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Backgrounds: The extended duration of endoplasmic reticulum stress (ERS) can

impact the progression of hepatocellular carcinoma (HCC) and the efficacy of

immunotherapies by interacting with immune cells that have infiltrated the

tumor microenvironment (TME).

Methods and results: The study utilized a training cohort of 364 HCC patients

with complete information from The Cancer Genome Atlas Program (TCGA)

database, and a validation cohort of 231 HCC patients from the International

Cancer Genome Consortium (ICGC) database. The genes related to ERS

exhibiting a strong correlation with overall survival (OS) were identified using

univariate Cox regression analysis. A 13-gene predictive signature was then

produced through the least absolute shrinkage and selection operator (LASSO)

regression approach. The data revealed that the ERS-associated gene signature

effectively stratified patients into high- or low-risk groups regarding OS in both

the training and validation cohorts (P < 0.0001 and P = 0.00029, respectively).

Using the multivariate method, it is still an independent prognostic factor in both

the training and validation cohorts (P < 0.001 and P = 0.008, respectively).

Moreover, several metabolic pathways were identified to be enriched among the

13 genes in the predictive signature. When the ERS-associated gene signature

was combined with the tumor-node-metastasis (TNM) stage, the ERS

nomogram performed better than either the gene signature or the TNM stage

alone (C-index values: 0.731, 0.729, and 0.573, respectively). Further analysis

revealed that patients in the high-risk group exhibited increased infiltration of

immune cells. Additionally, GP6 was downregulated in HCC tissues among these

signature genes (P < 0.05), which was related to poor OS.

Conclusions: The data suggest that this novel ERS-associated gene signature

could contribute to personalized cancer management for HCC. Moreover,

targeting GP6 inhibition might be a potential method for HCC therapy.
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Introduction

Ranked as the sixth most diagnosed cancer and third most

common reason for cancer-associated death worldwide, liver cancer

shows a 5-year survival rate of merely 18% (1, 2). Hepatocellular

carcinoma (HCC) accounts for ≥ 90% of primary liver cancer cases

and usually develops in individuals with pre-existing chronic liver

disease (3). The grade of the tumor largely determines the dismal

prognosis of HCC at the point of initial diagnosis (4). The Barcelona

Clinic Liver Cancer classification is widely utilized as a staging

system for predicting HCC prognosis; however, it does not consider

the impact of differentially expressed genes (DEGs) and functional

pathways on disease progression (5). With the advent of microarray

technology and bioinformatics, it has become increasingly clear that

DEGs and functional pathways are essential in the tumorigenesis

and development of HCC (6). Therefore, we hypothesized that

combining genomic data with clinical and demographic

characteristics could enhance the accuracy of prognostic

prediction in HCC patients.

The unfolded protein response (UPR) activation was

highlighted in the tumor progression of various types of cancer

(7). UPR is a preserved adaptive mechanism employed by cells to

manage endoplasmic reticulum stress (ERS) (8). Sustained ERS can

trigger the inflammatory response through the UPR pathway,

involving tumorigenesis , progression, metastasis , and

chemoresistance in HCC (9). However, in some cases, ERS has

also been associated with a more favorable prognosis (10). ERS-

associated genes and signaling pathways might represent significant

biomarkers for the prognostic prediction of HCC patients. Tumor

immune microenvironment (TME) assumes a critical role in the

onset and advancement of HCC, and is closely linked to the

response or resistance to immunotherapies (11). Sustained ERS

can regulate HCC progression by interacting with immune cells in

the TME (12). In the study, we conducted Cox proportional hazard

regression analysis on 59 ERS-associated genes in The Cancer

Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)

cohort to analyze genes related to prognosis. The significant

candidates were utilized to generate a gene signature risk score

using the least absolute shrinkage and selection operator (LASSO)

Cox regression approach, and this was subsequently validated in the

independent International Cancer Genome Consortium (ICGC)

Liver Cancer-RIKEN, Japan (LIRI-JP) cohort. A survival study was

conducted to establish the degree to which the gene signature risk

score contributed to patients’ overall survival (OS) rates. Patients

were placed into high-risk or low-risk groups according to the

average risk score. Gene Set Enrichment Analysis (GSEA) was used

to analyze the differences in substantial signaling between the group

considered high risk and the group considered low risk. A

nomogram is constructed to incorporate the tumor-node-

metastasis (TNM) stage and the prognostic gene signature to

assess an individual’s likelihood of survival. This allows for the

likelihood of individual survival to be calculated. Additionally, we

validated GP6 downregulation in HCC tissues using quantitative

reverse transcription polymerase chain reaction (qRT-PCR) and

demonstrated that it was related to poor OS. These data suggest that

this unique ERS-associated gene profile might benefit personalized
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cancer management in HCC and that GP6 inhibition could

represent a promising new therapeutic target for HCC.
Materials and methods

Selection of ERS-associated genes

The term “endoplasmic reticulum stress” was used to search the

GeneCards website for ERS-associated genes. ERS-associated genes

were defined as genes having a relevance score greater than 7.
Acquisition of HCC cohorts

The training cohort comprised gene expression profiles obtained

from HCC cohorts retrieved from the TCGA website, while the

validation cohort consisted of data obtained from the ICGC website.

The gene expression profile was normalized by using the “VST”

function that is part of the “DESeq2” R package. The TCGA

database and the cBioPortal, respectively, were the sources of the

clinical information and data on somatic mutations that were used for

the TCGA-LIHC cohort. With the ICGC database, we gathered

information on the clinical conditions and somatic mutations

present in the ICGC LIRI-JP cohort. Also, the TCGA-LIHC data of

simple nucleotide variation were produced from the TCGA database,

and the gene copy number was collected from The University of

California Santa Cruz (UCSC) database. Both of these databases were

utilized, which are accessible from this location. The “Rcircos” R

package was employed to depict the copy number variation (CNV)

landscape of the ERS genes on human chromosomes.
Identification and validation of the
prognostic gene signature

Differential expression analysis of ERS-related genes was carried

out using the “DEseq2” software included in R using the criterion of

having a |logFC| value of more than 1 and an adjusted P-value of

less than 0.05. The TCGA-LIHC dataset was subsequently used to

perform a univariate Cox proportional hazard regression analysis to

investigate ERS genes substantially connected to OS. The identified

OS-related genes were utilized in conjunction with the LASSO Cox

regression to generate a predictive multiple-gene signature via the

“glmnet” R package (13, 14). A risk score formula was developed

using the following equation: Risk score (based on mRNA

expression) = sum of coefficients × mRNA expression levels. The

HCC cohorts were sorted into two groups using the average risk

score as the cutoff. The independent ICGC LIRI-JP cohorts served

as a means of verifying the predictive gene signature.
GSEA

We used GSEA version 4.0.3, which allowed us to analyze the

potential biological processes or signaling pathways connected with
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1270774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhan et al. 10.3389/fimmu.2023.1270774
the signature genes. We used pre-defined sets of genes found in the

MsigDB (c2.cp.Kegg.v7.0.symbols.gmt). Patients were assigned to

either a high-risk or a low-risk group based on their gene signature

risk scores. The criteria of a nominal P-value of less than 0.05 and a

false discovery rate of less than 0.25 were used to conclude on the

significance of the normalized enrichment score.
Evaluation of immune cell infiltration

The deconvolution method CIBERSORT converts was

employed to translate the normalized gene expression matrix into

a representation of the infiltrated immune cells (15). During the

CIBERSORT computation, the number of distinct cell types in

complicated tissue was assessed, and the CIBERSORT results were

validated using fluorescence-activated cell sorting (FACS). For

reference expression signature, LM22 was utilized with 1000

permutations. A P-value of 0.05 was considered a more accurate

estimation of the composition of immune cells by CIBERSORT.

The samples that satisfied the constraint were then used for further

study. For each sample, all 22 kinds of immune cell fractions were to

sum up to one. Each individual’s relative percentages of 22

subpopulations of immune cells were shown using a bar plot. The

violent diagrams were constructed to represent variations in

immune cell infiltration using the “ggplot2” R package. The

“corrplot” R package generated a correlation heatmap depicting

the relationship of all cell subpopulations. The “ggstatsplot” R

package was utilized to carry out a Spearman correlation analysis

between diagnostic biomarkers and infiltrated immune cells. The

results were generated using the “ggplot2” R package.
Patients and Specimens

With the patients’ consent, 9 matched HCC samples and paired

adjacent nontumorous samples were obtained from individuals who

underwent hepatectomy at the Second Affiliated Hospital of

Chongqing Medical University between January 2018 and July

2019. Inclusion criteria for patient selection included a definitive

diagnosis of HCC by a pathologist, surgical resection with

histological confirmation of tumor-free margins, and no prior

chemo- or radiotherapy. The freshly obtained specimens were

immediately kept using liquid nitrogen until further processing.
Cell culture

ATCC was contacted to acquire the human noncancerous

hepatic cell line MIHA and five human HCC cell lines (Huh7,

HepG2, SK-hep1, MHCC-97H, and MHCC-97L). Cells were grown

in a humidified incubator with 5% CO2 at 37 degrees Celsius using

DMEM (Gibco) containing 10% heat-inactivated FBS (Gibco),

penicillin (100 U/mL) (Beyotime, Shanghai, China), and

streptomycin (100 g/mL) (Beyotime, Shanghai, China).
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qRT-PCR

After utilizing the TRIzol Reagent (Life Technologies) to

initially isolate total RNA from fresh specimens or cells, reverse

transcription was carried out using the PrimeScript RT Reagent Kit

(Takara). The first phase of the PCR amplification procedure is a

denaturation step carried out at 95 degrees Celsius for 10 minutes.

This is followed by 35 cycles of a two-step PCR carried out at 95

degrees Celsius for 14 seconds and 60 degrees Celsius for 1 minute.

We used the 2-DDCt approach to determine the relative expression of

genes after first using GAPDH to standardize the cycle times (Ct) of

the genes of interest. SYBR Green I was used for the RT-qPCR that

was performed (Takara). The following primer pairs were utilized:

GP6, forward: 5’-TCCCGGCCATGAAGAGAAGT-3’ and reverse:

5’-TTACGTCCCCTCCTGACGAC-3’; CASQ2, forward: 5’-

GGCAGAAGAGGGGCTTAATTT-3’ and reverse: 5’-GAAGA

CACCGGCTCATGGTAG-3’; GAPDH, forward: 5’-GATCATC

AGCAATGCCTCCT-3’ and reverse: 5’- GAGTCCTTCCAC

GATACCAA-3’.
Development of nomogram

According to multivariable analyses, factors with P < 0.05 were

chosen for further nomogram creation. Subsequently, a nomogram

was generated using the “survival” and “rms” packages in R, which

incorporated the 13-ERS-related gene signature and TNM stage as

quantitative predictors of clinical prognosis. Calibration curves

were constructed to assess the agreement between predicted and

actual survival, and the C-index, which ranged from 0.5 to 1.0, was

generated to determine the model’s efficacy in prognostic

prediction. The numbers 0.5 and 1.0 reflect a random chance and

an outstanding ability to predict survival with the model.
Statistical analysis

R, version 4.2.0, was used throughout each statistical analysis

carried out. In order to determine whether or not there was a

correlation between risk scores and clinical factors, either the 2 test

or Fisher’s exact test was applied. The Wilcoxon matched-pairs test

was used in order to make a comparison between the levels of GP6

and CASQ2 that were found in HCC tissues and the levels that were

found in neighboring normal tissues. In order to investigate the

connection between risk scores and OS, both univariate and

multivariate versions of the Cox proportional hazard regression

model were used. The one-way analysis of variance (ANOVA) was

used to compare the levels of GP6 and CASQ2 expression in

noncancerous liver cells to the levels of expression in five HCC

cell lines. The Kaplan-Meier technique and the log-rank test were

used to compare OS rates among the different experimental groups.

In order to analyze the survival prediction’s specificity and

sensitivity using the gene signature risk score, receiver operating

characteristic (ROC) analysis was performed, and the area under
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the curve (AUC) was applied in order to investigate the accuracy of

the prognosis. Where P was less than 0.05, statistical significance

was assumed.
Results

Development of the prognostic
gene signature

The TCGA-LIHC cohort contained 364 patients with

comprehensive information, including gender, age, tumor grade, and

TNM stage, whereas the ICGC LIRI-JP cohort had 231 individuals.

Table S1 shows the detailed baseline features ofpatients inbothgroups.

We obtained 778 genes in ERS with a relevance score greater than 7

directly or indirectly from theGeneCardswebsite. Next, because of the

lack of expression in the TCGA-LIHC cohort, we excluded 17 genes.

Lastly, we retrieved 761 ERS-associated genes from the TCGA-LIHC

for geneexpressionprofiles, ofwhich168DEGs inHCCwere found for

future research on prognostic significance (Figure S1). 168HCCDEGs

were submitted to univariate Cox regression, with 59 ERS-associated

genes identified to substantially correlate with OS in the TCGA-LIHC

cohort (Table S2). The regression coefficients of these important genes

were generated using LASSO COX regression (Figure S2). The model
Frontiers in Immunology 04
performed best when all 13 genes were included (Figure 1A). The

regulatory roles of these 13 genes, primarily engaged in ERS, were

reported inTable 1, and the lasso coefficient of the 13 genes was shown

inFigure1B.Fivegenes (GP6,CASQ2,PON1,CD4,PPARGC1A)with

hazard ratios (HR) less than one (all P < 0.05) were considered

protective, whereas eight genes (GCG, GBA, SPP1, SQSTM1, CDK1,

BRSK2, G6PD, SLC2A1) with HR more than one (all P < 0.05) were

considered dangerous (Figure 1C). The risk score for every individual

was calculated as a linear combination of the level of each ERS-

associated gene multiplied by its corresponding LASSO regression

coefficient. The average risk scorewas considered a threshold to stratify

individuals in high- or low-risk groups for prognostic prediction.

Figure 2 illustrates the distribution of the 13-ER-stress-gene-based

risk scores, the survival time of the patient, and outcomes in the

training and validation cohorts. The heatmap suggested the eight risky

genesweremore abundantly expressed in the high-risk group,whereas

the five protective genes were more abundantly detected in the low-

risk group.
Validation of the prognostic gene signature

We evaluated the predictive capacity of the 13-gene signature in

the TCGA-LIHC and ICGC LIRI-JP cohorts. The results showed
B

C

A

FIGURE 1

LASSO regression analysis was employed to develop the predictive gene signature. (A) A plot of the coefficient profile was made with the log
(lambda) sequence. Choosing the ideal parameter (lambda) for the TCGA-LIHC LASSO model. (B) Profiles of the 13 genes’ LASSO coefficients from
the TCGA-LIHC. (C) A forest plot representing the 13 genes linked to survival. LASSO, least absolute shrinkage and selection operator; TCGA-LIHC,
The Cancer Genome Atlas Liver Hepatocellular Carcinoma.
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TABLE 1 Functions of genes in the prognostic gene signature.

NO.
Gene
Symbol

Full name Function
Relevance
score

Risks
coefficients

1 GP6 Glycoprotein VI Platelet Involves in collagen-induced platelet adhesion and activation 7.38 -0.1194

2 CASQ2 Calsequestrin 2 Regulates the release of lumenal Ca(2+) 11.47 -0.0771

3 PON1 Paraoxonase 1 High-density-lipoprotein associated enzyme 11.69 -0.0507

4 CD4 CD4 Molecule Cell differentiation antigen CD4 17.75 -0.0470

5 PPARGC1A
PPARG Coactivator
1 Alpha

Transcriptional coactivator for steroid receptors and nuclear receptors 8.64 -0.0466

6 GCG Glucagon Regulates blood glucose 8.89 0.0072

7 GBA Glucosylceramidase Beta Glucosylceramidase 8.27 0.0073

8 SPP1
Secreted
Phosphoprotein 1

Osteopontin 17.19 0.0156

9 SQSTM1 Sequestosome 1 Autophagy receptor required for selective macroautophagy 12.27 0.0302

10 CDK1
Cyclin Dependent
Kinase 1

Controls the eukaryotic cell cycle 8.13 0.0519

11 BRSK2
BR Serine/Threonine
Kinase 2

Serine/threonine-protein kinase 11.12 0.0584

12 G6PD
Glucose-6-
Phosphate
Dehydrogenase

Catalyzes the first and rate-limiting step of the oxidative branch within
the pentose phosphate pathway/shunt

9.8 0.0808

13 SLC2A1
Solute Carrier Family 2
Member 1

Facilitative glucose transporter 7.75 0.0925
F
rontiers
 in Immunology
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FIGURE 2

A visualization of the distributions of risk scores and survival status in the training (A) and validation (B) cohorts, as well as a heatmap of gene
expression profiles of genes related to endoplasmic reticulum stress. Patients are dichotomized into low- and high-risk groups using the dotted line.
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that the HCC patients with low-risk scores exhibited remarkably

longer survival than those with high-risk scores in both the training

(P < 0.0001) and validation groups (P = 0.00029) (Figures 3A, B). A

time-dependent ROC curve was further generated for OS at various

periods to assess the signature’s predictive capabilities, and the AUC

values for 1-, 3-, and 5-year OS were 0.798, 0.736, and 0.709,

respectively, in the TCGA-LIHC group (Figure 3C), and 0.747,
Frontiers in Immunology 06
0.756, and 0.749, respectively, in the ICGC LIRI-JP cohort

(Figure 3D). Moreover, combining the TNM stage and risk score

could enhance prognostic accuracy in the TCGA-LIHC cohort

(Figure 3E) compared to the TNM stage or risk score alone. The

risk score in the ICGC LIRI-JP cohort exhibited an enhanced

predictive value than the TNM stage and the combination of

both (Figure 3F).
B

C D

E F

A

FIGURE 3

Predictive performance of the ERS-associated gene signature in HCC. OS in the training (A) and validation (B) populations shown by Kaplan-Meier
plots. Time-dependent ROC curves based on the gene signature in the training (C) and validation (D) cohorts, with computed AUCs at 1-, 3-, and 5-
year OS. ROC analysis of the OS’s sensitivity and specificity in the training (E) and validation (F) cohorts for the TNM stage and risk score
combination. ERS, endoplasmic reticulum stress; HCC, hepatocellular carcinoma; OS, overall survival; ROC, receiver operating characteristic; AUC,
area under the curve; TNM, tumor-node-metastasis.
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In the TCGA-LIHC cohort, a higher risk score was notably

related to a higher TNM stage and advanced grade of tumor. In the

validation cohort, a higher risk score was exclusively related to a

higher TNM stage (Table S1). Univariate Cox regression analysis

showed that the risk score was remarkably related to poor prognosis

in both the training (HR = 2.166, 95% CI = 1.672-2.807, P < 0.001)

and validation (HR = 2.483, 95% CI = 1.470-4.194, P = 0.001)

cohorts (Figure 4A). TNM stage (HR = 1.431, 95% CI = 1.237-1.655,

P = 0.004) and pathologic stage (HR = 1.62, 95% CI = 1.336-1.994,

P < 0.001) were strong predictors of survival in the training cohort,

while TNM stage (HR = 2.203, 95% CI = 1.519-3.195, P < 0.001)

and gender (HR = 0.502, 95% CI = 0.268-0.94, P = 0.031) were

significant predictors in the validation cohort (Figure 4A). In the

training cohort, both the signature-based risk score (HR = 1.869,

95% CI = 1.412-2.475, P = 0.001) and the TNM stage (HR = 1.299,

95% CI = 1.085-1.554, P = 0.004) were independent predictors of

OS using Cox multivariate regression analysis (Figure 4A). In the

validation cohort, the signature-based risk score (HR = 2.091, 95%

CI = 1.215-3.598, P = 0.008), TNM stage (HR = 2.057, 95% CI =

1.415-2.989, P = 0.001), and gender (HR = 0.384, 95% CI = 0.201-

0.734, P = 0.004) were all independent predictors of OS using Cox
Frontiers in Immunology 07
multivariate regression analysis (Figure 4A). We investigated the

genetic changes in these risk-associated genes to better understand

their role in HCC (http://www.cbioportal.org). In this study, we

utilized two data sets for TCGA-LIHC: the Provisional data set (366

samples) and the PanCancer Atlas data set (353 samples). Only

samples that had both mutation and CNV data were included in the

analyses. Genes of interest are changed in 75 (21%) of 353

PanCancer Atlas questioned samples (Figure S3) but not in 95

(26%) of 366 Provisional samples (Figure 4B). The frequent genetic

changes show that these genes are essential during the formation

and development of HCC. We performed a Kaplan-Meier analysis

of survival in HCC patients by using the TNM stage, the status of

TP53 mutation, and age. The ERS-associated gene signature

accurately distinguished OS rates in different subgroups in the

TCGA-LIHC cohort (all P < 0.05) (Figures 5A, C, E). In the

ICGC LIRI-JP cohort, patients with low-risk scores exhibited

remarkably improved OS than those with high-risk scores at the

age of > 60 years (P = 0.027), ≤ 60 years (P = 0.0036), wild-type

TP53 (P = 0.032), and mutant TP53 (P = 0.03) (Figures 5B, F).

However, in the TNM stages III+IV subgroup, no significant

difference was observed in OS between the high- and low-risk
B

A

FIGURE 4

Characteristics of the ERS-associated gene signature. (A) Univariate and multivariate Cox regression analyses the relationship between the signature
and clinical characteristics in the training and validation cohorts. (B) Genetic modification of the 13 genes in the TCGA-LIHC cohort (TCGA,
Provisional). ERS, endoplasmic reticulum stress; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma.
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group (P = 0.11), whereas in the TNM stages I+II subgroup,

patients in the high-risk group exhibited remarkably worse OS

than those in the low-risk group (P = 0.00066) (Figure 5D). This

prognostic signature may enhance the sensitivity and specificity of

the standard TNM model, resulting in a benefit that could

potentially aid in clinical decision-making.
Identifying signaling pathways related to
the predictive gene signature

To discover the molecular pathways underlying the ERS-

associated gene signature, GSEA was used to compare high- and

low-risk groups in the TCGA-LIHC and ICGC LIRI-JP cohorts. In

the TCGA-LIHC and ICGC LIRI-JP cohorts, 23 and 16 Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways,

respectively, were enriched (Table S3). Figure 6 depicts the KEGG

pathways that are commonly enriched in both cohorts. The cell

cycle, spliceosome, and homologous recombination were shown to

be strongly related to the high-risk group. Meanwhile, the low-risk

group was related to drug metabolism cytochrome p450, insulin

signaling, adipocytokine signaling, renin-angiotensin system,

retinol metabolism, butanoate metabolism, metabolism of
Frontiers in Immunology 08
glyoxylate and dicarboxylate or fatty acid, amino acid metabolic

pathways, and lipid metabolic pathways.
The landscape of genetic variations of the
signature genes in HCC

Subsequent examination of the hallmark genes indicated that

CNVmutations were common. The expression of most ERS-related

genes with CNV amplification, such as GBA, SQSTM1, G6PD,

PON1, GP6, CDK1, BRSK2, and PPARGC1A, was considerably

higher in TCGA-LIHC samples compared to normal control

samples. SLC2A1, CASQ2, and SPP1 were downregulated in

TCGA-LIHC samples simultaneously (Figure 7A). Figure 7B

depicts the chromosomal locations of CNV changes in 13 ERS-

related genes. In addition, the Spearman correlation was utilized to

assess the reciprocal regulation of the signature genes (Figure 7C).

The findings revealed that CASQ2, PPARGC1A, CD4, PON1, and

GP6 were protective variables linked with longer OS, whereas GBA,

SPP1, SQSTM1, CDK1, G6PD, and SLC2A1 were risk factors

(Figure 7D). Additional study revealed that in tumor samples,

CD4, PON1, PPARGC1A, and GP6 were dramatically

downregulated, whereas SPP1, SQSTM1, CASQ2, GBA, CDK1,
B

C D

E F

A

FIGURE 5

Predictive performance of the ERS-associated gene signature in subgroups. A Kaplan-Meier plot shows OS in subgroups based on age in training (A)
and validation cohorts (B). A Kaplan-Meier plot shows OS in subgroups based on tumor stage in the training (C) and validation cohorts (D). A Kaplan-
Meier plot shows OS in subgroups based on statuses of TP53 mutation in the training (E) and validation cohorts (F). ERS, endoplasmic reticulum
stress; OS, overall survival.
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G6PD, BRSK2, GCG, and SLC2A1 were significantly elevated (all P

< 0.05) (Figure 7E).

Additional survival studies were performed on the 13 signature

genes in the TCGA-LIHC cohort to confirm their predictive

significance. As a consequence, high levels of CD4, PON1,

CASQ2, PPARGC1A, and GP6 expression were found to be

substantially linked with extended survival time (all P < 0.05)

(Figures S4A, D, E, I, M). Also, increased expression of SPP1,

SQSTM1, G6PD, GBA, CDK1, SLC2A1, and was associated with a

worse prognosis (all P < 0.05) (Figures S4B, C, G, J, K, L).

Surprisingly, greater CASQ2 expression was linked to a prolonged

survival duration (Figure S4E). No study has been conducted on the

relationship between GP6 and, CASQ2, and HCC, despite these

genes being strongly associated with prognosis. To investigate the
Frontiers in Immunology 09
mRNA levels of GP6 and CASQ2 in HCC specimens and cells, nine

matched samples of HCC tissues and normal liver samples were

examined using qRT-PCR. We found that only GP6 mRNA levels

were notably reduced in HCC tissues than in matched normal

samples (Figures S5A, C). Furthermore, we examined the

expression of GP6 and CASQ2 in HCC cells and five

noncancerous liver cell lines using qRT-PCR. Our results

indicated that only GP6 mRNA levels were notably reduced in

HCC cells compared to normal control (P < 0.05) (Figures S5A, B).

Our analysis revealed significant differences and associations in the

genomic and transcriptome landscapes of hallmark genes between

normal and HCC samples. Specifically, alterations in the levels and

genetic variation of ERS-related genes appeared to serve crucial

roles in the control of HCC tumor progression.
FIGURE 6

A GSEA plot showing KEGG pathways that are commonly enriched in the TCGA-LIHC cohort. GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; NES, Normalized Enrichment Score;
FDR, False Discovery Rate; NOM P-val, normal P value.
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The role of the ERS-related score on the
prediction of immunotherapeutic benefits

A histogram of the general distribution of different immune

cells in each sample is presented in Figure 8A, where the different

hues represent numerous types of immune cells, and the height of

each color represents the amount of that particular immune cell

type in the sample. The CIBERSORT approach has limitations in

revealing the location of immune cell subsets with low abundance in

tumors. However, we observed individual differences in the
Frontiers in Immunology 10
proportion of immune cells between high- and low-risk groups.

Cluster analyses of the immune cells infiltrated in disease and

normal data are critical for identifying pathogenic processes and

immunoregulatory systems. Resting Dendritic cells, Macrophages

M0 cells, and T cells follicular helper infiltrated more in high-risk

HCC patients (all P < 0.05), as seen in Figure 8B. On the other hand,

resting T cells, CD4 memory cells, Mast cells resting cells, NK cells

resting cells, and Macrophages M2 cells infiltrated less in high-risk

HCC patients (all P < 0.05). In the high-risk group, NK resting cells

penetrated the tissue less often as well (P < 0.05). In addition, a
B

C D

E

A

FIGURE 7

The landscape of genetic mutations of the signature genes in HCC. (A) The CNV alteration frequency of 13 ERS-related signature genes. The
alteration frequency was represented by the column. A pink dot indicates the deletion frequency, whereas a blue dot indicates frequency. (B) The
chromosomal location of CNVs in 13 ERS-related genes. (C) The relationship between the 13 ERS-associated signature genes. (D) Expression
interactions on 13 ERS-related signature genes in HCC. (E) The mRNA levels of 13 ERS-related signature genes between LIHC and normal patients
according to TCGA. *P < 0.05; **P < 0.01; ***P < 0.001. HCC, hepatocellular carcinoma; CNV, copy number variation; ERS, endoplasmic reticulum
stress; LIHC, Liver Hepatocellular Carcinoma; TCGA, The Cancer Genome Atlas.
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strong positive correlation was discovered between the risk score

and M0 macrophages cells (r = 0.31, P = 1.33 x 10-9), resting

Dendritic cells (r = 0.27, P = 2.45 x 10-7), T cells regulatory (Tregs)

cells (r = 0.21, P = 6.5 x 10-5), T cells follicular helper (r = 0.19, P =

0.00020), T cells CD4 memory activated cells (r = 0.16, P = 0.0018),

and Neutrophils cells (r = 0.12, P = 0.0208) (Figure 8C in addition

to Figure S6). According to these findings, the group considered to

be at high risk had a much more significant proportion of immune

cells that had been improperly activated when compared to the

group that was considered to be at low risk.
A personalized prognostic
prediction model

We constructed a nomogram to predict the probability of 1-, 2-,

and 3-year OS using the 13-ERS-gene signature and TNM stage as

predictors. As shown in Figure 9A, each component was assigned

points based on its risk contribution to survival. According to

calibration curves, actual and anticipated survival matched well

(Figure 9B). Cindex values for the TNM model, prognostic gene

signature, and nomogram model were 0.573, 0.729, and 0.731,

respectively. For instance, if a patient had stage TNM III (18

points) and a high-risk score(80 points), she would be awarded

219 points. Her survival rates at 1, 2, and 3 years were

approximately 55%, 30%, and 18%, respectively. We validated the
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nomogram using the validation cohort and plotted the calibration

curves for 1-year, 2-year, and 3-year OS predictions, as illustrated in

Figure 9C. Integrating our prognostic model with the standard

TNM model may improve its predicting sensitivity and specificity,

aiding clinical treatment choices.
Discussion

HCC patients are at high risk of recurrence and mortality, and

current staging systems may not reliably predict OS as they do not

consider genetic and epigenetic factors. Therefore, there is a need

for prognostic biomarkers that can identify HCC patients at higher

risk of recurrence and poor survival who might benefit from more

aggressive therapy. Recently, gene signatures based on specific

characteristics have become a research focus for predicting cancer

mortality risk, including immune, cell cycle, and other signatures.

However, a global expression pattern based on ERS-associated

genes has not been previously established in HCC. In this study,

we developed a novel 13-ERS-gene signature that demonstrated

excellent prognostic value in the TCGA-LIHC cohort and was

validated in an independent ICGC LIRI-JP cohort. The 13-ERS-

gene signature effectively stratified HCC patients into high and low-

risk groups according to the 5-year OS, with an AUC value of 0.749

in the validation cohort. The discriminating performance of the 13-

ERS-gene signature was statistically significant and clinically
B C

A

FIGURE 8

The immune landscape in the high-risk HCC patients. (A) The proportional percentage of infiltrating immune cells in individual samples is presented
visually in a bar plot. (B) This violin plot shows the differentially infiltrated fraction of immune cells according to CIBERSORT. (C) The correlation
between ERS-related score and infiltrated immune cells. HCC, hepatocellular carcinoma; ERS, endoplasmic reticulum stress.
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moderate, surpassing that of the TNM staging method alone.

Therefore, the 13-ERS-gene signature could represent a novel

genetic and epigenetic tool for prognosis prediction in HCC

patients. Patients with HCC who have higher risk scores, as

determined by the 13-ERS-gene signature, may benefit from more

aggressive therapy and closer monitoring, which could potentially

prolong their survival. Additionally, GSEA suggested that the 13

ERS-related genes may serve critical functions in the regulation of

the cell cycle, spliceosome, homologous recombination, PPAR, drug

metabolism cytochrome P450, adipocytokine, renin-angiotensin

system, insulin signaling, and many metabolic pathways, shedding

light on these genes’ biological functions.

Various intrinsic and microenvironmental disturbances could

induce ERS in cancer cells, resulting in accumulated unfolded

proteins and then the activation of UPR (12). The UPR functions

in the re-establishment of homeostasis by reducing protein
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synthesis, inhibiting protein translation, facilitating misfolded

proteins’ degradation, and regulating ERS-associated genes (16).

ERS-associated genes and signalings can affect the pathophysiology

of HCC, and previous studies have indicated its role in prognosis

prediction (17). The platelet-specific collagen receptor GP6 causes

platelet activation and controls various processes, such as platelet

adhesion, aggregation, and procoagulant activity (18). Platelets aid

in the growth and migration of tumors by stimulating the formation

of blood and lymphatic vessels and shielding cancer cells from the

innate immune system (19). Future study is required to clarify the

functions of GP6 with ERS on the formation of HCC, even though

we discovered that GP6 was downregulated in HCC tissues by qRT-

PCR and a protective gene for the prognostic prediction of patients

with HCC based on the expression of the gene. It is important to

note that there is need for more available data about protein levels

of GP6 in HCC, and no immunohistochemistry analyses have been
B

C

A

FIGURE 9

The nomogram to anticipate prognostic probabilities. (A) A nomogram incorporates the ERS-associated gene signature and the TNM stage. An
analysis of the calibration curves for the nomograms predicting OS at 1, 2, and 3 years for the training (B) and validation cohorts (C). ERS,
endoplasmic reticulum stress; TNM, tumor-node-metastasis; OS, overall survival.
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conducted. This implies that further study is required to explore the

role of GP6 in HCC and its potential implications for the diagnosis

and treatment of HCC.

The CASQ2 could prevent the activation of IRE1a by binding

directly to the luminal domain (of the ERS sensor) in the junctional

sarcoplasmic reticulum(20). Previous studies have shown thatCASQ2

has a significant impact on several cellular processes associated with

breast cancer, including the proliferation,migration and invasion (21).

In a bioinformatics study, it served crucial roles in lymph node

metastasis and was substantially correlated with survival in bladder

cancer patients (22). The reduction of tumor burden was seen in a

mouse model for HCC with the inhibition of IRE1a-endonuclease
activity (23). Although we could not identify differential expression of

the CASQ2 in HCC, further investigation is needed to elucidate its

potential role in HCC. The PON1 protects against oxidative stress by

engaging in the hydrolysis of active oxidized phospholipids and

removing lipid hydroperoxides and H2O2 via its peroxidase-like

activity, implying its role in chronic liver impairment (24). In the

meantime, the PON1 has been identified as a putative serum

biomarker for microvascular invasion in HCC, and its expression is

negatively associated with vascular invasion (25). Combining PON1

andAFP improves the accuracy of diagnosis for invasion in vascular in

HCC patients compared to each test alone (26).

The regulation of CD4 and CD8 coreceptor gene expression is

crucial for the development of T lymphocytes (27). The induced

selective apoptosis of CD4+ T cells may promote the development of

HCC (28). The PPARG has been shown to mitigate ERS and

inflammation by modulating the expression of the nuclear growth

factor receptor (29). The role of PPARG in HCC patients has been

found to suppress tumor growth, angiogenesis, andmigration (30, 31).

Additionally, the PPARGC1A has been associated with susceptibility

to HCC in an eastern Chinese Han population (32). The GCG-like

peptide-1 could protect against non-alcoholic fatty liver disease by

inhibiting the ERS-related pathway (33). The GCG receptor agonists

have been shown to counteract hepatocarcinogenesis through the

cAMP-PKA-EGFR-STAT3 axis in a non-alcoholic mouse model,

while GCG may promote hepatocarcinogenesis in patients suffering

from non-alcoholic fatty liver disease (34, 35). The protein encoded by

the GBA3 is an intracellular enzyme that can catalyze the hydrolysis of

various glycosides. The precise function of GBA3 in ERS remains

uncertain. A strong correlation exists between reduced GBA3

expression and poor prognosis in individuals with HCC (36). The

SPP1 appears to be involved inmaintaining intracellular sphingosine-

1-phosphate homeostasis, and its depletion leads to increased ERS and

subsequent inductionof autophagy through theUPRpathway (37).An

elevated level of SPP1 was found in HCC, contributing to the

progression (38).

The SQSTM1, also known as ubiquitin-binding protein p62, is

involved in the degradation of misfolded proteins via selective

autophagy (39). Perturbation of p62 activity has been observed in

HCC, and it has been identified as a critical component of protein

aggregates in the formof intracellular inclusionbodies.These inclusion

bodies containing p62, are increasingly recognized as biomarkers for

HCC (40). Moreover, p62 serves as a signaling scaffold involved in

various physiological processes, including inflammation and

programmed cell death. In HCC, dysregulation of these processes
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can contribute to tumor growth, invasion, andmetastasis. p62 has also

been linked to oxidative stress response and metabolism, which are

important factors inHCC pathogenesis (40). CDK1 has been found to

be involved in the regulation of ERS and its downstream signaling

pathways. Previous studies have shown that the activation of UPR-

associated transcription factors, including activating transcription

factor 4 and C/EBP homologous protein, necessitates the presence of

CDK1 activity (41). TheCDK1-dependent phosphorylation of human

telomerase reverse transcriptase promotes tumor growth in a

telomere-independent manner (42). Moreover, the inhibition of cell

proliferation in HCC was achieved by the downregulation of CDK1

(43). The therapeutic potential of CDKs in HCC has been

demonstrated through their targeting of CDK signaling pathway

(44). The role of BRSK2 in ERS appears to be related to the

regulation of apoptosis. The downregulation of BRSK2 expression

amplifies the ERS-induced apoptosis in cells. Additionally, the BRSK2

expression has been shown to modulate the mRNA levels of C/EBP

homologous protein and cleaved caspase-3 (45). Further research

would be necessary to determine any potential connection between

BRSK2 and HCC. The inhibition of G6PD could induce ERS and its

associated autophagy deregulation in breast cancer (46). G6PD

overexpression has been shown to promote HCC cell motility and

invasion by triggering epithelial-mesenchymal transition via the signal

transducer and transcription activator three pathway (47).

Knockdown of T-cell leukemia/lymphoma protein 1 increases the

sensitivity ofHCC to sorafenib, whereas knockdown ofG6PD inhibits

hepatocarcinogenesis (48). The expression of SLC2A1 is elevated in

HCC and facilitates tumorigenesis (47). Moreover, long non-coding

RNA SLC2A1-AS1 is involved in regulating aerobic glycolysis and

progression in HCC through the STAT3/FOXM1/GLUT1 pathway

(49). Most of the genes in this ERS-associated gene signature are

involved in HCC progression, including proliferation, migration,

invasion, and apoptosis. These processes have been demonstrated

with ERS in some way. However, the research found no evidence of a

regulatory relationshipbetween these genes and theERSpathway, such

as the IRE1a, PERK, and ATF6. Further investigation is needed to

elucidate their underlying mechanisms with the ERS pathway.

In the present research, we generated a nomogram that integrates

the 13-geneERS signature and the TNMstage to predict the 1-, 2-, and

3-year survival in HCC patients. Nomograms are broadly used in

clinical practice due to their straightforward visual display. This is the

first nomogram constructed and validated using large databases with

long-term follow-up to predict the survival rate in HCC patients by

combining an ERS-associated gene signature and the TNM stage.

According to calibration plots based on the TCGA and ICGC

databases, the nomogram had good predictive performance, as seen

by how closely the actual survival matched the expected survival. This

visual rating system might help physicians and patients make

personalized survival forecasts, allowing them to choose better

treatment alternatives.

The TME consists of complex interactions among stromal cells,

tumor cells, and infiltrating immune cells, which could shape the

course of HCC and predict the response and resistance to

immunotherapies. In the present study, regulatory T cells were

lower in the low-risk group, which is associated with worse OS. The

role of regulatory T cells in the prognosis of HCC was well-
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described in the systematic review and meta-analysis (50). High

infiltration rates of regulatory T cells predicted worse OS in 1214

patients. Furthermore, tumor-infiltrating neutrophils could

stimulate the invasion of macrophages and Tregs into the TME

via the production of monocyte chemotactic protein 1, leading to

the progression of HCC and resistance to sorafenib (51). Targeting

regulatory T cells and inhibiting the associated mediated molecules

and pathways might inhibit HCC progression.

Although the ERS-associated gene signature showed promising

results for survival prediction in HCC patients, several limitations

must be considered. Firstly, experimental studies are necessary to

understand the underlying mechanisms of these ERS-associated

genes. Notably, there is an absence of available data regarding GP6

protein levels in HCC, and no immunohistochemistry analyses have

been performed. Secondly, the signature was derived from the

TCGA database and needs to be validated by other postoperative

factors besides the TNM stage, such as the size of the tumor,

number of tumor, Child-Pugh classification, and interval

recurrence. Furthermore, the raw data does not adequately

address other risk factors for HCC, such as metabolic disorders,

race, diabetes, and smoking. Thirdly, prospective, observational,

and multi-center studies are required to validate this predictive

signature before its routine application. Additional investigation is

required to elucidate the underlying mechanisms and establish a

direct link between ERS-related genes and the TME in HCC.
Conclusion

In conclusion, we created a unique and powerful 13-gene ERS

signature that outperformed the traditional TNM stage in

predicting prognosis in HCC patients. This signature efficiently

separated the high-risk group of patients with HCC from the low-

risk group. Dysregulated ERS signaling is present in many

malignancies, and it aids in tumor survival by regulating other

disease-related processes such as angiogenesis, transformation, and

migration. Therefore, this signature has the potential to facilitate

individualized treatment and achieve better outcomes for HCC

patients. Moreover, GP6 inhibition might be a promising

therapeutic method for HCC among these signature genes.
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