 60% of all the

RNA modifications, of which the representative type on higher

biological mRNAs is the m6A RNA methylation (5). When m6A

regulators are dysregulated, the cell reproductive capacity weakens,

and the self-renewal capacity losses, together with developmental

defects and apoptosis (6). m6A RNA methylation regulators play

roles in the cancer occurrence and development, involving liver

cancer (7, 8), glioblastoma (9), osteosarcoma (10), and colorectal

cancer (11).

Macrophages critically impact the remodeling of tissues in

normal physiology and the way inflammation and tissue injury

are resolved (12). The key step in the resolution process lies in the

elimination of apoptotic cells (ACs) (13). The elimination of

apoptotic cells by professional and non-professional phagocytes, a

process that is essential for maintaining tissue homeostasis called

“efferocytosis” (13, 14). Such process has been informed in recent

studies, together with the roles it plays in maintaining tissue

homeostasis and repair as well as the organism health. Our study

stresses on the mechanisms regarding efferocytosis (dying cell

recognition, phagocytic engulfment and homeostatic resolution),

as well as explains the resulting pathological and physiological

consequences upon the abrogation of the efferocytosis process

(13). As we all know, m6A regulates gene expression and thus

cellular processes such as cellular self-renewal, differentiation,

invasion, and apoptosis (15). For example, Mettl14-mediated

m6A modification could induce apoptosis of spinal cord neurons

in spinal cord injury by promoting miRNA translation (16).

Apoptosis and its subsequent clearance by efferocytosis occur in

virtually all tissues during development, homeostasis, and disease.

However, the prognostic value of m6A-related efferocytosis related-

genes (ERGs) in AML has not been systematically investigated.

AML is an aggressive blood cancer among adults, and the

existing techniques fail to obviously improve most patients’
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survival rate. In the situation, it is necessary to find potential

markers for enhancing AML patients’ diagnosis, treatment and

prognosis. According to previous studies, we inferred m6A RNA

methylation regulators and efferocytosis were inextricably linked to

the onset and progression of AML. Our study adopts AML-related

data from public database and the comprehensive biological

informatics approach for mining the m6A-related ERGs in AML.

The prognostic model related to m6A and ERGs was constructed to

predict the prognosis of the AML patients. In addition, the

exploration of potential molecular mechanisms and therapeutic

approaches will contribute to the treatment and prognosis of AML.
2 Materials and methods

2.1 Acquirement of the data of the
AML patients

Bone marrow samples of 132 TCGA-AML (Illumina platform)

patients were downloaded from the Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/), and these AML patients with complete

clinical information and survival data were used as the training set for

the follow-up analysis. Three independent cohorts (GSE9476,

GSE71014, and GSE13159) were acquired from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE71014 dataset (Illumina HumanHT-12 V4.0 expression beadchip)

containing the RNA-seq and survival data of 104 AML patients was

used as the validation set. The GSE9476 dataset (Affymetrix Human

Genome U133A Array) contains 10 normal samples and 7 AML bone

marrow samples for differential expression analysis. Peripheral blood

samples from the GSE13159 dataset (Affymetrix Human Genome

U133 Plus 2.0 Array) were excluded, and 73 normal samples and 501

AML bone marrow samples were obtained for expression validation of

characteristic genes. Based on the previous paper, 74 efferocytosis-

related genes (ERGs) were acquired (17, 18).
2.2 Identification of m6A -related
differentially expressed ERGs

The data annotations in the GSE9476 dataset were performed

based on the Symbol conversions corresponding to the chips in the

GPL96 file. The raw count is converted to FPKM mainly by the

following formula:

FPKM = ExonMappedFragments ∗ 109=TotalMappedFragments ∗ ExonLength

CEL files were generated usingMAS 5.0 software (Affymetrix) with

target signals for probe sets scaled to 500. Log2 expression values for

individual probe sets were generated from. CEL files via robust multi-

array average (gcRMA). The “limma” package, a package for analyzing

gene expression data generated by microarray or RNA-seq technology

(19), was used to obtain the DEGs in the GSE9476 dataset. The

screening criteria was: p value < 0.05 and |log2FoldChange| > 0.5 (20,

21). The “VennDiagram” package (22) was applied to visualize the

differentially expressed ERGs (DE-ERGs). Spearman andWilcoxon.test
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were applied to screen for m6A-related DE-ERGs (|cor| > 0.3 and p <

0.05). Prediction of miRNAs form6A-related DE-ERGs was performed

using TargetScan, miRTarBase, and starBase databases. Based on

lncbase, starbase, and miRNet database, lncRNAs were subsequently

predicted based on miRNAs common to the three databases.

Cytoscape software was adopted to visualize the lncRNA-miRNA-

mRNA network.
2.3 Acquirement of m6A-related DE-ERGs-
related subtypes in the training set

Consensus Clustering, an unsupervised clustering method, can

divide samples into subtypes based on different datasets, resulting

the discovery of new disease subtypes. The R package

“ConsensusClusterPlus” (23) was utilized to identify the subtypes

based on the expression of m6A -related DE-ERGs. Additionally,

the overall survival (OS) among different subtypes was explored by

the “Survival” package (24). Enrichment pathways for inter-subtype

differences were assessed using Gene Set Variation Analysis

(GSVA) (25). The Cell-type identification by estimating relative

subsets of RNA transcripts (CIBERSORT) algorithm (26) was

utilized to analyze the abundance of immune cell infiltration for

all samples between the subtypes. To examine the variations in

immune cells between two subtypes, the Wilcoxon test was used.
2.4 Constructing a new AML prognostic
risk model based on m6A -related DE-
ERGs

The data of TCGA-AML were transformed based on the hg38

human reference genome. After transforming the data in the form

of count into the form of FPKM, the FPKM was then log2(fpkm+1)

computed to get the final FPKM value, which was our

normalization method. By using univariate Cox analysis of m6A

-related DE-ERGs in the TCGA-AML dataset, the prognosis-related

genes were acquired (P < 0.05). Subsequently, the most predictive

characteristic genes were identified by the least absolute shrinkage

and selection operator (LASSO) (27). Subsequently, the risk score of

each AML patient was calculated based on the formula:

Riskscore =on
1coef (genei)*expr(genei)

Based on the median risk score, the AML patients were divided

into two groups. The difference in OS between the two groups was

then displayed using Kaplan-Meier (KM) curves. The “survROC”

(28) was applied to display the receiver operating characteristic

(ROC) curves to perform an assessment of the prognostic capability

of the prognostic risk model. At last, the stability of this prognostic

risk model was investigated in the external GSE71014 dataset.

Meanwhile, the wilcoxon test was applied to evaluate the

expression of characteristic genes in the training and validation sets.
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2.5 Assessment of prognostic risk model

In order to explore the differences in biological functions

between high- and low-risk groups, we performed Gene Set

Variation Analysis (GSVA). The “GSVA” package (25) was used

to calculated the score of the pathways in samples, and “limma”

package (19) was used to implement the differential analysis of

pathways (|t value| > 2). Since somatic mutations play a critical role

in tumor development, we investigated the tumor body mutations

of samples in the two groups by “maftools” package (29), and

showed the top20 mutated genes, respectively. Clinicopathological

characteristics of TCGA-AML included cytogenetic risk, age, M

subtype, bone marrow (BM) blasts (%), invasiveness, and Platelets

(x10^9/L). To determine if clinicopathological characteristics and

risk scores were independent predictive factors for AML patients,

univariate and multifactorial Cox analyses were performed. The

“rms” (30) was adopted to construct the nomogram to predict

survival probability based on independent prognostic criteria. The

calibration curve was adopted to validate whether the nomogram

has good predictive power.
2.6 Relationship between AML patients’ risk
scores and tumor microenvironment

The “estimate” package (31) was adopted to compare the

stroma, immune, estimate score, and tumor purity between the

high/low-risk groups. Spearman’s rank correlation was used to

analyze the correlation between TME and risk score. The

CIBERSORT (32) was utilized to analyze the abundance of

immune cell infiltration for all samples in the TCGA-AML

dataset. To examine the variations in immune cells between the

two groups of AML, the Wilcoxon test was used. Subsequently, 48

immune checkpoint and HLA family genes were analyzed for

differences in expression between the two groups. The Cancer

Immunome Atlas framework (https://www.tcia.at/home) was

adopted to calculate immunophenoscore (IPS) of each TCGA-

AML patient sample. IPS predicts patient response to

immunotherapy, with higher scores associated with greater

immunogenicity (33). Calculation of mRNA expression-based

stemness index (mRNAsi) scores of TCGA-AML patients was

performed by “glmnet” package (34), and then the correlation

between mRNAsi scores and risk scores was analyzed

by Spearman.
2.7 Prediction of chemotherapy drug

Using the “pRRophetic”, the chemotherapy medicines for AML

were predicted based on GDSC (https://www.cancerrxgene.org/)

(35). To compare the two groups’ differences in drug sensitivity, we

adopted the Wilcoxon.test.
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2.8 Validation of expression of
characterized genes

The AML and normal samples were collected form Seventh

Affiliated Hospital, Sun Yat-Sen University according to the

following inclusion criteria: (1) aged 18-60 years; (2) bone marrow;

(3) initial diagnosed AMI patients and healthy donor. The exclusion

criteria of AMI samples were M3 and therapeutic interventions (such

as chemotherapeutic agents), and bone marrow stimulated by

granulocyte colony-stimulating factor. The clinical information of

AML and normal samples in qRT-PCR (Supplementary Table 1).

This study was approved by Sanming Project of Medicine in

Shenzhen (No.SZSM201911004), Ethics Committee of Seventh

Affiliated Hospital, Sun Yat-Sen University. The expression of

characterized genes was verified using quantitative reverse

transcription-polymerase chain reaction (qRT-PCR). Total RNA

was extracted from bone marrow samples (6 AML samples and 5

normal samples) with TRIzol method. The reverse transcription

reactions were performed using SureScript-First-strand-cDNA-

synthesis-kit (Servicebio, China), and then used to perform qRT-

PCR with Universal Blue SYBR Green qPCR Master Mix. The

qRT-PCR thermocycling protocol was as follows: initial

denaturation at 95°C for 60 s, denaturation at 95°C for 20 s,

annealing at 55°C for 20 s, extension 72°C for 30s, and

amplification for 40 cycles. GAPDH was used as the housekeeping

gene. The primer sequences were shown in Table 1. The 2-△△CT

method was applied to calculate the expression level of genes and

normalized to GAPDH.
3 Result

3.1 The m6A-related DE-ERGs for AML

There were 2482 DEGs (up=1192 and down=1290) (Figures 1A,

B) and a total of 14 ERGs were differentially expressed in the

GSE9476 dataset (Figure 1C). And then 14 m6A related-DE-ERGs

were obtained by Spearman’s correlation analysis (Figure 1D). A
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total of 27 predicted miRNAs based on 14 m6A-associated DE-

ERGs were common across the 3 databases (Supplementary

Table 2). Subsequently, based on shared miRNAs, 7 of the

predicted lncRNAs were common across the 3 databases

(Supplementary Table 3). Finally, 7 m6A-DE-ERGs, 27 miRNAs,

and 7 lncRNAs of the lncRNA-miRNA-mRNA network were

constructed (Figure 1E). It was known from the network that

DLEU1 could only affect HIF1A by regulating hsa-miR-381-3p,

while HIF1A could be affected by multiple miRNAs.
3.2 The m6A-related ERGs related-
subtypes for AML

Based on the expression of 14 m6A related-DE-ERGs, 132 AML

patients were classified into two subtypes (Figures 2A–C). The

cluster1 had a worse prognosis than cluster2 (p < 0.05) (Figure 2D).

Figure 2E showed that ERGs associated with m6A may be regulated

through various amino acid metabolic pathways and some down-

regulated pathways (chemokine signaling pathway, B-cell receptor

signaling pathway, and Fc gamma R-mediated phagocytosis). 22

immune cells were present in some abundance between the two

subtypes (Figure 2F). Figure 2G revealed that 14 immune cell types

were differentially expressed between the two subtypes, of which the

proportion of naive B cells, eosinophils, resting mast cells, resting

NK cells, plasma cells, resting CD4 memory T cells, and CD8 T cells

was significantly higher in cluster 2 than cluster 1. Moreover, the

proportion of monocytes was notably higher in the cluster 1. In

summary, we speculated that the activity in terms of immune

response, immune surveillance, and cellular immunity was

stronger in cluster 2, whereas the increase in the proportion of

monocytes may imply that the effects of immunomodulation are

stronger in cluster 1.
3.3 The m6A-related ERGs prognostic risk
model for AML

According to m6A related-DE-ERGs, four genes with p < 0.05

were screened in the training set (Figure 3A). After that, LASSO

regression analysis was carried out to obtain four characteristic

genes (UCP2, DOCK1, SLC14A1, and SLC25A1) (Figures 3B, C).

Risk score = 0.5890×UCP2 + 0.2590×DOCK1 -0.2193×

SLC14A1 + 0.2553×SLC25A1. Based on median risk score =

4.864, patients were classified into two groups (Figure 3D).

Patients with low-risk scores had significantly higher OS than

those with high-risk scores (Figure 3E). The ROC curve for OS

was computed to further evaluate the validity of the risk signature,

and the AUC values at 1, 3, and 5 years were larger than 0.70,

demonstrating improved efficacy of the prognostic risk model

(Figure 3F). The prognostic risk model still had strong predictive

power in the GSE71014 datasets (Figures 3D–F). The expression

trends of DOCK1 and SLC25A1 were increased in AML, while the

opposite was true for SLC14A1 and UCP2 in the GSE9476 and

GSE13159 datasets (Supplementary Figure S1).
TABLE 1 The primer sequences of characteristic genes.

Primers Sequence

DOCK1 F GTTTGCTGCAACCCCTTCTCT

DOCK1 R GACCAGCGAACCAGGTAGT

SLC14A1 F TGGCTGTTACTCCCTGTATGTGC

SLC14A1 R ATGGATTGTAATGTCCTGTGGC

SLC25A1 F CCGTCAGGTTTGGAATGTTCG

SLC25A1 R TAACCCCGTGGAAGAATCCTC

UCP2 F GGAGGTGGTCGGAGATACCAA

UCP2 R ACAATGGCATTACGAGCAACAT

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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3.4 The biological and mutational changes
in AML

A total of 4083 GO entries and 117 pathways now differ between

the high/low-risk groups (|t|>2). Figure 4A displayed the top10 up-

regulated and top4 down-regulated KEGG pathways that were

significantly different between high- and low-risk groups, e.g.,

biosynthesis of unsaturated fatty acids, antigen processing and

presentation, and pantothenate and CoA biosynthesis. Moreover,

the top10 up- and down-regulated GO terms (including biological

progress (BP), cellular component (CC), and molecular function

(MF)) that were notably different between two risk groups were

shown in Figures 4B–D. Interestingly, some immune-related

biological functions, such as T cell extravasation, MHC protein

complex, T cell receptor binding, and MHC class I protein binding,
Frontiers in Immunology 05
were significantly up-regulated in GO terms that differed significantly

between high- and low-risk groups. Figures 4E, F showed the top20

mutated genes in the high- and low-risk groups, of which ASXL1,

NPM1, and TP53 were mutated between both groups.

3.5 The independent predictors and
nomogram in AML

Clinicopathological variables and risk scores from 132 patients

were combined to perform univariate and multivariate Cox analyses

(Figures 5A, B). The risk scores and Cytogenetic risk was the

prognostic factor for AML patients. Construction of a nomogram

model on the basis of independent prognostic factors (Figure 5C), it

was found that the survival rate decreases as the overall score

increases. The slope of the calibration curve of the model is close to
B

C D

E

A

FIGURE 1

Differential expression analysis. (A, B) The volcano map (A) and heat map (B) of up- and down-regulated DEGs. (C) The Venn diagram of 14 DE-ERGs
obtained by overlapping ERGs and DEGs. (D) The relevance of DE-ERGs and m6A-related genes. Genes in red text are DE-ERGs and genes in blue
text are m6A regulators. The color and size of the circles indicate the direction and size of the correlation. *p<0.05; ** p<0.01; ***p<0.001. (E) The
network constructed based on m6A-DE-ERGs, miRNAs, and lncRNAs. Red represents m6A-DE-ERGs, green represents miRNAs, and blue represents
lncRNAs. DEGs, differentially expressed genes; AML, acute myeloid leukemia; ERGs, efferocytosis-related genes; DE-ERGs, differentially expressed
ERGs; miRNA, microRNA; lncRNA, long non-coding RNA.
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1, indicating that the predictions of the model are true and

reliable (Figure 5D).
3.6 The differences of immune
microenvironment and immunotherapy
between two risk groups

The ImmuneScore, StromalScore, and Estimate score of

samples in the high-risk group were significantly higher than in

the low-risk group (p < 0.05) (Figure 6A). Figure 6B revealed that

ImmuneScore, StromalScore, and EstimateScore were positively
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associated with risk score. The proportion of 22 immune cell

types was present in some abundance (Figure 6C) and 4 immune

cell types (activated dendritic cells, monocytes, resting CD4

memory T cells, and gamma delta T cells) were significantly

different between the two groups (Figure 6D). In addition, 14

immune checkpoints, 20 HLA family genes were significantly

differentially expressed between the high/low-risk groups, and

most factors were upregulated in the high-risk group (Figures 6E,

F), and there was a negative correlation between risk score and

mRNAsi score (R=-0.2 and p<0.05) (Figure 6G). Moreover, the IPS

score was notably different between high- and low-risk groups, and

the low-risk group was accompanied by higher score (Figure 6H).
B C

D E

F G

A

FIGURE 2

Results of consensus clustering of 132 AML patients. (A) Consensus clustering CDF for k = 2 to k = 5. (B) The corresponding relative change in area
under the CDF curves when cluster number changed from k to k + 1. (C) Consensus clustering matrix of 132 AMI samples for k = 2. (D) The survival
difference between cluster1 and cluster2, which are shown below the survival graph, are the number of samples corresponding to that survival time.
(E) The top10 up- and down-regulated pathways enriched in two sub-types. (F) The heat map of 22 immune cells in cluster1 and cluster2.
(G) Discrepancies of the proportion of immune cells in two sub-types. CDF, cumulative distribution function; GSVA, Gene Set Variation Analysis. ns,
not significant; *p<0.05; ** p<0.01; ***p<0.001; ****p<0.0001.
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This showed that the prognostic risk model was linked to the

immune microenvironment of AML, which provides some

theoretical basis for immunotherapy of AML.
3.7 The differences of drug sensitivity
between two risk groups

IC50 was calculated for each AML patient in the two groups,

yielding a total of 56 drugs with significantly different IC50s

(Supplementary Table 4). Figure 7 displayed box plots of the IC50

values for the top 10 significantly different treatment-sensitive drugs.

The findings demonstrated that the low-risk group’s IC50 was much

higher than the high-risk groups. Among them, Erlotinib, Dasatinib,

BI.2536, and Bortezomib have been reported to be associated with the

treatment of AML. Therefore, we believed that risk scores could be

used to predict sensitivity to the above drugs for AML patients, where
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drug inhibitors might be more effective against organisms or cell lines

in samples from high-risk group.
3.8 The expression of m6A-related ERGs
by qRT-PCR

The qRT-PCR analysis was performed to further verify

characterized genes in AML and normal samples (Table 2;

Figures 8A–D). The expression level of DOCK1 and SLC25A1

was higher in AML samples than in normal samples (Figures 8A,

C). UCP2 mRNA expression was increased in AML patient

samples as compare to healthy control samples, however the

difference was not statistically significant (Figure 8D). The

expression of SLC14A1 was higher in normal samples than in

AML samples (Figure 8B).
B C

D E F

A

FIGURE 3

Construction and validation of the prognostic risk model. (A) Univariate Cox analysis of four genes. (B, C) The error plots for 10-fold cross-validation
(B) and the plot of gene coefficients (C) in least absolute shrinkage and selection operator (LASSO) analysis. Each line (C) represents a gene. (D) The risk
curve of prognostic risk model in the training set and GSE71014 dataset. (E) The Kaplan-Meier curves of high- and low-risk groups in two datasets.
(F) The ROC curves of 1/3/5-year in the training set and GSE71014 dataset. ROC, receiver operating characteristic; AUC, area under the curve.
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4 Discussion

The m6A methyltransferase METTL3 can impact the way AML

is initiated and maintained. STM2457 is a high-efficiency selective

first-in-class catalytic inhibitor specific to METTL3, and using it for

tumor treatment can weaken the AML growth, and enhance the cell

differentiation and apoptosis (36). In the study by Joselyn Cruz

Cruz et al. (37), MerTK inhibition by small molecule tyrosine

kinase, MRX2843, could change the leukemia microenvironment

from tumor-permissive toward immune responsiveness to

leukemia, as well as enhance the AML clearance mediated by

immune. And the MerTK (or other vesicular cell receptors) on

macrophages play an important role in mediating efferocytosis.

m6A and genes related to efferocytosis can mediate the immune

system, thereby affecting the AML development. Nevertheless,
Frontiers in Immunology 08
seldom studies have reported their joint roles. On that account,

our study investigates m6A-related ERGs, aiming at contributing to

new prognostic models and treatment strategies for AML patients.

In this study, we identified 7 m6A-DE-ERGs (CXCR4, PPARG,

SGK1, WNK1, DNM1L, ADAM17, HIF1A), 27 miRNAs, and 7

lncRNAs, which were used to construct the lncRNA-miRNA-

mRNA network. Some studies have reported the close association

between SGK1, CXCR 4, PPARG, and ADAM17 and HIF1A and

AML (38–42). DLEU1 can only exert impact on HIF1A through

regulating hsa-miR-381-3p, while HIF1A can be impacted by

various miRNAs. According to Abdul-Aziz AM et al. (42),

PARP14 regulated the expression of HIF1A, thereby enhancing

AML cell growth and glycolysis. On that account, applying miRNAs

and 7 lncRNAs to regulate m6A-related DE-ERGs can impact the

AML development.
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FIGURE 4

Functional enrichment analysis and somatic mutation analysis. (A) The KEGG pathways enriched in high- and low-risk groups. (B–D) The GO terms
enriched in two risk groups. B: BP; C: CC; D: MF. (E) Top 20 genes with the highest mutation frequency in the high-risk group. (F) Top 20 genes
with the highest mutation frequency in the low-risk group. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological
progress; CC, cellular component; MF, molecular function.
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Amino acids not only constitute proteins, but also serve as the

intermediate metabolites for various biosynthetic pathways. The

study by Yoko Tabe et al. (43) summed up the amino acid

metabolism occurring in hematologic malignancy, and assisted in

reclassifying amino acid-depleting enzymes into targeted

therapeutic agents. In our study, amino acid metabolic pathways

significantly impact AML development. According to Courtney L

Jones et al. (44), the leukemia stem cell (LSC) population presented

elevated amino acid uptake, steady-state levels, and catabolism, and

drugs targeting LSC metabolic vulnerabilities could serve for

eradicating LSCs in clinical practice. Hence, m6A-related DE-

ERGs may regulate the AML occurrence and development

through various amino acid metabolic pathways. Our study also

reveals the close association between chemokine signaling pathway

and AML. Chemokine refers to a family of small cytokines with

chemotactic properties, consisted by 8-10 kilodaltons. Chemokine

can traffic and regulate the proliferative, migratory, differentiative

and homing activities of immune cells. The CXCR4 chemokine
Frontiers in Immunology 09
receptor can enhance the survival rate of various cell types.

According to the study of Kimberly N Kremer et al. (45), CXCR4

chemokine receptor signaling regulated many of the Bcl-2 family

members (Bcl-XL, Noxa, and Bak), thereby inducing AML cell

apoptosis. Taken together, m6A-related DE-ERGs may be involved

in AML progres s ion by downregu la t ing chemokine

signaling pathway.

In the 14 m6A-related ERGs related-subtypes analysis, different

subpopulations present obviously different monocytes, plasma cells

and naive B cells, with more infiltrated in the worse prognosis

cluster1. Clinical experiments in the study confirmed the significant

role of monocytes, plasma cells and naive B cells in the AML

pathogenesis, and its close association with myeloid tumor cell

progression. Monocyte is the innate immune cell in the

mononuclear phagocyte system and can remarkably regulate

tumor development and progression. Plasma cell that secretes

antibody serves as the core pillar of the humoral immunity,

generated during the basic cellular restructuration from the naive
B

C D

A

FIGURE 5

Independent prognostic analysis. (A, B) The independent prognostic predictors obtained by univariate (A) and multivariate (B) Cox analyses. (C) The
nomogram of risk score and cytogenetic risk. (D) The calibration curve of the nomogram.
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B cells-antigen contact. When naive B cells are differentiated into

extrafollicular B cells, antibody-secreting cells with weaker affinity

and short life can be generated. Claire E Olingy et al. (46) made a

comprehensive explanation of the monocyte heterogeneity in the

homeostasis process, highlighted the role played by monocyte in the

cancer development, as well as gave effective monocyte-targeted

cancer treatment strategies. In the study by Maartje C A Wouters

et al. (47), substantial evidences, by virtue of a comprehensive

PubMed search, had proved that plasma cells positively impact the

antitumor immunity, and it is suggested to enhance these responses

in designing cancer immunotherapies. Helmink BA et al. (48) used
Frontiers in Immunology 10
mass cytometry for interrogating various surface proteins, finding

the existence of naive B cells, memory B cells, activated memory B

cells, and plasmablasts. Therefore, we speculated that different

subtypes suggested the possible mediating roles played by

monocytes, plasma cells and naive B cells in the prognosis of

patients with different AML subtypes.

Our study constructed the prognosis model and the prognostic

genes of UCP 2, DOCK 1, SLC14A1, and SLC25A1. Uncoupling

protein 2 (UCP2), and mitochondrial uncoupling proteins belong

to the family of mitochondrial anion carrier proteins (MACP).

AML patients showed elevated UCP2 expression. Dongxu Gang
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FIGURE 6

Immune infiltration and immune correlation analyses. (A) The discrepancies of immune score, stromal score, and estimate score between high- and
low-risk groups. *p<0.05; ** p<0.01; ***p<0.001; ****p<0.0001. (B) The relevance of risk score to immune score, stromal score, and estimate score.
(C) The heat map of abundance of 22 immune cells in two risk groups. (D) The discrepancies of immune cells between two risk groups. ns, not
significant; *p<0.05; ** p<0.01. (E, F) The discrepancies of immune checkpoints (E) and HLA family genes (F) between high- and low-risk groups. ns,
not significant; *p<0.05; ** p<0.01; ***p<0.001; ****p<0.0001. (G) The relevance of risk score and mRNAsi score. (H) Discrepancies of IPS between
high- and low-risk groups. HLA, human leukocyte antigen; mRNAsi, stemness index based on mRNA expression; IPS, immunophenoscores. ns, not
significant; *p<0.05; ** p<0.01; ***p<0.001; ****p<0.0001.
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et al. (49) found that UCP2 inhibition could lead to weakened AML

cell line proliferation, cell cycle alternation, and apoptosis

enhancement in vitro. Dedicator of cytokinesis 1(DOCK1) is the

dedicator of cytokinesis proteins and the guanine nucleotide

exchange factors specific to small Rho family G proteins.

According to Sze-Hwei Lee et al. (50), highly expressed DOCK1

led to worse AML prognosis, and higher DOCK1 expression

exhibited an obvious relevance to older age, higher platelet and

peripheral blast counts, intermediate-risk cytogenetics, FLT3-ITD,

MLL-PTD and PTPN11, NPM1, RUNX1, ASXL1 and DNMT3A

mutations. Solute carrier family 14 member 1 (SLC14A1) is a gene

that encodes a protein that mediates urea transport in erythrocytes

(51). Through targeting SLC14A1, ARHGAP5 and PIK3CA, miR-

10a-3p may be involved in the development of FLT3 mutation in

adult AML (52). Solute carrier family 25 member 1(SLC25A1) is a

mitochondrial carrier that facilitates the flow of citrate/isocitrate in

mitochondria in exchange for the entry of malate in the cytoplasm

(53, 54). According to a report, prognostic signature associated with

SLC25A1 denotes AML patients worse prognosis (55). On that

account, UCP 2, DOCK 1, SLC14A1, and SLC25A1 show important
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prognostic value in AML, but subsequent studies are still needed to

explore their functions in AML.

The HLA correlation analysis revealed the highly expressed

HLA in the high-risk group, which had a worse prognosis, and the

two risk groups presented obvious difference in the expressions of

the 14 immune checkpoints, 20 HLA family genes, and IPS.

Immune checkpoint molecules, inhibitory and stimulatory, refer

to ligand-receptor pairs that inhibit or stimulate the immune

responses (56). Luca Vago et al. (57) conducted studies to test the

latest immunotherapies for the specific targeting of AML cells

(antibody therapy and cellular therapy, etc.) or the broader

reactivation of antileukemia immunity (vaccines and checkpoint

b l o c k a d e , e t c . ) , w h i c h c omb i n e s c omp l emen t a r y

immunotherapeutic strategies with chemotherapeutics or other

pharmacotherapies. Rikako Tabata et al. (58) demonstrated the

underlying clinical benefits exhibited by immuno-oncology (IO)

therapy specific to AML and ICIs with or without conventional

chemotherapy. These prove the certain efficacy of immunotherapy

in AML. Immune checkpoint, HLA and IPS are different in the two

risk groups, suggesting their mediating roles in AML prognosis.

Hence, the immune microenvironment of AML offers theoretical

basis for immunotherapy of AML.

In the study, the predicted drugs are Erlotinib, Dasatinib,

BI.2536, and Bortezomib, etc. Erlotinib, as a type of tyrosine

kinase inhibitor, did not achieve a good response in AML

patients in pilot study (59). Dasatinib is a type of kinase inhibitor,

and has the function of inhibiting BCR-ABL, Src family kinases, c-

Kit, and platelet-derived growth factor receptor kinase. Due to the

inhibitory effect on BCR-ABL, it is usually used for treating chronic

myeloid leukemia (CML) and Philadelphia chromosome-positive
FIGURE 7

The discrepancies of drug sensitivity between high- and low-risk groups. The lower the log2(IC50) value, the more sensitive the groups of patient
was to the drug. IC50, half-maximal inhibitory concentration.
TABLE 2 The results of qRT-PCR.

Normal AML P value

DOCK1 1.2828 ± 0.6249 4.4652 ± 1.4656 0.0072

SLC14A1 1.7453 ± 1.0774 0.208. ± 0.1413 0.03

SLC25A1 1.1357 ± 0.5504 3.5250 ± 1.1734 0.0102

UCP2 1.0428 ± 0.2490 1.6593 ± 0.6231 0.1158
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acute lymphoblastic leukemia. A subpopulation of AML patients

show BCR-ABL expression. Patients with unselected AML present

remarkably mixed clinical responses to dasatinib, which shall be

validated in larger-scale studies (60). BI.2536 is a newly discovered

Plk inhibitor capable of inducing mitotic arrest and apoptosis.

According to the randomized, open-label, phase I/II trial, clinical

activity in patients treated with single-agent BI 2536 provides the

first evidence of the potential therapeutic value of targeted Plk in

patients with relapsed refractory AML (61). Bortezomib,

proteasome inhibitor, is the mainstream drug for treating various

myeloma and mantle cell lymphoma. AML patients give a series of

different clinical responses to the chemotherapy regimens that

combine bortezomib, and some cases show a complete remission

rate over 80% (62). On these account, dasatinib, BI.2536, and

bortezomib may be applicable for treating AML, which shall be

more deeply concerned in future studies.

In summary, using bioinformatic methods, this study has

identified prognostic genes for AML and constructed a prognostic

model associated with m6A and ERGs. Differential analyses were

conducted between high and low-risk groups, evaluating immune

cell infiltration, immune therapy response, functional enrichment,

and drug sensitivity. However, the study has discernible limitations.

The analysis predominantly relies on a constrained number of

samples from public databases, highlighting the imperative need

for an expanded sample size. While gene expression levels have

been validated through qRT-PCR, the requisite further verification

and elucidation of potential molecular mechanisms necessitate

animal experiments. Moreover, the analyses pertaining to

immune therapy and drug sensitivity in the study require clinical

validation to ascertain their clinical value further. Such exploration
Frontiers in Immunology 12
will constitute the main thrust of our ensuing research efforts.

Ultimately, our findings furnish researchers with a novel theoretical

framework for delving deeper into the relationship between m6A

regulatory factors, efferocytosis, and AML, thereby providing new

targets for enhancing the prognosis and treatment of AML.
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