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Microbiology and Hygiene, University of Ulm, Ulm, Germany, 4Institute for Infectious Diseases,
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Introduction: Streptococcus agalactiae (Group B Streptococcus, GBS) is a

leading pathogen of neonatal sepsis. The host-pathogen interactions

underlying the progression to life-threatening infection in newborns are

incompletely understood. Macrophages are first line in host defenses against

GBS, contributing to the initiation, amplification, and termination of immune

responses. The goal of this study was to compare the response of newborn and

adult monocyte-derived macrophages (MDMs) to GBS.

Methods: Monocytes from umbilical cord blood of healthy term newborns and

from peripheral blood of healthy adult subjects were cultured with M-CSF to

induce MDMs. M-CSF-MDMs, GM-CSF- and IFNg-activated MDMswere exposed

to GBS COH1, a reference strain for neonatal sepsis.

Results: GBS induced a greater release of IL-1b, IL-6, IL-10, IL-12p70 and IL-23 in

newborn compared to adult MDMs, while IL-18, IL-21, IL-22, TNF, RANTES/CCL5,

MCP-1/CCL2 and IL-8/CXCL8 were released at similar levels. MDM responses to

GBS were strongly influenced by conditions of activation and were distinct from

those to synthetic bacterial lipopeptides and lipopolysaccharides. Under similar

conditions of opsonization, newborn MDMs phagocytosed and killed GBS as

efficiently as adult MDMs.

Discussion: Altogether, the production of excessive levels of Th1- (IL-12p70),

Th17-related (IL-1b, IL-6, IL-23) and anti-inflammatory (IL-10) cytokines is

consistent with a dysregulated response to GBS in newborns. The high

responsiveness of newborn MDMs may play a role in the progression of GBS

infection in newborns, possibly contributing to the development of life-

threatening organ dysfunction.

KEYWORDS

newborn, group B streptococcus, phagocytosis, cytokine, macrophage, innate
immunity, streptococcus agalactiae
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Introduction

Every year, 2.5 million children aged less than five years,

including over half a million newborns die from sepsis (1, 2).

Despite improvements in perinatal care, Streptococcus agalactiae

(Group B Streptococcus, GBS) remains a leading pathogen in early-

life, and a major cause of neonatal sepsis (3–5). The mortality rate of

GBS neonatal sepsis is 5% in high-income countries and 20%

globally, and long-term disability occurs in 20% of survivors (4, 6,

7). It is believed that the developmental status of the immune system

of neonates plays a key role in the susceptibility to GBS disease (8).

Yet, our limited knowledge of the reasons underlying the transition

from colonization by GBS to invasion and progression to life-

threatening infection hampers the development of innovative

strategies targeting GBS disease.

To ensure protection against infection, newborns rely mainly on

their innate immune system and bioactive molecules (such as

immunoglobulins and antimicrobial peptides) transmitted from the

mother through the placenta in utero or through breastmilk

postnatally (9, 10). Quantitative and qualitative differences between

the neonatal and the adult innate immune systems have been

described (9, 10). Concentrations of complement proteins and other

antimicrobial peptides are reduced in newborns. In addition,

recruitment of neutrophils to sites of infection and ability to

phagocytose and kill pathogens are limited. Newborn dendritic cells

and monocytes exposed to lipopolysaccharides (LPS) release lower

amounts of the pro-inflammatory and Th1-polarizing cytokines tumor

necrosis factor (TNF), IL-1b, IL-12p70, but similar or even higher

levels of Th17-polarizing and anti-inflammatory cytokines IL-6, IL-23

and IL-10 compared to adult cells (11–16). However, the neonatal

immune responses to GBS might differ from responses to purified

microbial products (17–20). Moreover, newborns affected by GBS

disease have strong systemic pro- and anti-inflammatory responses

(21, 22), consistent with the observation that a dysregulated host

response to infection contributes to the pathogenesis of sepsis (23).

Macrophages are distributed across all tissues, serving as

resident innate immune cells (24). The differentiation, activation

and function of macrophages are shaped by environmental cues,

spanning from the induction of classically activated pro-

inflammatory M1 macrophages to the promotion of alternatively

activated pro-resolving/anti-inflammatory M2 macrophages (25).

Macrophages play a crucial role to orchestrate host immunity and

inflammatory response with the release of a large panel of cytokines

(24). In murine models of pneumonia, newborn alveolar

macrophages have a lower capacity to phagocytose and kill GBS

compared to adult cells, suggesting that reduced macrophage

responses might contribute to the vulnerability of newborns to

this pathogen (26, 27). Yet, studies investigating the responses of

human newborn macrophages to GBS are lacking.

Given the importance of macrophages in host defenses against

bacteria and in the pathogenesis of sepsis (23), a deeper

understanding of the interactions between GBS and newborn

macrophages is needed. We developed a robust in vitro model to

compare the responses of primary human newborn and adult

monocyte-derived macrophages (MDMs) exposed to GBS. The
Frontiers in Immunology 02
phagocytosis, bacterial killing, production of cytokines and

viability of MDMs was quantified under different conditions of

macrophage activation. Here, we report a picture consistent with a

dysregulated cytokine response with a conserved capacity to

phagocytose and kill GBS in newborns.
Materials and methods

Ethical statement

The study protocol was approved by the ethics committee of the

Canton de Vaud, Switzerland (CER-VD, project #2019-01772).

Written informed consent was obtained from the mothers for the

collection of umbilical cord blood and from adult volunteers for

peripheral blood.
Blood samples

Umbilical cord blood was collected from 20 healthy term

newborns by puncture of placental vessels, after delivery of the

placenta. Blood was obtained from 18 healthy adult volunteers (age

20-59 years) by puncture of a peripheral vein. S-Monovettes®

containing EDTA (Sarstedt AG& Co. KG) were used to collect blood.
Isolation, culture and activation of cells

Mononuclear cells were isolated from blood by gradient density

centrifugation using Ficoll-Paque™ PLUS solution (GE

Healthcare). CD14+ monocytes were purified from mononuclear

cells by positive selection using magnetic microbeads coupled to

anti-human CD14 antibodies (Miltenyi Biotec) (28–30). Cells were

incubated with Pacific Blue™ anti-human CD14 antibody

(BioLegend) to determine the purity of each monocyte

preparation. Data were acquired using an Attune Nxt Flow

Cytometer (ThermoFisher) and analysed using FlowJo (version

10.7, FlowJo LLC). For experiments, we only used monocyte

preparations with a purity above 90%. The viability of

mononuclear cells and monocytes was determined by trypan blue

exclusion using a CountessTM Automated cell counter

(Invitrogen). Monocytes (105 cells/well) were cultured in 96 well

plates for seven days at 37°C, 5% CO2, in RPMI 1640

(ThermoFisher) supplemented with 10% native human serum

(HS, from human male AB plasma, Sigma-Aldrich Corp.), 1%

penicillin-streptomycin (ThermoFisher) and 50 ng/ml human

macrophage colony-stimulating factor (M-CSF, PeproTech EC

Ltd.) to induce their differentiation into monocyte-derived

macrophages (MDMs). After 7 days, the medium was changed to

RPMI containing 10% HS and different concentrations ranging

from 10 to 100 ng/ml (50 ng/ml if not otherwise stated) of human

M-CSF, granulocyte-macrophage colony-stimulating factor (GM-

CSF, PeproTech EC Ltd.) or interferon gamma (IFNg, PBL Assay

Science) (30). Cells were incubated for 24 hours to induce GM-CSF-
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https://doi.org/10.3389/fimmu.2023.1268804
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ravi et al. 10.3389/fimmu.2023.1268804
or IFNg-activated MDMs (GM-CSF-MDMs, IFNg-MDMs), or

resting macrophages (M-CSF-MDMs) (31).
Preparation of GBS COH1

All experiments were performed with GBS COH1 (American

Type Culture Collection BAA-1176), a serotype III sequence type 17

reference strain obtained from a newborn with sepsis (32). We

incubated bacteria overnight at 37°C, with 5% CO2 in Brain Heart

Infusion (BHI, ThermoFisher) broth. New tubes containing BHI

medium were inoculated with overnight cultures (1:40) and

incubated for two hours, to reach mid-log phase of growth,

corresponding to 6 x 108 bacteria/ml. Bacteria were washed and

resuspended in ice-cold phosphate-buffered saline solution (PBS) at

2 x 105 - 107 bacteria/100 μl. GBS was plated on Columbia III agar

with 5% sheep blood (BD Biosciences) to determine the

concentration of our bacterial culture. The minimum inhibitory

concentration (MIC) of GBS COH1 to gentamicin was 64 μg/ml.

MIC was determined by overnight BHI liquid cultures of GBS

COH1 in 96 well plates (37°C, 5% CO2) with serial dilution of

gentamicin (Sigma-Aldrich) ranging from 0.5 to 512 μg/ml. At the

end of incubation, proliferation of bacteria was determined by

optical density (O.D. 600 nm).
Cytokine measurements

M-CSF-, GM-CSF- and IFNg-MDMs were exposed to 107 GBS

per well or 0.2 μg/ml lipopolysaccharide (LPS, Invivogen), or 2 μg/ml

Pam3CysSerLys4 (Pam3CSK4, Invivogen). After one hour of

incubation, we added gentamicin to reach a final concentration of

100 μg/ml. Cell-culture supernatants were collected after 18 hours to

quantify cytokines by ELISA (BD Biosciences, for human TNF) and

by ProcartaPlex immunoassays (Human Custom ProcartaPlex 16-

plex, Invitrogen, for IL-1b, IL-1RA, IL-6, IL-8, IL-10, IL-12p70, IL-18,
IL-20, IL-21, IL-22, IL-23, IL-27, MCP-1, MIF, RANTES, and IFNb).
Gentamicin protection assay

The principle behind this method is to count bacteria (colony-

forming units: CFU) inside macrophages after precise intervals of

time in order to determine phagocytosis and intracellular killing of

bacteria (33). Gentamicin is used to kill bacteria that are outside but

not those that are inside macrophages, preventing extracellular

growth of bacteria. M-CSF-, GM-CSF-, and IFNg-MDMs in 96

well plates were exposed to 2 x 105 GBS/well to determine

phagocytosis and intracellular killing. Plates were centrifuged 15

minutes at 50 RCF and 37°C to maximize contact between bacteria

and MDMs, and incubated for 45 minutes. Cells were washed twice

with warm PBS, and incubated 30 minutes in RPMI 10% HS

containing 10-100 ng/ml M-CSF, GM-CSF or IFNg and 100 μg/

ml gentamicin to kill the remaining extracellular bacteria (33).

Phagocytosis was determined after a washing step and lysis of

MDMs with sterile water followed by plating of serial dilutions of
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(% phagocytosis =   mean of counted CFU
initial inoculum ). A second and a third plate

were incubated with RPMI 10% HS, 20 μg/ml gentamicin and 10-

100 ng/ml M-CSF, GM-CSF or IFN-g for 3 and 18 hours.

Intracellular bacteria were quantified as described above, and data

was presented relative to the number of phagocytosed bacteria

(% survival =   mean of CFU in phagocytosis
mean of CFU in survival ).

To validate the model, we quantified by plating the extracellular

bacteria remaining after antibiotic treatment and washing of cell

cultures. We also quantified the intracellular concentration of

gentamicin by fluorescence polarization immunoassay (FPIA)

using a Cobas Integra 400 plus (Roche). In additional validation

steps, we inhibited phagocytosis by replacing HS with heat-

inactivated fetal bovine serum (FBS, HyClone ThermoFisher),

and by treating MDMs with 1, 5 and 10 μM cytochalasin D

(Zigosporium mansonii, Merck & Cie), 1 and 10 μM oligomycin

(Streptomyces diastatochromogenes, Sigma-Aldrich), and 10 and 50

mM 2-deoxy-D-glucose (2-DG, Roth AG) alone or in combination

for 30 minutes (cytochalasin D and FBS) or one hour (oligomycin

and 2-DG) before exposition to GBS.
Fluorescence microscopy

GBS was stained by incubating bacteria for 1 hour at 25°C with

fluorescein isothiocyanate (FITC), followed by four washing steps

(34). MDMs were exposed to FITC-labeled GBS and pictures of

cells were taken at 1 hour with an EVOS M7000 Imaging System

(ThermoFisher). Phagocytosis of FITC-labeled GBS was quantified

in 100 macrophages. The viability of MDMs was assessed in

cytokine (MOI 100) and inhibitor (MOI 2) plates, using the

LIVE/DEAD™ Cell Imaging kit (Life-Technologies). The number

of live and dead MDMs was quantified based on analysis of the

pictures acquired with the EVOS M7000 Imaging System.
Statistical analysis

Analyses and graphs were performed using GraphPad Prism

(GraphPad Software 9.5.1) and Microsoft Excel software. Data are

expressed as means ± SEMs. Groups were compared by two-way

ANOVA followed by Dunnett’s and Sidak’s multiple comparison

tests, to compare each experimental condition with the control

condition within the same donor group and to compare the

newborns to the adults for a same experimental condition. Results

were considered statistically significant when P < 0.05.
Results

Activation of newborn and adult
MDMs by IFNg increases GBS-induced
TNF production

We compared the capacity of resting M-CSF-MDMs, GM-CSF-

activated, and IFN-g-activated newborn and adult MDMs to release
frontiersin.org
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TNF in response to live GBS COH1 (Figure 1). In comparison with

resting M-CSF-MDMs, IFNg-activated newborn and adult MDMs

secreted 3.3- and 4.5-fold higher amounts of TNF in response to

GBS. The trends towards more TNF production by GM-CSF-

activated compared to resting MDMs and towards a greater

production of TNF by newborn compared to adult MDMs did

not reach statistical significance.
Newborn MDMs release higher level of
IL-1b, IL-6, IL-10, IL-12p70 and IL-23 than
adult MDMs in response to GBS

To have a broad view on host responses, we quantified by

multiplex immunoassay the secretion of 16 cytokines and

chemokines by newborn and adult M-CSF-, GM-CSF- and IFNg-
MDMs exposed to live GBS COH1 (Figure 2). We presented the

cytokines induced by GBS with a difference between newborn and

adult MDMs in Figure 2A, the cytokines induced by GBS with no

difference between newborn and adult MDMs in Figure 2B, and the

cytokines not induced by GBS in Figure 2C. Exposure to GBS led to

the secretion of IL-1b, IL-6, IL-10, IL-12p70, IL- 18, IL-21, IL-22,
IL-23, and RANTES/CCL5, but not IL-1RA, IL-8/CXCL8, IL-20, IL-

27, IFN-b, MCP-1/CCL2 and MIF in newborn and adult MDMs.

GBS-induced secretion of IL-1b, IL-12p70 and IL-23 was more

elevated in IFNg- than in M-CSF-MDMs. Compared to adults,

newborn M-CSF-MDMs exposed to GBS produced higher levels of

IL-6 (3.8-fold) and IL-10 (3-fold), newborn GM-CSF-MDMs

produced higher levels of IL-6 (4.5-fold), and newborn IFNg-
MDMs produced higher levels of IL-1b (4.9-fold), IL-12p70 (5.7-

fold), IL-10 (3.8-fold) and IL-23 (1.8-fold). To evaluate the

specificity of host responses to GBS, we exposed IFNg-MDMs to

the Toll-like receptor (TLR)-4 ligand LPS and the TLR1/2 ligand
Frontiers in Immunology 04
Pam3CSK4 (Supplementary Figure 1). LPS induced a higher

production of IFNb (2.5-fold) and IL-10 (10.6-fold) in newborn

compared to adult IFNg-MDMs. No difference in the secretion of

the 16 cytokines and chemokines was observed between newborn

and adult IFNg-MDMs exposed to Pam3CSK4. We quantified the

number of live and dead cells 18 hours after exposure to GBS to

investigate a potential impact of cell survival on the differential

responses of newborn and adult MDMs. Viability at 18 hours was

95 ± 2% and 92 ± 4% for newborn and adult M-CSF-MDMs, 94 ±

5% and 93 ± 6% for newborn and adult GM-CSF-MDMs, and 84 ±

5% and 87 ± 8% for newborn and adult IFNg-MDMs (Figure 3).

Normalizing cytokine levels according to the number of cells in

each well (Supplementary Figure 2) did not modify our findings.
Newborn and adult MDMs have a similar
rate of phagocytosis and killing of GBS

We analyzed the capacity of newborn and adult MDMs to

phagocytose and kill GBS COH1 using a gentamicin protection

assay. Newborn and adult M-CSF-MDMs phagocytosed 25 ± 5%

and 27 ± 6% of the inoculum (Figure 4A). At 3 hours, 53 ± 12% and

44 ± 12% of phagocytosed bacteria survived in newborn and adult

M-CSF-MDMs (Figure 4B). At 18 hours, survival of bacteria was

drastically reduced to < 2% (Figure 4C), showing that both newborn

and adult MDMs efficiently killed internalized bacteria. Activation

of MDMs by GM-CSF or IFNg at concentrations between 10 and

100 ng/ml did not influence phagocytosis or killing of GBS. We

confirmed the absence of difference in phagocytosis between

newborn and adult M-CSF-MDMs by quantifying 84 ± 13 and

100 ± 12 FITC-labeled GBS phagocytosed per 100 newborn and

adult MDMs (Figure 4D).

To validate our observations, we addressed potential

methodological drawbacks: non-specific killing of intracellular

bacteria by internalized gentamicin, and non-exhaustive killing of

extracellular and membrane-bound bacteria. Intracellular

gentamicin concentrations measured in newborn and adult M-

CSF-MDMs at the end of the killing assay were below 0.1 μg/ml

(Supplementary Table I), in line with the notion that gentamicin has

a slow rate of entry into eukaryotic cells (35). Since we measured the

minimal inhibitory concentration (MIC) of gentamicin for GBS

COH1 to be 64 μg/ml, intracellular bacteria could not be affected by

gentamicin. Exhaustive killing of extracellular and membrane-

bound bacteria was verified by plating the cell culture supernatant

3 and 18 hours after gentamicin treatment. For newborn and adult

MDMs, the proportion of live extracellular bacteria was < 0.5% of

the inoculum used for infection (Supplementary Table II).
Opsonization enhances while inhibition of
actin polymerization or energy metabolism
prevents phagocytosis of GBS

The coating of pathogens with opsonins, followed by

reorganization of the actin cytoskeleton, and metabolic

reprogramming of macrophages are key steps to ensure optimal
FIGURE 1

Activation of newborn and adult MDMs by IFNg increases GBS-
induced TNF production. Newborn and adult resting (M-CSF-) and
GM-CSF- or IFNg-activated MDMs were exposed to GBS (107

bacteria, MOI 100). The control condition corresponds to 50 ng/ml
M-CSF-MDMs not exposed to GBS. Concentrations of TNF were
measured in cell culture supernatants collected at 18 hours. Results
are expressed as mean ± SEM of 8 newborns and 8 adults. Analysis
by two-way ANOVA followed by Dunnett’s multiple comparison test
to assess differences with the control condition of the same age
group is presented. *P < 0.05 vs M-CSF-MDMs exposed to GBS.
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B

C

A

FIGURE 2

Distinct pattens of cytokine and chemokine release by newborn and adult MDMs in response to GBS. Newborn and adult resting (M-CSF-) and GM-
CSF- or IFNg-activated MDMs were exposed to GBS (107 bacteria, MOI 100). The control condition corresponds to M-CSF-MDMs not exposed to
GBS. Concentrations of M-CSF, GM-CSF and IFNg were 50 ng/ml. Concentrations of 16 cytokines/chemokines were measured in cell culture
supernatants collected at 18 hours. (A) Cytokines differentially induced in newborn and adult MDMs: IL-1b, IL-6, IL-10, IL-12p70, IL-23. (B) Cytokines/
chemokines induced at similar levels in newborn and adult MDMs: IL-18, IL-21, IL-22, RANTES/CCL5. (C) Cytokines/chemokines not induced by GBS,
neither in newborn nor in adult MDMs. Results are expressed as mean ± SEM of 8 newborns and 8 adults (except for IL-1RA in panel C, n = 2-3).
Analysis by two-way ANOVA followed by Sidak’s multiple comparison test to assess differences for the same condition between newborns and
adults is presented. *P < 0.05, **P < 0.01.
Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2023.1268804
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ravi et al. 10.3389/fimmu.2023.1268804

Frontiers in Immunology 06
phagocytosis of bacteria (36). Given that previous research has

focused on murine macrophages and cell lines, we investigated the

impact of opsonization, actin polymerization, glycolysis and

oxidative phosphorylation on the capacity of newborn and adult

MDMs to phagocytose GBS. We quantified GBS uptake in the

presence of heat-inactivated FBS, which contains very low

concentrations of opsonins (37). Replacement of native HS by

heat-inactivated FBS decreased GBS phagocytosis from 25 ± 7%

to 8 ± 6% in newborn and from 26 ± 6% to 5 ± 5% in adult M-CSF-

MDMs (Figure 5A). Pre-incubation of M-CSF-MDMs with 1, 5 and

10 μM cytochalasin D, an inhibitor of actin polymerization,

hindered phagocytosis in a dose-dependent manner. Cytochalasin

D at 10 μM reduced phagocytosis by newborn and adult MDMs

from 26 ± 6% to 10 ± 5% and from 28 ± 6% to 9 ± 2% (Figure 5B),

without significantly affecting cell viability (Figure 5C). Inhibition

of glycolysis with 2-DG or inhibition of oxidative phosphorylation

by oligomycin did not affect GBS phagocytosis (Figure 5D).

However, the combination of both inhibitors elicited a large and

dose-dependent reduction of phagocytosis (Figure 5D), with a 39%
FIGURE 3

Newborn and adult MDMs maintain the same viability after exposure
to GBS. Newborn and adult resting (M-CSF-) and GM-CSF- or IFNg-
activated MDMs were exposed to 107 GBS (MOI 100). The control
condition corresponds to M-CSF-MDMs not exposed to GBS.
Concentrations of M-CSF, GM-CSF and IFNg were 50 ng/ml. The
number of live and dead newborn and adult MDMs was quantified
by fluorescence microscopy after 18 hours of incubation with GBS.
Results are expressed as mean ± SEM of 7 newborns and 7 adults.
Analysis by two-way ANOVA followed by Sidak’s multiple
comparison test to assess differences for the same condition
between newborns and adults is presented. *P < 0.05.
B

C

DA

FIGURE 4

Newborn and adult MDMs phagocytose and kill GBS at a similar rate. Newborn and adult resting (M-CSF-) and GM-CSF- or IFNg-activated MDMs
were exposed to 2 x 105 GBS (MOI 2) during 1 hour. Phagocytosis of GBS was quantified by plating cell lysates (A). Intracellular survival of GBS was
quantified by plating cell lysates at 3 (B) and 18 hours (C). Phagocytosis of GBS was visualized by fluorescence microscopy. Representative images
and quantification of FITC-labelled GBS internalized by newborn and adult M-CSF-MDMs are shown, with a 100x magnification. The white arrows
indicate phagocytosed bacteria. (D). Results are expressed as mean ± SEM of 7 newborns and 7 adults (A–C) and 3 newborns and 3 adults (D).
Analysis by two-way ANOVA followed by Sidak’s multiple comparison test to assess differences for the same condition between newborns and
adults is presented. *P < 0.05.
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± 18% and 39% ± 19% decrease in phagocytosis at 10 mM 2-DG

and 1-10 μM oligomycin in adult MDMs, and a 98 ± 0.5% and 98%

± 1%, 96% ± 2% and 97% ± 1% decrease at 50 mM 2-DG and 1-10

μM oligomycin for newborn and adult M-CSF-MDMs. Both

inhibitors, either alone or in combinations, at concentrations up

to 50 mM for 2-DG and 10 μM for oligomycin had no impact on

cell viability (Figure 5E).
Discussion

GBS causes a major burden of disease in early-life, including

stillbirths, neonatal and infant mortality, and long-term disability

(3–6). Here, we show that GBS induces a distinct host response in

newborn and adult MDMs, with differences depending on the

conditions of macrophage activation. Overall, newborn MDMs

exposed to GBS release higher amounts of Th1, Th17 and anti-

inflammatory cytokines and phagocytose and kill the bacteria to the

same extent as adult MDMs.

Depending on the state of macrophage activation, live GBS

triggers a greater release of IL-1b, IL-6, IL-10, IL-12p70, and IL-23
Frontiers in Immunology 07
in newborn compared to adult MDMs. IL-12p70 is necessary to

drive the differentiation of Th1 cells, while IL-1b, IL-6 and IL-23 are
required to induce and maintain Th17 cell differentiation (38). IL-

10 dampens inflammatory responses, thereby limiting tissue

damage. Therefore, our results point towards greater Th1, Th17,

and anti-inflammatory responses in newborn MDMs. These

findings contrast with previous studies indicating that neonatal

monocytes and dendritic cells exposed to TLR 1/2, 3, 4, 7/8, 8 and 9

agonists release lower amounts pro-inflammatory and Th1-

polarizing cytokines than adult cells (11–16). The most consistent

observation reported in the literature is the reduced capacity of

neonatal innate immune cells to release IL-12p70 in response to

TLR agonists (12, 15, 16, 39). Innate immune cells detect live

bacteria through multiple pattern recognition receptors. Studies

conducted in animal models and immortalized cell lines indicate

that innate immune cells sense GBS through TLR2/6, TLR7, TLR8,

TLR9, cyclic GMP-AMP synthase (cGAS) and NOD-like receptor

family, pyrin domain containing 3 (NLRP3) (40–46). Mixed

populations of newborn mononuclear cells (MNCs) produce

lower levels of IL-10, IL-18 and IFNg but similar levels of TNF

and IL-6 compared to adult cells in response to heat killed GBS (47–
B

C

D

E

A

FIGURE 5

Opsonization, actin polymerization and energy metabolism contribute to phagocytosis of GBS by newborn and adult MDMs. Newborn and adult M-
CSF-MDMs were pre-incubated with 10% native human serum (HS) (A-E) or 10% heat-inactivated fetal bovine serum (FBS) (A), with increasing
concentrations of cytochalasin D (cytoD) for 30 minutes (B, C), oligomycin (D, E) and 2 deoxy-glucose (2-DG) (D, E) for one hour, or vehicle (DMSO
for oligomycin or cytoD) and then exposed to 2 x 105 GBS (MOI 2) during 1 hour. Phagocytosis of GBS was quantified by plating cell lysates (A, B, D).
The number of live and dead MDMs was quantified by fluorescence microscopy (C, E). Results are expressed as mean ± SEM (A–C, E) or normalized
to controls (D) of 5 newborns and 5 adults. Analysis by two-way ANOVA followed by Dunnett’s multiple comparison test to assess differences with
the control condition within the same age group is presented. *P < 0.05, **P < 0.01 vs controls.
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50). Our results clearly show that cytokine responses of MDMs to

live GBS are different from those to purified TLR2 or TLR4 agonists

or heat inactivated bacteria, emphasizing the importance of using

live bacteria in experimental models of infection.

Murine newborn macrophages have reduced capacities to

phagocytose and kill bacteria, including GBS (26, 27, 51, 52).

Conversely, human newborn and adult MNCs (19, 53) and

MDMs (our data) internalize and eliminate GBS to the same

extent. Opsonization enhances phagocytosis of GBS by murine

macrophages and human MNCs from adults (54, 55). Our results

suggest that opsonization may play an important role in promoting

the uptake of GBS by primary human MDMs. In addition, newborn

MDMs exhibit comparable efficiency as adult MDMs in

internalizing GBS across various opsonization conditions. This

suggests that newborn MDMs do not have an intrinsically

reduced capacity to phagocytose GBS. Phagocytosis is a high

energy-requiring process. During bacterial infection, a metabolic

shift reprograms macrophages towards aerobic glycolysis (56).

While high glycolytic activity is associated with efficient

phagocytosis in murine macrophages (57–59), the impact of

oxidative phosphorylation on phagocytosis has not been

investigated. We report that inhibitors of both glycolysis and

oxidative phosphorylation are required to reduce phagocytosis by

newborn and adult MDMs, in line with the importance of metabolic

pathways to supply the energy required for the uptake of bacteria.

Previous studies have shown that GBS can survive in macrophage

cell lines (60–62) and can induce macrophage cell death (63, 64).

Our data indicate that primary human MDMs from newborns and

adults are able to fully eliminate phagocytosed GBS without an

impact on the viability of MDMs. Therefore, the vulnerability of

neonates to GBS disease may not be related to a reduced capacity of

macrophages to phagocytose and kill the bacteria.

During infection, Th1, Th17 and anti-inflammatory responses

are required to initiate, amplify, and terminate the responses

required to clear pathogens while minimizing tissue damage. Th1

CD4+ T cells provide protection against intracellular pathogens

through the production of IFNg and IL-2. IFNg promotes bacterial

clearance of GBS in newborn mice by increasing the bactericidal

capacity of whole blood and peritoneal macrophages (62, 65). Given

that activation by IFNg does not increase the bactericidal capacity of
human MDMs, the strong production of Th1 cytokines by newborn

MDMs in vitro may not translate into enhanced protective

responses during GBS infection. Th17 CD4+ T cells confer

protection against bacteria through early recruitment of

neutrophils and other inflammatory cells (66). However, naïve

human neonatal CD4+ T cells exposed to IL-1b, IL-6 and IL-23

preferentially adopt an immunoregulatory Th22 phenotype, rather

than a stereotypic Th17 phenotype (67). The higher production of

Th1, Th17 and anti-inflammatory cytokines in newborns compared

to adult MDMs in response to GBS challenges the concept that the

neonatal immune system is poorly responsive, in line with recent

literature (29, 68, 69). This may represent an age-adapted protective

response to a dangerous pathogen. Alternatively, our findings are

consistent with a dysregulated neonatal immune response to GBS.
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Indeed, a dysregulated host response, characterized by excessive

activation of the immune system, concomitantly with features of

immune suppression, plays a central role in the pathogenesis of

sepsis, and sepsis-related adverse outcomes in adults (23). In

accordance with this concept, GBS infection is associated with

strong systemic pro- and anti-inflammatory responses in

newborns (21, 22, 70).

Previous studies in humans have investigated mixed

populations of umbilical cord blood MNCs or monocyte-derived

cells, without a phenotypic characterization of differentiated cells or

validation of phagocytosis and killing assays. Several validation

steps ensured the robustness of our model. The viability of MDMs

obtained from highly purified preparations of CD14+ monocytes

was confirmed in each experiment. The production of a large

number of cytokines by MDMs was quantified in several

conditions of activation. We addressed the potential pitfalls of the

gentamicin protection assay by multiple validation experiments.

Our study has several limitations. An in vitro system does not

reflect the tissue-specific environment of macrophages in vivo. For

example, newborns have low circulating levels of opsonins (71). In

our experiments, the use of human adult serum or heat inactivated

FBS in the culture medium provided the same amount of opsonins

for newborn and adult MDMs, allowing to analyze their intrinsic

phagocytic capacities. However, we did not test the impact of

specific opsonins in the phagocytosis of GBS. Although birth is

the time of life when the risk of developing GBS infection is highest,

studying children could inform on changes reflecting the transition

from a newborn GBS-sensitive to an adult GBS-resistant immune

system. While GBS COH1 is a reference strain for neonatal studies,

it may not be representative of the strains that are causing GBS

infection nowadays. Moreover, we did not assess the mechanisms

underlying the differences in cytokine production observed between

newborn and adult MDMs.

In summary, we provide an extensive description of a robust

methodology aimed at evaluating the cytokine response and the

capacity of newborn and adult MDMs to phagocytose and kill GBS.

We show that newborn MDMs have an increased Th1- and Th17-

related cytokine response, together with enhanced release of IL-10

in response to GBS. Newborn MDMs do not have an intrinsically

reduced capacity to phagocytose or kill GBS. These findings indicate

that the neonatal innate immune system is highly responsive to

GBS, and point towards a dysregulated macrophage response to this

bacterium in newborns. This may have strong implications for the

understanding of the mechanisms underlying the progression

towards life-threatening organ dysfunction during GBS infection.

Additionally, our results could be relevant for the development of

immune modulating therapies.
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