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expression profile to identify
pathogenic mechanisms for
COVID-19 infection and
cutaneous lupus erythematosus

Zhenyu Gao1,2†, Xinchao Zhai1,2†, Guoqing Yan1,2, Yao Tian1,2,
Xia Huang1,2, Qingchao Wu1,2, Lin Yuan1* and Linchong Su1,2*

1Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda
Hospital of Hubei Minzu University, Enshi, China, 2Department of Rheumatology and Immunology,
Minda Hospital of Hubei Minzu University, Enshi, China
Objective: The global mortality rates have surged due to the ongoing

coronavirus disease 2019 (COVID-19), leading to a worldwide catastrophe.

Increasing incidents of patients suffering from cutaneous lupus erythematosus

(CLE) exacerbations after either contracting COVID-19 or getting immunized

against it, have been observed in recent research. However, the precise

intricacies that prompt this unexpected complication are yet to be fully

elucidated. This investigation seeks to probe into the molecular events inciting

this adverse outcome.

Method: Gene expression patterns from the Gene Expression Omnibus (GEO)

database, specifically GSE171110 and GSE109248, were extracted. We then

discovered common differentially expressed genes (DEGs) in both COVID-19

and CLE. This led to the creation of functional annotations, formation of a

protein-protein interaction (PPI) network, and identification of key genes.

Furthermore, regulatory networks relating to these shared DEGs and significant

genes were constructed.

Result:We identified 214 overlapping DEGs in both COVID-19 and CLE datasets.

The following functional enrichment analysis of these DEGs highlighted a

significant enrichment in pathways related to virus response and infectious

disease in both conditions. Next, a PPI network was constructed using

bioinformatics tools, resulting in the identification of 5 hub genes. Finally,

essential regulatory networks including transcription factor-gene and miRNA-

gene interactions were determined.

Conclusion:Our findings demonstrate shared pathogenesis between COVID-19

and CLE, offering potential insights for future mechanistic investigations. And the

identification of common pathways and key genes in these conditions may

provide novel avenues for research.

KEYWORDS

COVID-19, cutaneous lupus erythematosus, differentially expressed genes, regulatory
network, pathogenic mechanisms
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Introduction

Lupus erythematosus (LE) is identified as an autoimmune

condition characterized by enduring inflammation and includes a

multitude of subtypes such as systemic lupus erythematosus (SLE)

and cutaneous lupus erythematosus (CLE). CLE itself can be further

divided into distinct types like acute, subacute, chronic, and

intermittent (1). LE’s broad clinical presentations can range from

UV-triggered skin rash and widespread hair loss to ulcers, red to

discoid plaques, and scar formation (2). Based on a study conducted

in Sweden, the incidence of CLE is estimated to be around 4.0 per

100,000 (3). Interestingly, approximately 20% of CLE patients

evolve into SLE over a span of three to five years (4).

CLE is a skin-focused autoimmune disorder involving the

simultaneous activation of both innate and adaptive immune

systems (5). Triggered by a combination of genetic factors and, to

some extent, immunostimulatory elements like UV light, it results

in an autoimmune response against the skin’s surface layer (6).

Hallmarks of this reaction encompass cytotoxic lymphocyte and

plasmacytoid dendritic cell (pDC) infiltration into the basal

epidermal layer and apoptosis of native keratinocytes. Previous

studies confirm that type I/III interferons along with associated

cytokines, primarily CXCL10, serve as key proinflammatory

components in CLE development (7). Moreover, cytotoxic

CXCR3+ lymphocytes are lured to the injury site by the matching

chemokine CXCL10, mainly expressed in the lower epidermal

layers of active skin lesions, hence leading to keratinocyte cell

death (8). Genetic elements significantly contribute to CLE

progression. Past investigations highlight the essential link

between specific genes, such as HLA subtypes, TNF-a, and

complement promoter variants, and an increased propensity for

CLE (9, 10). In addition, a recent exhaustive genome-wide

association study comparing 183 CLE cases with a control group

of 1288 healthy individuals found polymorphisms in two genes,

casein kinase 2 and RPP21, displaying a significant association with

CLE vulnerability. However, despite recognizing several

contributors like autoimmune, genetic, molecular, environmental,

and drug-related factors in CLE pathogenesis, research

concentrating on the association between COVID-19 and CLE is

still scarce.

The epidemic sparked by the SARS-CoV-2 virus first came to

light in Wuhan, China, during December 2019. This infectious

calamity spread rapidly worldwide, bearing profound impact on

both international health status and socio-economic scenarios (11).

The World Health Organization (WHO) put forth an alarming

estimation of around 14.83 million unanticipated deaths globally, a

number that is 2.74 times the 5.42 million deaths officially

accredited to COVID-19 in the same timeframe (12).

Significantly, the incidence of skin manifestations in COVID-19

patients is projected to fluctuate between 1.8% and nearly 25%, with

these skin anomalies surfacing on various body regions (13, 14).

COVID-19 can be categorized into acute phase and chronic phase

(15). Clinical symptoms may vary from fever, cough to skin lesions,
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accompanied by changes in pro-inflammatory factors such as IFNs,

which share similarities with physiological and pathological

characteristics of CLE (15, 16). The transformed symptoms bear a

resemblance to those of cutaneous SLC. However, despite

recognizing several contributors like autoimmune, genetic,

molecular, environmental, and drug-related factors in CLE

pathogenesis, research concentrating on the association between

COVID-19 and CLE is still scarce.

Currently, there have been no research reports on the clinical

outcomes of CLE patients co-infected with COVID-19, nor are

there statistical data on COVID-19 prevalence among CLE patients.

Nevertheless, these gaps in knowledge do not preclude the potential

risks that COVID-19 may pose to individuals with CLE. Recently,

reports have cited a growing number of cases characterized by

cutaneous lupus flare following COVID-19 infection or COVID-19

immunization (17). Based on the currently available information, it

has been suggested that the interplay between the S protein of

SARS-CoV-2 and cytoplasmic RNA-binding proteins, coupled with

augmented interferon responses induced by COVID-19

vaccination, might potentially contribute to the exacerbation of

lupus disease symptoms (18). Nonetheless, the precise mechanism

underlying this phenomenon remains incompletely understood.

In pursuit of a novel understanding of the potential common

mechanisms between cutaneous lupus erythematosus (CLE) and

COVID-19, we embarked on a study aimed at exploring their

intersecting transcriptional landscapes and uncovering the pivotal

genes tied to CLE exacerbated by COVID-19. We harnessed the

information within two datasets from the GEO database

(GSE171110 and GSE109248), utilizing a blend of bioinformatics

and enrichment analyses to pinpoint shared Differentially

Expressed Genes (DEGs) and decipher their functional

contributions in both maladies. Additionally, leveraging the

STRING database and Cytoscape software (version 3.9.1), we

engineered a Protein-Protein Interaction (PPI) network and

conducted an in-depth investigation of gene modules to reveal

central hub genes. The findings from our research hold substantial

importance for understanding the intricate biological cogs that

drive these two diseases and could potentially set the stage for

exciting future research directions.
Materials and methods

Data collection

We obtained the transcriptomic datasets for GSE171110 and

GSE109248 from the GEO database (Gene Expression Omnibus,

https://www.ncbi.nlm.nih.gov/geo/). The GSE171110 dataset,

constructed on the GPL16791 platform, encompasses data from

44 individuals with COVID-19 and 10 healthy subjects. Similarly,

the GSE109248 dataset, created on the GPL10558 platform,

incorporates data from 25 CLE tissue samples and 14 healthy

tissue samples.
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Identification of differentially expressed
genes and common DEGs among
COVID-19 and CLE

In our quest to identify the DEGs separating COVID-19 and

HC subjects within the GSE171110 dataset, we adopted the use of

limma packages within the R programming language. By harnessing

this statistical tool, we could spotlight genes that fulfilled specific

threshold standards: a P value, adjusted for false discovery rate, of

less than 0.05 and an absolute log2 fold change (log2FC) reaching

1.0 or surpassing it, thus categorizing them as DEGs. In parallel, we

conducted an identical analytical procedure for the GSE109248

dataset to unveil DEGs distinguishing CLE and HC samples. To

illuminate the intersection of these datasets, we utilized the

VennDiagram package in R, which equipped us to pinpoint the

shared DEGs between GSE171110 and GSE109248.
Functional enrichment analysis of
common DEGs

In order to functionally categorize and illustrate the common

DEGs, we conducted an enrichment analysis using the GO (19) and

KEGG (20) databases. To accomplish this, we employed the

‘clusterProfiler’ and ‘org.Hs.eg.db’ packages in R (21). The

enrichment analysis encompassed three ontologies: BP, CC, and MF.

By leveraging these resources, we aimed to gain insights into the

functional roles and pathways associated with the identified DEGs.
Construction of protein-protein
interaction network

To carry out a thorough PPI network analysis of the pinpointed

DEGs, we turned to the STRING database. To guarantee the

integrity and reliability of the interactions, we imposed a stringent

requirement: the interaction score must exceed 0.4. This analytic

endeavor was accomplished using the Search Tool for the Retrieval

of Interaction Gene/Proteins (STRING), version 11.5, which is

publicly accessible via http://string-db.org/ (22). Following this,

we employed the Cytoscape software, specifically its version 3.9.1

(www.cytoscape.org/) (23), as our tool of choice to generate a visual

depiction of the PPI network for the DEGs that were consistently

identified across our analyses. By harnessing the capabilities of these

resources, we were equipped with a graphic interpretation of how

the DEGs interacted within the network.
Identification and network analysis of
hub genes

Using CytoHubba (24), an add-on of Cytoscape software, we

calculated the hub genes. To identify the final hub genes, we

employed five algorithms (Degree, MCC, MNC, Closeness, and

EPC) and the UpSetR package in R. Additionally, we used
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GeneMANIA (http://genemania.org), an online tool, to carry out

the network analysis of these discovered hub genes.
Construction of genes-TFs (transcription
factors) regulatory network

To analyze the transcriptional regulatory network (TRN), we

collect TF–gene interactions from the TRRUST (Transcriptional

Regulatory Relationships Unraveled by Sentence-based Text

mining, www.grnpedia.org) database. And the TRN was

visualized with Cytoscape software.
Recognition of gene-miRNA
regulatory network

In this study, we utilized miRTarbase databases (https://

mirtarbase.cuhk.edu.cn), which describe experimentally validated

miRNA-target interactions, to analyze miRNA gene regulations.

And the regulatory network was visualized with NetworkAnalyst

(www.networkanalyst.ca) online tool.
Diagnostic value of hub genes

The diagnostic performance of the hub genes for COVID-19

and CLE was assessed separately by constructing ROC curves and

calculating the area under the ROC curve (AUC) using the “pROC”

R packages.
Results

Analysis of DEGs and Common DEGs Between COVID-19

and CLE

Comparative analysis of case samples and HC samples allowed

us to determine DEGs, using set criteria (adjusted P < 0.05 and |

log2FC|≥ 1.0). In the dataset GSE171110, we found 3746 DEGs

consisting of 2542 up-regulated and 1204 down-regulated ones

(Refer to Figures 1A, C). Similarly, in the GSE109248 dataset, we

observed 1160 DEGs, with 755 being up-regulated and 405 down-

regulated (Refer to Figures 1B, D). Subsequently, we pinpointed 214

shared DEGs between GSE171110 and GSE109248 utilizing R’s

VennDiagram package (Refer to Figure 2A).
Gene ontology and KEGG pathway
enrichment analysis

The GO descriptors were organized into three distinct

ontologies: BP, CC, and MF. Through the course of our analysis,

the BP ontology revealed a marked enrichment of common DEGs

within pathways related to the body’s defensive reaction to viral

invasion, signaling mediated by cytokines, and viral processes.

Regarding the MF ontology, it was found that there was a
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significant enrichment of DEGs linked with functions like immune

receptor activity, the binding of double-stranded RNA, and

cytokine receptor activity. Additionally, in the CC ontology,

DEGs were notably linked with locations including the outer

layer of the plasma membrane, the collagen-enriched extracellular

matrix, and the membrane of secretory granules (Refer to Figure 2B

and Table 1). A group of 15 significant pathways emerged from our

KEGG pathway analysis, highlighting a significant presence of

common DEGs in conditions such as COVID-19, Measles,

infection by the Epstein-Barr virus, Influenza A, and Asthma (See

Figure 2C) (Refer to Table 2).
Protein-protein interaction network
construction and hub gene identification

Based on the 214 common DEGs, we constructed a protein-

protein interaction (PPI) network utilizing the STRING online

database. Subsequently, we employed Cytoscape software to

visualize the network, which revealed a total of 161 nodes and

1618 edges. The confidence score threshold was adjusted to 0.4 to

ensure the reliability of the interactions (Figure 3A). To further

identify the most influential genes within this network, we applied

the cytoHubba plugin, which computed the top 15 genes based on
Frontiers in Immunology 04
their network centrality measures. Among these genes, a subsequent

analysis using the UpSetR package allowed us to pinpoint five core

genes of particular significance: IRF7, IFIH1, RSAD2, IFIT1, and

IFIT3 (Figures 3B, C). These core genes play crucial roles in the

network and are potential key regulators in the context of the

analyzed conditions.
Functional enrichment analysis of
hub genes

From the GeneMANIA database, the functional interplay of the

five pivotal genes (IRF7, IFIH1, RSAD2, IFIT1, and IFIT3) revealed

diverse interaction forms. Physical interactions accounted for

77.64% of these interactions, co-expression relationships were

8.01%, predictions made up 5.37%, co-localization was 3.63%,

genetic interactions were 2.87%, pathways contributed 1.88%, and

shared protein domains made up 0.60%. In addition, the study

underscored the critical functions of these core genes in numerous

biological processes such as type I interferon responses, cellular

activities in response to type I interferon, viral reactions, interferon-

gamma responses, negative regulation of viral procedures, viral

genome replication, and cellular reactions to interferon-

gamma (Figure 3D).
B

C D

A

FIGURE 1

Analysis of gene expression of COVID-19 and CLE (A) Volcano plot of DEGs from GSE171110. (B) Volcano plot of DEGs from GSE109248. (C) The
heatmap of GSE171110. (D) The heatmap of GSE109248.
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B C

A

FIGURE 2

Examination of prevalent DEGs shared between COVID-19 and CLE (A) A Venn representation showing overlapping DEGs found in two datasets.
(B) Evaluation of GO enrichment for the common DEGs. (C) Analysis of KEGG pathway enrichment for these mutually identified DEGs. The color
distinction signifies the adjusted P-value, while the DEG counts are reflected by the bar’s length.
TABLE 1 Significantly enriched GO terms of common DEGs.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust

BP GO:0009615 response to virus 32/201 392/18800 2.66917E-19 7.92742E-16

BP GO:0051607 defense response to virus 27/201 290/18800 7.45774E-18 8.06478E-15

BP GO:0140546 defense response to symbiont 27/201 291/18800 8.14624E-18 8.06478E-15

BP GO:0045071 negative regulation of viral genome replication 13/201 57/18800 2.61594E-14 1.94234E-11

BP GO:0016032 viral process 27/201 418/18800 6.66757E-14 3.96054E-11

MF GO:0140375 immune receptor activity 14/207 148/18410 1.30215E-09 5.46902E-07

MF GO:0003725 double-stranded RNA binding 9/207 75/18410 1.59601E-07 3.35161E-05

MF GO:0004896 cytokine receptor activity 7/207 97/18410 0.000112094 0.01332374

MF GO:0042608 T cell receptor binding 3/207 10/18410 0.000158616 0.01332374

MF GO:0050786 RAGE receptor binding 3/207 10/18410 0.000158616 0.01332374

CC GO:0009897 external side of plasma membrane 23/210 455/19594 7.82588E-10 2.27733E-07

CC GO:0030667 secretory granule membrane 13/210 312/19594 3.39326E-05 0.004130128

(Continued)
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Construction of regulatory networks

We embarked on exploring the regulatory dynamics between

TFs and common DEGs by building a TF-gene regulatory network

using the TRRUST database. This network was brought to life with

the help of Cytoscape software, featuring 66 TFs, 125 nodes, and

226 edges (See Figure 4A). To further examine the gene-miRNA

regulatory network, we employed NetworkAnalyst. This led to a

network model predicting the interactions between miRNAs and

hub genes, comprising 5 hub genes, 51 nodes, and 51 edges (Refer

to Figure 4B).
Assessment of hub genes in
diagnostic value

The diagnostic validity of the five central genes was assessed by

means of ROC curves. Both IRF7, with an AUC of 0.905, and IFIT3,

having an AUC of 0.818, showcased commendable diagnostic

proficiency in differentiating SARS-CoV-2 patients from

individuals devoid of the disease (Figure 5A). Furthermore, IRF7

(AUC: 0.969), IFIH1 (AUC: 0.937), RSAD2 (AUC: 0.949), IFIT1

(AUC: 0.957), and IFIT3 (AUC: 0.983) put forth an impressive
Frontiers in Immunology 06
diagnostic performance when distinguishing CLE patients from the

healthy control group (Figure 5B).
Discussion

LE, an autoimmune disease that produces a range of symptoms

across both CLE and SLE spectrums, demonstrates an intriguing

parallelism with COVID-19 through overlapping immune

responses (25). Among the underlying mechanisms breaking

down immunological tolerance are molecular mimicry, bystander

activation, and epitope spreading, all common to COVID-19 and

ADs (26). Although SLE is not associated with the failure of

COVID-19 vaccination and COVID-19 infection after

vaccination, we found CLE/SLE-related clinical symptoms in

people infected with COVID-19, so we tried to find possible

research targets from two separate GSE171110 and GSE109248

data sets. An increasing number of case reports and research pieces

suggest a possible heightened risk of LE development in association

with COVID-19 infection and vaccination. Through a univariate

analysis model study, Zecca et al. revealed that there was no

correlation between SLE and vaccination failure (27); Rizzi et al.

through univariate analysis showed that SLE was not associated

with COVID-19 infection after the third dose of vaccine (28).
TABLE 1 Continued

Ontology ID Description GeneRatio BgRatio pvalue p.adjust

CC GO:0101003 ficolin-1-rich granule membrane 6/210 61/19594 4.79502E-05 0.004130128

CC GO:0062023 collagen-containing extracellular matrix 15/210 429/19594 6.39886E-05 0.004130128

CC GO:0070820 tertiary granule 9/210 164/19594 7.09644E-05 0.004130128
TABLE 2 Significantly enriched KEGG terms of common DEGs.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust

KEGG hsa04640 Hematopoietic cell lineage 11/124 99/8164 2.58717E-07 5.35544E-05

KEGG hsa05162 Measles 12/124 139/8164 1.15197E-06 0.000119229

KEGG hsa05150 Staphylococcus aureus infection 8/124 96/8164 9.79842E-05 0.006760908

KEGG hsa05171 Coronavirus disease - COVID-19 12/124 232/8164 0.000199581 0.008610924

KEGG hsa05169 Epstein-Barr virus infection 11/124 202/8164 0.000238253 0.008610924

KEGG hsa05340 Primary immunodeficiency 5/124 38/8164 0.000250491 0.008610924

KEGG hsa04610 Complement and coagulation cascades 7/124 85/8164 0.000291191 0.008610924

KEGG hsa04658 Th1 and Th2 cell differentiation 7/124 92/8164 0.000473494 0.012251658

KEGG hsa04514 Cell adhesion molecules 9/124 157/8164 0.000615963 0.01416715

KEGG hsa05164 Influenza A 9/124 171/8164 0.001134379 0.021855094

KEGG hsa05310 Asthma 4/124 31/8164 0.001161382 0.021855094

KEGG hsa05160 Hepatitis C 8/124 157/8164 0.002615657 0.045120079

KEGG hsa04657 IL-17 signaling pathway 6/124 94/8164 0.002980046 0.045897717

KEGG hsa04380 Osteoclast differentiation 7/124 128/8164 0.003261201 0.045897717

KEGG hsa05219 Bladder cancer 4/124 41/8164 0.003325922 0.045897717
fr
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Nevertheless, current broad-scale studies fall short of providing

exhaustive clinical outcome data for COVID-19 patients

simultaneously afflicted with CLE. Our research, therefore,

intends to uncover the mutual molecular functions and pathways

between COVID-19 and CLE, aiming to enhance the understanding

of their interaction.

During this study, an exhaustive transcriptomic analysis was

conducted, unearthing 214 shared DEGs between CLE and
Frontiers in Immunology 07
COVID-19. These shared DEGs underwent Gene Ontology

enrichment analyses, which revealed significant enrichment in

terms associated with defense responses to viruses, viral processes,

double-stranded RNA binding, and immune receptor activity. The

ongoing COVID-19 pandemic, driven by the positive single-

stranded RNA virus SARS-CoV-2 (29), may utilize these

biological processes discovered in our research as part of its

infection strategy. During the replication of the virus, the
B

C

D

A

FIGURE 3

Development of PPI network and extraction of central genes (A) The visualization of the PPI network of shared DEGs was enabled by Cytoscape.
The nodes correspond to related genes, and the lines denote the connectivity between nodes. (B) The network of the most crucial central genes.
Each node signifies a distinct gene, and the lines depict the interplay among the nodes. (C) Extraction of central genes from the PPI network. The
convergence of the top 15 genes from five disparate algorithms - Degree, MCC, MNC, EPC, and Closeness - uncovers the central genes.
(D) Functional enrichment network of central genes. The colors of modules denote biological functions, while the colors of lines denote the
connectivity between genes.
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formation of dsRNA replication intermediates can stimulate

cytoplasmic innate immune pathways like MDA5 or RIG-I. This

engagement initiates a signaling cascade through MAVS, leading to

the production of type I and III interferons (IFNs). These IFNs,

acting paracrinally and autocrinally, display antiviral functions both

directly and indirectly (30). These findings are consistent with our

study results, in which we identified enrichments in double-
Frontiers in Immunology 08
stranded RNA binding and immune receptor activity as

molecular functions in COVID-19.

Our examination of the KEGG pathway analysis furnished 15

noteworthy enrichment pathways connected with the DEGs

identified, notably Staphylococcus aureus infection, Coronavirus

disease - COVID-19, Epstein-Barr virus infection, and others like

Complement and coagulation cascades, along with Th1 and Th2
BA

FIGURE 4

Construction of Regulatory Networks (A) Interaction network between TFs and DEGs. The network uses blue nodes to symbolize TFs, red nodes for
DEGs, and directional arrows to indicate regulatory relationships. (B) The network of gene-miRNA interactions. The blue color nodes represent the
miRNAs and the red color nodes represent hub genes.
BA

FIGURE 5

Assessment of hub genes in diagnostic value (A) The diagnostic efficacy verification in GSE171110. (B) The diagnostic efficacy verification in
GSE109248.
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cell differentiation. Significantly, the pathway related to

Coronavirus disease registered the maximum number of shared

DEGs. Moreover, we discovered that these shared DEGs were

prevalently enriched in a diverse set of infectious diseases

including, but not limited to, staphylococcus aureus infection,

Epstein-Barr virus infection, measles, and influenza. These results

underline the possible role of both bacterial and viral infections in

contributing to the origin of CLE and COVID-19.

Gene expression is modulated by a variety of elements at

multiple levels, with critical roles being played by transcription

factors (TFs) and microRNAs (miRNAs) in the control of

transcription and post-transcriptional activit ies . It is

acknowledged that the dynamic interplay between TFs and

miRNAs, forming a comprehensive regulatory network, offers a

potent approach to unravel the complex mechanisms of biological

regulation (31). Our network analysis of TF-DEGs revealed the

participation of several entities, namely IRF1, IRF9, SPI1, STAT1,

NFKB1, RELA, KAT2B, BRCA1, and YY1, in the transcriptional

regulation of hub genes IFIT3 and IRF7. Utilizing the TRRUST

online tool, we performed a supplementary analysis and discovered

that STAT1 emerges as a shared transcription factor for IFIT3 and

IRF7. It is worth noting that studies have highlighted that IRF9,

SPI1, and STAT1 partially contribute to the onset of CLE (31). With

respect to the DEGs-miRNAs network analysis, we found several

miRNAs implicated in the regulation of hub genes. Particularly

noteworthy is research suggesting that miR-203 promotes

epidermal differentiation by impeding proliferation potential and

inducing cell cycle arrest in skin-related conditions (32). Recent

investigations report an elevated expression of genes encoding IRF1,

IRF5, IRF7, JAK2, and PML in severe COVID-19 patients.

Interestingly, cells deficient in IRF1/STAT1, when stimulated by

TNF-a and IFN-g, demonstrated cell protective effects, mitigating

cell death (33). Moreover, another study found increased expression

of IRF1, STAT1, and IRF9 in moderate to severe COVID-19

patients in comparison with healthy subjects, suggesting these

transcription factors are intimately involved in inflammatory

damage tied to COVID-19 (34).

Upon constructing a protein-protein interaction network

utilizing shared DEGs, five central genes emerged: IRF7, IFIH1,

RSAD2, IFIT1, and IFIT3. The gene IRF7 (Interferon Regulatory

Factor 7) is a significant transcriptional regulator essential for

initiating the innate immune response against DNA and RNA

viruses, and it plays an irreplaceable role in type I interferon

(IFN)-dependent immune reactions (35). Examination of the

genetic patterns in COVID-19 positive patients revealed a link

between mutations in the IRF7 gene and COVID-19 mortality rates

in African Americans, especially pronounced in elderly cohorts

(36). In line with this, it was observed that individuals lacking IRF7

are prone to respiratory infections from COVID-19, yet otherwise

maintain healthy states, hinting at a potential involvement of IRF7

in the development of COVID-19 (37). Another study showed that

lupus’ keratinocytes exhibit a heightened response to interferon

(IFN), emphasizing the crucial role of IRF7 in the progression of

cutaneous lupus erythematosus (38). IFIH1, the gene that encodes

for MDA5, acts as a cellular sensor for viral RNA, instigating the

innate immune response (39). MDA5 was identified as the primary
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regulator of type I interferon (IFN) production during a SARS-

CoV-2 infection (40). Moreover, it’s important to note the

participation of IFIH1 in various inflammatory diseases. For

instance, an enhanced IFIH1 expression is detected in the skin of

chronic discoid lupus and lichen planus patients (41). RSAD2

encodes for an antiviral protein induced by interferon,

contributing significantly to the cell’s antiviral state triggered by

both type I and II interferons. It exerts inhibitory effects on a

multitude of DNA and RNA viruses (42). Contemporary studies

utilizing bioinformatics tools indicate a considerable upsurge in

RSAD2 gene expression in COVID-19 or cutaneous lupus patients

(43). This supports our analysis, suggesting RSAD2 as a potential

shared therapeutic target for both conditions. The genes IFIT1 and

IFIT3 encode for antiviral proteins stimulated by interferon. They

have been shown to suppress various viral and cellular functions,

such as cell proliferation, signaling, migration, and virus replication

(44). An increased expression of IFIT1 and IFIT3 has been observed

in SARS-CoV-2 infected cells, indicating an activation of the innate

interferon response. Hence, these findings propose IFIT1 and IFIT3

as potential drug targets for the treatment of COVID-19 (45).

Additionally, these molecules may potentially enhance the

expression of CXCL10, a lymphocyte chemotactic factor,

contributing to the inhibition of viral replication (46).

Past studies have separately examined key genes related to

COVID-19 and CLE, but fewer have used bioinformatics to

explore the shared molecular mechanisms between the two

diseases. This study seeks to fill this gap by pioneering the

identification and analysis of shared DEGs, hub genes, miRNAs,

and TFs in both conditions. The data suggest that COVID-19 and

CLE share pathogenic pathways potentially controlled by particular

hub genes. And this research may pave the way for future studies

aimed at understanding the complex molecular underpinnings of

both COVID-19 and CLE pathologies.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/geo/

under the accession numbers GSE109248/GSE171110.
Ethics statement

GEO belongs to public databases. The patients involved in the

database have obtained ethical approval. Users can download

relevant data for free for research and publish relevant articles.

Our study is based on open-source data, so there are no ethical

issues or other conflicts of interest.
Author contributions

Z-YG: Conceptualization, Data curation, Investigation,

Software, Writing – original draft, Writing – review & editing,
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1268912
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2023.1268912
Methodology, Supervision. X-CZ: Methodology, Writing – review

& editing. G-QY: Investigation, Methodology, Software, Validation,

Writing – review & editing. YT: Methodology, Writing – review &

editing. XH: Methodology, Writing – review & editing. Q-CW:

Methodology, Software, Investigation, Writing – review & editing.

L-CS: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Project administration, Resources,

Software, Supervision, Validation, Writing – review & editing. LY:

Conceptualization, Supervision, Data curation, Investigation,

Methodology, Software, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Natural Science Foundation of Hubei

Province of China, Grant No: 2014CFC1123.

Acknowledgments

We acknowledge the GEO database for providing their

platforms and contributors for uploading their meaningful datasets.
Frontiers in Immunology 10
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2023.1268912/full#supplementary-material
References
1. Lu Q, Long H, Chow S, Hidayat S, Danarti R, Listiawan Y, et al. Guideline for the
diagnosis, treatment and long-term management of cutaneous lupus erythematosus. J
Autoimmun (2021) 123:102707. doi: 10.1016/j.jaut.2021.102707

2. Gunther C, Wenzel J. Lupus erythematosus. J Dtsch Dermatol Ges (2023) 21:426–
30. doi: 10.1111/ddg.15049

3. Grönhagen CM, Fored CM, Granath F, Nyberg F. Cutaneous lupus erythematosus
and the association with systemic lupus erythematosus: a population-based cohort of
1088 patients in Sweden. Br J Dermatol (2011) 164:1335–41. doi: 10.1111/j.1365-
2133.2011.10272.x

4. Elman SA, Joyce C, Costenbader KH, Merola JF. Time to progression from
discoid lupus erythematosus to systemic lupus erythematosus: a retrospective cohort
study. Clin Exp Dermatol (2020) 45:89–91. doi: 10.1111/ced.14014

5. Scholtissek B, Ferring-Schmitt S, Maier J, Wenzel J. Expression of the autoantigen
TRIM33/TIF1g in skin and muscle of patients with dermatomyositis is upregulated,
together with markers of cellular stress. Clin Exp Dermatol (2017) 42:659–62.
doi: 10.1111/ced.13180

6. Kunz M, König IR, Schillert A, Kruppa J, Ziegler A, Grallert H, et al. Genome-
wide association study identifies new susceptibility loci for cutaneous lupus
erythematosus. Exp Dermatol (2015) 24:510–5. doi: 10.1111/exd.12708

7. Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading
to clinical advances. Nat Med (2012) 18:871–82. doi: 10.1038/nm.2752

8. Wenzel J, Zahn S, Bieber T, Tüting T. Type I interferon-associated cytotoxic
inflammation in cutaneous lupus erythematosus. Arch Dermatol Res (2009) 301:83–6.
doi: 10.1007/s00403-008-0892-8
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