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AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory

treatment outcome, especially in patients that are ineligible for intensive

chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell

engaging antibody constructs, and cellular therapies, has dramatically

improved the outcome of patients with solid tumors and lymphatic neoplasms.

In AML, these approaches have been far less successful. Discussed reasons are

the relatively low mutational burden of AML blasts and the difficulty in defining

AML-specific antigens not expressed on hematopoietic progenitor cells. On the

other hand, epigenetic dysregulation is an essential driver of leukemogenesis,

and non-selective hypomethylating agents (HMAs) are the current backbone of

non-intensive treatment. The first clinical trials that evaluated whether HMAs

may improve immune checkpoint inhibitors’ efficacy showed modest efficacy

except for the anti-CD47 antibody that was substantially more efficient against

AML when combined with azacitidine. Combining bispecific antibodies or

cellular treatments with HMAs is subject to ongoing clinical investigation, and

efficacy data are awaited shortly. More selective second-generation inhibitors

targeting specific chromatin regulators have demonstrated promising preclinical

activity against AML and are currently evaluated in clinical trials. These drugs that

commonly cause leukemia cell differentiation potentially sensitize AML to

immune-based treatments by co-regulating immune checkpoints, providing a

pro-inflammatory environment, and inducing (neo)-antigen expression.

Combining selective targeted epigenetic drugs with (cellular) immunotherapy

is, therefore, a promising approach to avoid unintended effects and augment

efficacy. Future studies will provide detailed information on how these

compounds influence specific immune functions that may enable translation

into clinical assessment.
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Introduction

Acute myeloid leukemia (AML) is a malignant neoplasm of

hematopoietic progenitor cells driven by acquired genetic

aberrations that mediate uncontrolled proliferation and a block in

differentiation (1, 2).

Novel mechanism-based drugs have improved treatment

options in recent years (2), but intensive chemotherapy is still the

backbone of curative treatment and induces complete remissions in

up to 70% of patients (3). However, relapse is common, and overall

survival is generally unsatisfactory and heterogeneous based on two

significant factors: the genetic alterations of individual AML blasts

and the patient’s age at diagnosis (2, 4). Despite intensive treatment,

most elderly patients will ultimately succumb to their disease (2–5).

Survival for patients unfit for intensive treatment is dismal, with a 5-

year overall survival (OS) below 10% with current standard of care

options (3–6) underpinning the need for more efficient and less

toxic treatment options.

Epigenetic dysregulation has been recognized as an essential

driver for leukemogenesis, thereby providing a therapeutic

opportunity. Hypomethylating agents (HMA) are non-selective

first-generation epigenetic drugs and are considered a mainstay in

treating unfit and elderly patients (7). Several more selective

compounds targeting specific epigenetic dependencies have been

developed in recent years with promising responses in clinical trials

(8–10). Immunotherapy has revolutionized the treatment of solid

tumors and lymphatic neoplasms (11–30), but has been far less

successful against AML. Mechanisms behind the limited efficacy

remain obscure but have been attributed to difficulties in finding a

target exclusively expressed on AML blasts, their relatively low

mutational burden, and low neo-antigen expression (31–34).

Epigenetic manipulation has been reported to induce immune

modulatory effects, including an increased expression of tumor-

associated antigens (35, 36) that may sensitize AML blasts for

immunotherapy. Here we review the concept of combined

epigenetic targeting with immunotherapeutic approaches

against AML.
Epigenetic treatment in AML

Epigenetic dysregulation has been implicated in the

pathogenesis of most cancer types, including AML. Sequencing

efforts to characterize the genomic landscape of various cancer types

have revealed recurrent mutations in epigenetic regulators, affecting

AML in more than 60% of cases (37, 38). Epigenetic regulators

determine the chromatin state by controlling regulatory regions and

gene expression via chemical modifications, including DNA

methylation and histone protein acetylation, methylation, or

phosphorylation as reviewed elsewhere (39–41). Therefore,

epigenetic regulators were recognized as therapeutic opportunities

for many cancers, particularly AML.

First-generation HMAs such as azacitidine and decitabine are

non-selective drugs that reduce promotor hypermethylation to

restore the expression of tumor suppressor genes (42). These

drugs have built the backbone for non-intensive AML treatment
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(7), and their combination with the BCL2 inhibitor venetoclax is the

current standard of care for unfit AML patients resulting in a

median overall survival (OS) of 14.7 months (6). Histone

deacetylase (HDAC) inhibitors, another class of non-selective

epigenetic drugs that initially showed promising activity in

preclinical models (43), failed to induce sustainable remissions in

clinical trials in monotherapy (44–46). Reasons for the low efficacy

in clinical studies are not fully elucidated, however missing

predictive biomarkers, the heterogeneous activity of different

HDAC inhibitors, and dose-limiting off-target effects of pan-

HDAC inhibitors remain an unsolved problem, especially in

combination with other anti-neoplastic agents (47–49).

Second-generation epigenetic inhibitors were developed to

target specific chromatin modifiers and epigenetic dependencies

in various cancers with potentially less off-target toxicity. Research

has particularly focused on the development and clinical assessment

of drugs targeting the following chromatin modifiers:

Bromodomain-containing transcriptional activators (BRDs) are

recruited to histone-acetylated transcription sites to accelerate gene

expression. BRD4 is a Bromodomain and extra-terminal (BET)

protein, and its function is best characterized in AML (50, 51).

Inhibitors of BET proteins, particularly BRD4, have shown

promising preclinical activity (52) but demonstrated only modest

activity as a single agent against AML with an overall response rate

(ORR) of only 6% in relapsed refractory (R/R) AML (53).

The histone methyltransferase Disruptor of Telomeric Silencing

1-like (DOT1L) is the only histone 3 lysine 79 methyltransferase

known to date. It maintains leukemic transcription in leukemias

with Mixed-Lineage Leukemia (MLL, also known as KMT2A)-

rearrangement (MLL-r) or partial tandem duplication and NPM1

mutant (NPM1mut) leukemia (54, 55). Similar to BET inhibitors, the

first clinical trials with DOT1L inhibitors demonstrated limited

activity with only two complete remissions (CR) in 52 patients in a

phase I trial (56) despite promising preclinical activity (54, 55).

Protein Arginine Methyltransferase 5 (PRMT5) regulates gene

expression by dimethylation of histone and non-histone proteins

(e.g.,RNA splicing factors) (57, 58). Inhibition of PRMT5 has

demonstrated anti-leukemic activity and induction of

differentiation in preclinical MLL-r and FLT3-ITD AML models

(59, 60), and several inhibitors are currently evaluated in early

clinical trials for solid tumors, lymphomas, and leukemias, which

was reviewed elsewhere (61). In brief, phase I studies have reported

limited efficacy, with common adverse effects in solid tumors and

primary myelofibrosis (62–64). One phase I study is currently

recruiting AML patients (65).

Enhancer of Zeste Homolog 2 (EZH2) is a lysine

methyltransferase and the catalytic subunit of Polycomb

Repressive Complex 2 (PRC2) that silences its target genes via

H3K27 trimethylation (66, 67). EZH2 mutations are found in solid

tumors and usually as gain-of-function events in lymphomas (68,

69). The inhibitor tazometestat induced durable and complete

responses in Phase I/II trials in sarcomas and lymphomas (70–

72). EZH2 has been reported to act context-dependently as a tumor

suppressor or sometimes as an oncogene in myeloid malignancies

(66, 73). Its loss has been associated with poor prognosis and

chemotherapy resistance, and mutations are more common in
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relapsed AML patients (74–76). EZH1/2 inhibition has

demonstrated in vitro and in vivo anti-leukemic activity (77, 78).

Clinical outcome data for EZH2 inhibition in AML do not exist,

also because a phase I trial was terminated due to insufficient

patient recruitment (NCT03110354).

Lysine-Specific Demethylase-1 (LSD1, also known as KDM1A)

is a histone 3 demethylase and is believed to participate in the

control of leukemic gene expression programs (79). LSD1 inhibition

had promising activity in preclinical leukemia models, and

preliminary efficacy against AML has been reported from an

ongoing clinical phase I/II trial (80, 81). Additional studies are

needed to define the clinical activity in specific AML subtypes

in detail.

Dramatic clinical responses in AML were observed with specific

inhibitors of mutant isocitrate-dehydrogenase (IDH) 1 and 2

enzymes and are also explained by epigenetic mechanisms:

Mutations in IDH1 and IDH2 lead to a neo-enzyme activity of

both enzymes, accumulating the ordinarily absent oncometabolite

2-hydroxyglutarate (2-HG) (82). 2-HG inhibits ten-eleven

translocation (TET) family enzymes responsible for DNA

methylation, ultimately resulting in aberrant expression of

leukemic genes (83) . IDH1/2 inhibit ion induces cel l

differentiation of IDH-mutated AML blasts (84). The first phase I

trial assessed the IDH2 inhibitor enasidenib as a single agent with

an ORR of 40.3% and a median OS rate of 9.3 months in R/R AML

patients (85). The combination of the IDH1 inhibitor ivosidenib

with azacitidine was recently approved for newly diagnosed IDH1

mutated AML in Europe and the U.S. The approval was based on a

randomized, placebo-controlled phase III trial where the

combination significantly increased CR rates (47% vs. 15%,

p<0.001) and survival (recently updated median OS: 29.3 vs. 7.9

months; HR 0.42, p-value <0.0001) compared to azacitidine plus

placebo (9, 86).

A novel epigenetic target and auspicious therapeutic

opportunity against specific AML subtypes is the protein

interaction of the histone methyltransferase KMT2A (also known

as MLL1) with its oncogenic adaptor protein menin (encoded by the

MEN1 gene). While it was reported that menin is required for

chromatin binding and target gene activation of oncogenic MLL1-

fusion proteins in MLL1-rearranged leukemias (87), our group

reported that the direct interaction of wildtype MLL with menin

is a dependency in the most prevalent NPM1mut AML subtype (55).

Characteristic leukemic gene expression programs, including high-

level expression of MEIS1, PBX3, and various HOX transcription

factor genes, also depend on the protein interaction (55).

Pharmacological inhibition of the menin-MLL interaction has

demonstrated profound in vitro and in vivo anti-leukemic activity

inducing uniform transcriptional repression ofMEIS1, PBX3, FLT3,

and BCL2, and leading to differentiation and apoptosis in MLL-r

and NPM1mut leukemias (55, 87–90). These preclinical data

translated into an ongoing clinical assessment of five different

menin inhibitors against AML (NCT04067336, NCT04065399,

NCT05153330, NCT04811560, NCT04988555) with astonishing

first efficacy data from two phase I trials: The oral menin

inhibitor revumenib induced complete remissions (combined;

CRc) in 38% of heavily pretreated R/R AML with NPM1mut or
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MLL-r as a single agent, with responding patients exhibiting

sustainable responses of more than 9.1 months (8). Ziftomenib

also had promising clinical activity in NPM1mut or MLL-r R/R

AML, with 35% of patients achieving CR/CRh or CRp rate in a

phase I/II study (91). The single-agent evaluation of both drugs is

currently ongoing. Combinatorial clinical trial assessment with

intensive chemotherapy and specific small molecule inhibitors is

also underway, as both inhibitors have exhibited synergistic in vitro

and in vivo efficacy with various targeted cancer drugs (92–94).
Targeting the immune system in AML

Within the last decade, similarly great excitement has greeted

cancer immunotherapy, revolutionizing the treatment of many

cancer types (11–30). Concepts to guide the immune system in

recognizing and fighting cancer cells comprise antibody-directed

targeting, blockage of immune checkpoints, and adoptive transfer of

immune cells. These approaches have led to sustainable responses,

prolonged survival, and even cure of previously untreatable

malignancies, but single-agent efficacy against AML has

been limited.

Immune checkpoint blockade (ICB) with anti-CTLA-4 and

anti-PD-L1/PD-1 antibodies dramatically improved overall

survival in patients with advanced solid tumors as well as

Hodgkin’s lymphoma (13–18) and is now considered the

standard of care for the treatment of many other cancer entities.

AML cells also have higher surface expression of inhibitory

immune checkpoints (such as PD-L1) compared to normal

hematopoietic stem (HSCs) and progenitor cells (HSPCs) and

higher expression of PD-1 is observed on T-cells of AML patients

compared to healthy donors (95–102). Still, clinical trials assessing

therapeutic checkpoint blockade yielded generally discouraging

results in myeloid neoplasms. Only 1 out of 9 patients with AML

or myelodysplastic syndrome (MDS) responded to the anti-PD-1

antibody pidilizumab in a first phase I trial (103). Also, ORR in

studies assessing the anti-PD-1 antibody pembrolizumab and anti-

PD-L1 antibody atezolizumab in R/R MDS patients were only 4%

and 0%, respectively (104, 105). Responses to the anti-CTLA-4

antibody ipilimumab in early clinical trials assessing selected AML

patients that relapsed following allogenic stem cell transplantation

(SCT) were more promising, with 23% of patients achieving a CR.

However, treatment was commonly associated with severe graft

versus host disease (12).

CD47 is a checkpoint of the innate immune system that

mediates a “do not eat me “ signal to macrophages (106, 107).

Magrolimab, a monoclonal anti-CD47 antibody, demonstrated

limited efficacy as a single-agent in AML with no objective

responses (stable disease: 73%) (108), but might be more

efficacious if added to established combination regimens

(discussed below).

Bispecific T-cell engager (BiTE) or dual-affinity retargeting

antibodies (DART) are artificial antibody constructs that contain

two antigen binding sites, one directed against immune effector cells

(mostly CD3 for T-cells) and the other against a specific surface

antigen on tumor cells. The convergence leads to T- or NK-cell
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activation and killing (31). BiTEs targeting CD3 and CD19, such as

blinatumomab, are efficient against and approved for treating B-cell

neoplasms (28). Defining a unique leukemic target on myeloid

blasts has yet limited efforts to extend this concept for successful

AML treatment (discussed below), and so far, efficacy has been

unsatisfactory. In a phase I trial assessing the anti-CD33xCD3

directed bispecific antibody AMG330 against R/R AML, CR/CRi

rates were 17% (109) and 3 and 5% in ongoing phase I studies

testing the anti-CD33xCD3 BiTE molecules AMV564 and AMG673

(110, 111). Reported ORR from a phase I/II trial exploring

flotetuzumab, an anti-CD123xCD3 DART construct, against R/R

AML was 30%. However, treatment was associated with high rates

of severe cytokine release syndrome (CRS) (81%, 8% ≥3) (112),

which was also commonly observed with the bispecific anti-CD123

antibody XmAb14045 (113). Other CD123-targeting antibodies are

under clinical investigation (NCT03647800, NCT02715011).

Several reports suggest that the myeloid antigens WT1,

PRAME, and CLL-1 (CLEC12A) are expressed only at low levels

on HSCs, which may be associated with less hematologic toxicity if

targeted by immunotherapy (32, 114–117). A lower CRS rate was

reported from a phase I trial exploring the first CLL-1xCD3-

directed bispecific antibody MCLA-117 in R/R AML but with

only 15% of patients achieving a partial response (118).

Cellular immunotherapy describes the adoptive transfer of

genetically engineered autologous chimeric-antigen receptor

(CAR)-T or -Natural Killer (NK) cells. Astonishing successes

were reported from treatment of B-cell neoplasms with various

CAR-T cell products and have led to their approval in the Europe

and the U.S. (19–28). As with BITEs and DARTs, CAR construct

development against AML faces similar challenges in defining

unique immunotargets on AML blasts. Lineage-specific antigens

such as CD33 and CD123 are commonly expressed on AML blasts

and evaluated as potential targets. Their expression on hematologic

stem cells (HSCs) bears the risk of post-treatment bone marrow

failure (32, 119, 120). As CAR-T cells commonly have a “memory

effect”, hematologic toxicity might be even more severe compared to

BITEs and DARTs.

One strategy to avoid the off-tumor toxicity is the development

of AND-gated and NOT-gated CAR-T cells that engage two

antigens to increase selectivity (121, 122). Perriello et al.

developed cytokine-induced killer (CIK) cells with two CARs

directed against CD123 and CD33. In this case, simultaneous

binding of both CARs is necessary for a cytotoxic T-cell

activation, because the CD33 CAR delivers the essential co-

stimulatory signal (122). The authors also demonstrate that

reduced binding activity of a CAR may increase selectivity by

restricting reactivity to cells with high antigen expression. NOT-

gates CARs represent an different approach to avoid off-tumor

toxicity: Richards et al. developed CD93-directed CAR T-cells that

express a second inhibitory CAR (iCAR) directed against an antigen

present on endothelial cells but absent on myeloid blasts. This iCAR

contains endodomains from ITIM-containing proteins including

PD-1, TIM-3 or TIGIT delivering an inhibitory signal that

interferes with the CAR T-cell activation signal (121).

So far, CAR-T-cells targeting CD33, CD123, or two antigens at

once (e.g., CD33 and CLL-1; CD13 and TIM-3) are currently
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evaluated in early clinical trials (NCT03971799, NCT03795779,

NCT03631576, NCT03190278, NCT03114670, NCT02159495,

NCT04272125, NCT03222674, NCT04010877, NCT04097301).

Three studies reported activity against heavily pretreated patients

(123–125), but longer follow-up efficacy data needed to draw more

definitive conclusions are pending. For CD70, another immune

target expressed on AML blast and low expression on HSCs,

promising activity has been reported in preclinical AML models.

Clinical trial evaluation is expected shortly (126, 127).

CAR-engineered NK cells may have potential advantages over

CAR-T cells and be a promising alternative for two reasons: a) their

HLA-class I independent tumor cell recognition allows maintaining

intrinsic anti-tumor activity in case of antigen loss (128), and b) the

lack of clonal expansion protects recipients from persistent graft

versus host disease (GvHD) or long-term hematologic toxicity,

reviewed in (129). First clinical applications have demonstrated

encouraging anti-leukemic activity and tolerability with cord-

blood-derived CD19-CAR NK cells against chronic lymphatic

leukemia (130). CAR-NK cell products are effective against

preclinical AML models in vitro and in vivo but clinical activity

remains to be demonstrated (131).

While the efficacy of these concepts still needs improvement,

the strong graft versus leukemia effect that has been observed over

decades following allogenic SCT indicates that AML may still be

prone to immunotherapy (132–134). As mentioned above, one

potential reason might be the particularly low mutational burden

found in AML blasts compared to other cancers, which has been

associated with generally lower responses to immune-based

treatments (33, 34). Defining an AML-specific immunotarget that

is not expressed on HSC is also an ongoing challenge for the

development of potent immune-based treatments (32).
Combination of epigenetic treatment
with immunotherapy

Epigenetic mechanisms have been implicated in contributing to

the poor responses of AML to immunotherapy. One example is the

silencing of HLA class II molecules observed in AML patients that

relapsed after allogenic SCT (135–137). This has been attributed to

the DNA-hypermethylation of respective promotor regions (96).

Therapeutic manipulation with HMAs to reverse promotor-

methylation has successfully been used at relapse to boost graft-

versus leukemia effects of donor lymphocyte infusions. However,

this concept is less efficient with high leukemia burden (138–140).

Additional immune modulatory effects of HMA are currently being

discussed. These include enhanced expression of tumor-associated

antigens such as MAGE-1 and NY-ESO-1 (35, 36). Also, HMA-

treatment is associated with tumor re-expression of endogenous

retroviruses (ERVs) that is believed to improve T- and NK-cell

activation via enhanced IFN-g expression (141–144), enhances

tumor lymphocyte infiltration (145), and impairs expansion of

regulatory T-cells (146), (Figure 1). The limited activity of HMAs

commonly observed in the clinical setting may partly be explained

by the upregulation of the immune inhibitory checkpoints

(147, 148).
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HMA treatment has also been investigated in combination with

immune checkpoint blockade in clinical trials. Encouraging results

demonstrated a first phase II trial assessing the combination of PD-

1 antibody nivolumab and azacitidine in R/R AML resulting in an

ORR of 58% in HMA-naive and 22% in HMA-pretreated patients,

respectively (149). Newly diagnosed and R/R patients achieved a

CRc in 47% and 14% in a phase II trial assessing the combination of

the PD-1 antibody pembrolizumab with azacitidine (150).

Azacitidine combined with the anti-TIM-3 monoclonal antibody

sabatolimab led to an ORR of 57% and a CRc of 30% in newly

diagnosed AML in a phase Ib trial (151). The only randomized data

available come from a trial assessing the anti-PD-L1 antibody

durvalumab, Here, no significant benefit for the combination of

durvalumab and azacitidine was observed over azacitidine alone in

MDS/AML patients (152). Consistent with the data above, the

authors of a recent meta-analysis concluded that the activity of

checkpoint inhibitors is generally low in the relapsed/refractory

AML setting (153). Further studies are currently ongoing (Table 1).

HMAs in combination with immune checkpoint inhibitors

were also assessed in the post-transplant setting, with only a few

responses reported and increased immune-related toxicity (12,

154). This was demonstrated by the combination of avelumab

and azacitidine, resulting in CR rates of only 10.5% and an

increased risk of severe graft versus host disease (155). Several

clinical trials are ongoing and will allow more definitive conclusions

concerning efficacy and safety.

HDAC inhibitors can also induce tumor-associated antigens,

improve antigen presentation, influence T-cell trafficking and
Frontiers in Immunology 05
activity but also increase PD-1 expression (156–159). Several

trials reported responses to HDAC inhibitors in combination

with checkpoint blockade in solid tumors (160). However, in R/R

MDS/AML patients, no activity of this concept has been reported in

a recent phase 1b study assessing pembrolizumab plus entinostat

with no responses in any of the patients (161).

In contrast, encouraging activity of combining the anti-CD47

antibody magrolimab with azacitidine and the BCL2-inhibitor

venetoclax was reported from a phase I/II trial in the adverse

TP53 mutated AML subtype. CRc rates were 63%, with an

average one-year overall survival of 53% (162). Two randomized

phase III trials are currently ongoing (NCT05079230,

NCT04778397, Table 1).

HMAs and HDAC inhibitors were also reported to increase the

expression of AML-associated antigens such as CD33 (163) and

may therefore be a suitable combination partner for BiTEs, DARTs,

and CAR-T, and -NK-cell treatment. Experimental in vitro and in

vivo studies indicated improved T-cell activity for combined HMA

or HDAC inhibitors with CD33-, CD123-, and CD70-directed

CAR-T cells or bispecific antibodies (126, 164–166).

Multiple lines of evidence support the view that epigenetic

silencing of NKG2D-ligands (NKG2DL) contributes to impaired

NK-cell function, which was reversed with HMA treatment in

studies on cultured NK cells (167–169). In preclinical AML

models, decitabine enhanced the activity of BI836858, an anti-

CD33 antibody that also engages NK cells via CD16 (170). In

contrast, combining the NK-cell engaging and CD123 targeting

monoclonal talacotuzumab with decitabine could not improve
FIGURE 1

Epigenetic targeting in AML. Epigenetic regulators control transcription via chemical chromatin modifications, including histone protein and DNA
(de-)methylation or histone (de-)acetylation that determine chromatin state. As therapeutic opportunities against AML, chromatin modifiers can alter
leukemogenic gene expression, causing cell differentiation and proliferation arrest of the malignant blasts. Additional pro-immunogenic effects have
recently been discussed, including an increased neoantigen-, immune checkpoint-, NK2GDL- and calreticulin expression on leukemic blasts and an
augmented immune checkpoint expression and IFN-Y response of immune cells. The figure was created with BioRender.com.
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TABLE 1 Current clinical trials evaluating combinations of epigenetic targeting and immunotherapy in AML.

NCT Trial
Patient Eligi-
bility

Drug Combination
Clinical
Phase

Status

HMA + PD1

NCT02845297
R/R, ND elderly/
unfit

Pembrolizumab + Azacitidine Phase II completed

NCT02397720
R/R, ND elderly/
unfit

Nivolumab + Azacitidine +/- Ipilimumab Phase II recruiting

NCT03825367 R/R, pediatric Nivolumab + Azacitidine Phase I/II active, not recruiting

NCT03769532
MRD relapse in
NPM1 mut.

Pembrolizumab + Azacitidine Phase II recruiting

NCT02996474 R/R Pembrolizumab + Decitabine Phase I/II completed

NCT03969446
R/R, ND elderly/
unfit

Pembrolizumab + Decitabine +/- Venetoclax Phase I recruiting

NCT04284787 ND elderly/unfit Azacitidine + Venetoclax +/- Pembrolizumab
Phase II,
randomized

active, not recruiting

NCT04277442 ND, TP53 mut. Nivomumab + Decitabine + Venetoclax Phase I active, not recruiting

NCT03358719 ND + R/R NY-ESO-1 vaccination + Decitabine + Nivolumab Phase I completed

NCT04722952 R/R Visilizumab + Azacitidine + Homoharringtonine, Cytarabine (HAG) Phase III recruiting

NCT05772273 R/R post aHSCT Camrelizumab + Azacitidine + Low-dose DLI – recruiting

NCT03092674 ND elderly/unfit Azacitidine +/- Nivolumab or Midostaurin vs. Decitabine + Cytarabine
Phase II/III,
randomized

active, not recruiting

HMA + PD-L1

NCT02775903 ND elderly/unfit Azacitidine +/- Durvalumab
Phase II,
randomized

completed

NCT02281084 R/R to HMA CC-486 +/- Durvalumab
Phase II,
randomized

active/not recruiting

NCT02953561 R/R Avelumab + Azacitidine Phase I/II terminated

NCT02892318
R/R, ND elderly/
unfit

Atezolizumab + Guadecitabine Phase I completed

NCT02935361 R/R Atezolizumab + Guadecitabine PhaseI/II active, not recruiting

NCT03395873 ND elderly/unfit Avelumab + Decitabine Phase I
terminated (AZA/VEN
approval)

NCT03390296 R/R
Poly-chemotherapy combinations of OX40, Venetoclax, Avelumab, Glasdegib,
Gemtuzumab Ozogamicin, and Azacitidine

Phase I/II completed

HMA + TIM-3

NCT04623216
MRD positive post
aHSCT

Sabatolimumab +/- Azacitidine Phase I/II recruiting

NCT04150029 ND elderly/unfit Sabatolimumab + Azacitidine + Venetoclax Phase II active, not recruiting

NCT03066648
R/R, ND elderly/
unfit

Sabatolimumab +/- Decitabine +/- Spartalizumab vs. Azacitidine +
Sabatolimumab

Phase I active, not recruiting

NCT05367401
R/R, ND elderly/
unfit

Sabatolimumab + Magrolimab +/- Azactidine Phase I/II not yet recruiting

NCT05426798
R/R, ND elderly/
unfit

TQB2618 + Azacitidine/Decitabine Phase I recruiting

NCT05367401
R/R, ND elderly/
unfit

Sabatolimab + Magrolimab + Azacitidine Phase I/II not yet recruiting

(Continued)
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responses over decitabine alone in a phase II/III trial (171). Based

on these data, combinations of HMAs with bispecific antibodies or

CAR-T/CAR-NK cell treatment may also constitute an attractive

combination. A comprehensive assessment of the biological effects

of HMAs on cellular treatments is required before these

combination treatments can be introduced into clinical testing.

Combining the more selective second-generation targeted

epigenetic drugs with cancer immunotherapy appears attractive as

it may be associated with fewer unintended effects and more

efficacy. However, it also requires detailed studies before those

concepts enter clinical trials. In particular, more data are needed

on how these individual compounds may modulate effector and

regulatory immune cell function in the context of substance-specific
Frontiers in Immunology 07
effects in leukemia cells. Most selective epigenetic compounds, for

example, IDH or menin inhibitors, alter specific gene expression

and induce differentiation (54, 55, 84, 93, 94), (Figure 1). These

effects may represent a synergistic opportunity for combinatorial

approaches as they commonly lead to the induction of surface

antigen expression that may be utilized for immunotherapy, as

reported with other targeted agents (172). Several other compound-

specific effects may confer synergy with immunotherapeutic

approaches: BET inhibitors, for instance, have been reported to

impair PD-1 expression and T-cell exhaustion in vitro (173).

Accordingly, improved T-cell expansion and anti-tumor efficacy

have been observed in an adoptive T-cell transfer model upon JQ1

treatment (174). In a landmark study, it was observed that LSD1
TABLE 1 Continued

NCT Trial
Patient Eligi-
bility

Drug Combination
Clinical
Phase

Status

HMA + CTLA-4

NCT02890329 R/R Ipilimumab + Decitabine Phase I active, not recruiting

NCT02397720
R/R, ND elderly/
unfit

Nivolumab + Azaztidine +/- Ipilimumab Phase II recruiting

HMA + LAG3 + PD-1

NCT04913922
R/R, ND elderly/
unfit

Nivolumab + Relatlimab + Azacitidine Phase II recruiting

IDH1 + PD-1

NCT04044209 R/R IDH1 + Nivolumab Phase II
withdrawn, no patient
recruitment

HMA + CD47

NCT05823480 after HCT Magrolimab + Azacitidine Phase I not yet recruiting

NCT05367401
RR, ND elderly/
unfit

Magrolimab + Azacitidine + Sabatolimumab Phase I/II not yet recruiting

NCT05079230 ND elderly/unfit Azacitidine + Venetoclax + Magrolimab vs. Placebo
Phase III,
randomized

recruiting

NCT04435691
R/R, ND elderly/
unfit

Magrolimab + Azacitidine + Venetoclax Phase I/II recruiting

NCT04778397
ND with TP53
mut.

Magrolimab + Azacitidine + Venetoclax vs. Physician’s Choice Phase III recruiting

NCT02472145 trial in the HMA + CD123

NCT04086264
R/R, ND elderly/
unfit

IMGN632 +/- Azacitidine +/- Venetoclax Phase I/II recruiting

NCT02472145
ND elderly/unfit,
R/R

Talacotuzumab (CD123/CD16) + Decitabine vs. Decitabine, randomized Phase II/III completed

HMA + CD70

NCT03030612 ND elderly/unfit Cusatuzumab + Azacitidine Phase I/II completed

NCT04227847 R/R SEA-CD70 +/- Azacitidine Phase I recruiting

NCT04150887 ND elderly/unfit Cusatuzumab + Venetoclax +/- Azacitidine Phase I active not recruiting

HMA + NK-cell therapy

NCT05834244 R/R allogeneic NK + Azacitidine + Venetoclax Phase I not yet recruiting
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inhibition stimulated T-cell-mediated anti-tumor responses by

inducing endogenous ERV expression in cancer cells that resulted

in type 1 interferon activation (175). Confirmative studies are

needed before these approaches can be translated into

clinical applications.
Summary and outlook

As outlined above, immunotherapy has dramatically improved

treatment outcomes in patients with many cancers while these

approaches have been far less successful in AML.

While the detailed mechanisms behind the relative resistance

against immunotherapy remain obscure, the low immunogenicity

of myeloid blasts for immune checkpoint blockade (31, 33, 34) and

the difficulties in defining AML-specific antigens not expressed on

HSCs for immune-directed treatment (32, 119, 120) remains an

unsolved challenge. Epigenetic manipulation was shown to improve

the responses to immunotherapy by inducing neoantigens,

increasing antigen presentation, and co-regulating immune

checkpoints (35, 36, 96, 141–144, 146–148). Clinical trials

evaluating the combination of non-selective epigenetic drugs

(such as HMAs) with checkpoint inhibitors have mainly reported

modest activity in the R/R AML setting (12, 153, 176), while

approaches combining the anti-CD47 antibody magrolimab with

azacitidine with or without venetoclax resulted in very promising

response rates in clinical trials (162, 177). Clinical data for the

combination of HMAs with cellular immunotherapy is pending,

while CAR-NK cell concepts seem auspicious due to their only

temporary toxicity for the normal hematopoiesis (129). Promising

strategies include the introduction of (second-generation) targeted

epigenetic drugs into immunotherapeutic treatment regimens.

These drugs commonly have less adverse effects and their

common ability to release the differentiation block in AML blasts

accompanied by antigen-induction may enhance cellular

immunotherapy. Studies that define specific effects of these drugs
Frontiers in Immunology 08
on various immune cells are underway to enable translation of these

concepts into clinical investigation.
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