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Type-I interferon pathway and
DNA damage accumulation in
peripheral blood of patients with
psoriatic arthritis
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1Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine,
National and Kapodistrian University of Athens Medical School, Athens, Greece, 2Institute of Infection,
Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom, 3Department of
Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece, 4Institute
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Objectives: The abnormal DNA damage response is associated with

upregulation of the type-1 interferon (IFN-I) pathway in certain rheumatic

diseases. We investigated whether such aberrant mechanisms operate in

psoriatic arthritis (PsA).

Methods: DNA damage levels were measured by alkaline comet assay in

peripheral blood mononuclear cells from 52 PsA patients and age-sex-

matched healthy individuals. RNA expression of IFIT1, MX1 and IFI44, which are

selectively induced by IFN-I, was quantitated by real-time polymerase chain

reaction and their composite normalized expression resulted in IFN-I score

calculation. RNA expression of IL1b, IL6, TNF, IL17A and IL23A was also

assessed in PsA and control subgroups.

Results: In PsA, DNA damage accumulation was increased by almost two-fold

compared to healthy individuals (olive tail moment arbitrary units, mean ± SD;

9.42 ± 2.71 vs 4.88 ± 1.98, p<0.0001). DNA damage levels significantly correlated

with serum C-Reactive-protein and IL6 RNA expression in PBMCs. Despite

increased DNA damage, the IFN-I score was strikingly lower in PsA patients

compared to controls (-0.49 ± 6.99 vs 4.24 ± 4.26; p<0.0001). No correlation

was found between IFN-I pathway downregulation and DNA damage. However,

the IFN-I score in a PsA subgroup was lower in those patients with higher IL1b
expression, as well as in those with higher TNF/IL23A PBMCs expression.

Conclusion:DNA damage in PsA correlates with measures of inflammation but is

not associated with the IFN-I pathway induction. The unexpected IFN-I

downregulation, albeit reminiscent to findings in experimental models of

spondyloarthritis, may be implicated in PsA pathogenesis and explained by

operation of other cytokines.
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psoriatic arthritis, type-I Interferon, DNA damage, PBMC (peripheral blood
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Highlights
Fron
• DNA damage accumulation is increased in blood

mononuclear cells of PsA patients

• Levels of DNA damage correlate with CRP levels in PsA

• Type-I Interferon pathway is paradoxically downregulated

in PsA
Introduction

Psoriatic arthritis (PsA) is a common inflammatory

arthropathy, affecting about 25% of patients with psoriasis. It is

heterogenous with many clinical manifestations, including arthritis,

skin psoriasis, enthesitis, nail involvement and dactylitis.

Comorbidities, such as obesity, cardiovascular and metabolic

diseases, as well as mental health disorders, are commonly

present (1). Although significant advances have been made in

understanding underlying pathogenetic mechanisms, several

issues remain ill defined. Moreover, different pathogenetic

pathways could in part explain the observed diversity in clinical

expression (2).

DNA damage has been shown by our and other groups to be

increased in systemic rheumatic diseases (SRD) such as systemic

sclerosis, systemic lupus erythematosus (SLE) and rheumatoid

arthritis (RA) (3–6), possibly related to deficiencies in DNA

repair machinery (4, 5). Increased DNA damage, in turn, has

been linked to augmented type-I Interferon (IFN) responses (6,

7). Besides, IFN-I may play a role in the pathogenesis of psoriatic

disease (8, 9). Polymorphisms in genes encoding for proteins

involved in IFN-I response have been found in PsA patients (9)

while there is some evidence that IFN-I pathway is up-regulated in

the skin of patients with psoriasis (10, 11) and in the synovium or in

the synovial fluid of patients with PsA (12, 13). However, IFN-I

expression in the peripheral blood cells of PsA patients remains to

be elucidated.

Therefore, we aimed to investigate the presence of DNA

damage and an IFN-I signature (which corresponds to the

evidence of an upregulation of transcripts induced by IFN-I) (14)

in PsA and to determine whether subgroups of PsA patient

exhibited differential signatures.
Patients and methods

Study cohort characteristics

Consecutive patients, fulfilling the CASPAR criteria for PsA,

attending our outpatient’s rheumatology clinic from April 2020 to

January 2021 were enrolled in the study. Age- and sex- matched

healthy controls (HC) were included in the study, with no past

medical history of SRD. Exclusion criteria for both groups included

active (on chemo- radio- therapy) malignancy and active or recent

(last 2 weeks) infection (self-reported but also confirmed by a
tiers in Immunology 02
negative CRP in healthy controls) or vaccination. The study was

approved by the “Laiko” Hospital Ethical Committee (No 314.21)

and all participants provided written informed consent.
Cell isolation

Peripheral Blood Mononuclear Cells (PBMCs) were isolated

immediately after blood sample collection using Ficoll gradient

centrifugation as previously described (15). Cells were resuspended

in Freezing Medium [90% Fetal Bovine Serum (FBS), 10% Dimethyl

sulfoxide (DMSO)] or lysed in TRITidy G (AppliChem, Germany)

and stored at -80°C until further processing.
DNA damage measurement

Endogenous DNA damage levels in PBMCs were measured by

single-cell gel electrophoresis (comet assay) under alkaline

conditions, measuring single-strand breaks (SSBs) and/or double-

strand breaks (DSBs) as previously described (15). Briefly, PBMCs

(5x104 cells) on comet slides were lysed and electrophoresis was

performed for 30min at 1V/cm, 4°C. Slides were stained with SYBR

Gold Nucleic Acid Gels Stain (Thermo Fischer Scientific, #S11494)

and visualized using fluorescence microscope (Zeiss Axiophot).

Comet images were analyzed by the Open Comet in ImageJ

software. Olive tail moment (OTM) of at least 200 cells/treatment

condition was evaluated in order to quantify DNA damage.
RNA extraction, reverse transcription, and
type-I IFN score quantification

Total RNA was extracted from PBMCs, using the TRITidy G

Reagent (AppliChem, Germany) as per the manufacturer’s

instructions, and immediately stored at -80°C. The quantity and

quality of RNA samples were spectrophotometrically tested

(Biospec Nano, Japan).

One microgram of RNA was reverse transcribed into

complementary DNA (cDNA) with Superscript III (Thermo

Fisher Scientific, USA). cDNA samples were diluted 1:10 with

nuclease-free water (AppliChem, Germany) immediately after

synthesis and stored at -20°C.

Quantitative real-time polymerase chain reaction (qRT-PCR)

was used to quantify the expression of selected genes using the Bio-

Rad IQ5 thermocycler and the KAPA SYBR FAST Mastermix

(KAPABiosystems, South Africa). Genes preferentially induced by

type-I IFNs were selected and included the following: IFN-induced

protein with tetratricopeptide repeats 1 (IFIT1), myxovirus

(influenza virus) resistance 1 (MX1) and Interferon Induced

Protein 44 (IFI44). As an internal control and normalization gene

(housekeeping gene), we used the glyceraldehyde phosphate

dehydrogenase (GAPDH).

To assess the IFN-I signature, we calculated the PBMC type-I

Interferon score (IFN-I score) as a composite of three type-I

Interferon-inducible genes (IFIT1, MX1 and IFI44) normalized to
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the house-keeping gene (GAPDH), as previously described (6, 15,

16). In detail, a reference sample was included in each PCR plate to

ensure normalization across experiments. Briefly, the qRT-PCR was

performed in a total volume of 25mL/reaction (2 mL of template

cDNA, 0.4 mM of each primer, 12.5ml 2× IQ SYBR Green SuperMix

(Bio-Rad), sterile water). The amplification protocol started with

95°C for 4 min followed by 40 cycles at 95°C for 10 s and 60°C for

30s and 72°C for 30s. The product specificity was assessed by the

melting curve analysis. The threshold value of each sample was

obtained in the logarithmic portion of the amplification curve. All

reactions were performed in duplicate. Each sample’s threshold

values for the type-I IFNs and house-keeping genes were subtracted

from the corresponding reference value and then divided by the

house-keeping gene values of each sample, resulting to the relative

expression value of each examined sample. Type I IFN score was

defined as the sum of the relative expression of the three type-I

Interferon-inducible genes (IFIT1, MX1 and IFI44). In a subgroup

of patients (for which amount of RNA was available for further

analysis, n=34), the expression of the genes encoding for TNF,

Interleukin (IL)-1, IL-6, IL-23 and IL-17 was also examined via

qRT-PCR (primers are presented in Supplementary Table 1).
Statistical analysis

Normal distribution was examined by D’Agostino-Pearson and

Shapiro-Wilk tests. Continuous variables are presented as mean ±

SD. Comparisons were performed with the use of Mann-Whiney U

test and unpaired t-test for not normally and normally distributed

parameters, respectively. Spearman’s test was used to examine

correlations. If both parameters were normally distributed,

Pearson test was used, instead. The level of statistical significance

was set at p<0.05. Statistical analysis was performed in SigmaPlot,

SPSS v.26 (IBM, USA) and GraphPad Prism 5.00 (GraphPad

Software, Inc., USA).
Results

Cohort description

Fifty-two PsA patients were included in our study. Of subjects

with PsA, 61.5% were female, 42.3% were current smokers. Their

mean ± SD age, Body Mass Index (BMI) and disease duration was

52.8 ± 10.7 years, 28.9 ± 7.2 Kg/m2 and 82.9 ± 107.5 months,

respectively. Further characteristics of patients included in the study

are depicted in Supplementary Table 2.
Increased endogenous DNA damage in
PsA patients

First, we assessed DNA damage by measuring DSBs and/or

SSBs via alkaline comet assay. We observed that in PBMCs of PsA

patients, endogenous DNA damage levels are increased by almost 2-

fold compared to healthy controls (mean ± SD; 9.42 ± 2.71 Vs 4.88
Frontiers in Immunology 03
± 1.98, p<0.0001) (Supplementary Figure 1). Next, we examined

possible clinical and serological associations with measured DNA

damage in PsA patients (Tables 1, 2). Endogenous DNA damage

levels were found to significantly correlate only with CRP levels

(r=0.354, p=0.012) suggesting a relationship to intercurrent

systemic inflammation (Table 2 and Supplementary Figure 2) It

has to be noted however, that CRP was increased (>5mg/l) in only

20% of our patients (Supplementary Table 2).
Type I IFN signature in PsA patients

Next, we investigated whether patients with PsA exhibit an

altered type-I Interferon signature. Unexpectedly, we observed a

strikingly lower IFN-I score in PsA PBMCs compared to the health

control samples (mean ± SD; -0.49 ± 6.99 Vs 4.24 ± 4.26; p<0.0001)

(Figure 1A). This differential type I interferon signature was evident

also for each interferon inducible gene separately (IFIT1: mean ±

SD; -0.49 ± 2.44 Vs 1.66 ± 2.10, p<0.0001, MX1: -0.80 ± 2.22 Vs 0.44

± 1.29, p<0.001, IFI44: 0.81 ± 2.81 Vs 2.14 ± 2.05, p<0.0003)

(Figures 1B–D).
Lower IFN-I score in PsA patients:
association with demographic, clinical and
serological factors

We searched for possible associations between IFN-I score and

demographic, clinical and serologic parameters. We found that the

IFN-I score inversely correlated with BMI (Table 1). Also, IFN-I

score was higher for patients who had ever manifested eye

involvement and those who had current psoriasis compared to

those who did not (Body Surface Area [BSA]=0). Along the same

lines, IFN-I score correlated positively with BSA (Table 1). No other

associations were found with any of the parameters (including

treatment being received) examined. Furthermore, also

unexpectedly, no association was detected between endogenous

DNA damage and IFN-I score (r=-0.04, p=0.791). Conducting

sensitivity analyses, we tested whether there was a correlation

between DNA-damage and IFN-I score in subgroup of patients;

No significant association was found for patients having active

psoriatic lesions (p=1.000, r=0.001), for patients without active

psoriatic lesions (p=0.798, r=-0.046), for patients who were

bDMARD-naïve (p=0.672, r= -0.093), or for patients who had

CRP values above 5mg/l (p=0.796, r=0.091).
Associations between IFN-I score and
other cytokines in PsA patients

Attempting to explain the dissociation between DNA damage

and IFN-I score, we examined in a subset (n=34) of our cohort, for

expression of key cytokines involved in the pathogenesis of PsA and

for possible associations between their expression and IFN-I score.

Demographic clinical and treatment characteristics as well as IFN-I

scores did not differ between this subset of patients and the total
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TABLE 2 Correlations of demographical, clinical and laboratory factors with endogenous DNA damage and Type-I interferon scores and in patients
with Psoriatic Arthritis.

Characteristics DNA damage score Type-I Interferon score

r p-value r p-value

Age 0.225 0.156 0.057 0.689

BMI 0.053 0.710 -0.430 0.001

Disease duration 0.098 0.489 0.145 0.306

DAPSA 0.078 0.588 0.092 0.524

BSA -0.100 0.479 0.268 0.05

ESR -0.001 0.996 0.163 0.263

CRP 0.354 0.012 -0.090 0.534
F
rontiers in Immunology
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Statistically significant values are noted with bold fonts.
BMI, body mass index; BSA, body surface area; DAPSA, disease activity in psoriatic arthritis; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.
TABLE 1 Associations of demographical, clinical and laboratory factors with endogenous DNA damage and Type-I interferon scores and in patients
with Psoriatic Arthritis.

Disease Features (n=52) DNA damage score Type-I Interferon score

Demographics Presence Absence p-value Presence Absence p-value

mean ± SD mean ± SD

Female gender (n=32) 9.13 ± 2.47 9.88 ± 3.07 0.339 -0.30 ± 7.20 -0.82 ± 6.82 0.992

Smoking (n=22) 8.93 ± 2.63 9.78 ± 2.77 0.357 0.25 ± 8.10 -1.05 ± 6.15 0.831

Clinical features
Ever present

mean ± SD p-value mean ± SD p-value

Enthesitis (n=18) 8.89 ± 2.51 9.70 ± 2.81 0.306 -2.48 ± 4.41 0.55 ± 7.90 0.083

Dactylitis (n=15) 9.08 ± 2.82 9.56 ± 2.69 0.572 1.36 ± 9.25 -1.25 ± 6.83 0.592

Nail disease (n=33) 9.44 ± 2.78 9.38 ± 2.67 0.943 0.28 ± 8.33 -1.86 ± 3.49 0.902

Axial disease* (n=24) 9.54 ± 2.55 9.30 ± 2.91 0.748 -1.34 ± 4.91 0.34 ± 8.61 0.898

Uveitis (n=2) 8.59 ± 5.25 9.47 ± 2.57 0.190 14.00 ± 12.74 -1.39 ± 5.59 0.02

IBD (n=4) 11.77 ± 3.03 9.22 ± 2.63 0.191 -2.21 ± 2.78 -0.36 ± 7.23 0.987

Clinical features
Current¶

mean ± SD p-value mean ± SD p-value

Enthesitis (n=10) 9.51 ± 2.33 9.40 ± 2.82 0.908 -2.56 ± 4.89 -0.01 ± 7.37 0.147

Dactylitis (n=4) 8.97 ± 2.79 9.46 ± 2.73 0.732 1.43 ± 5.73 -0.66 ± 7.11 0.311

Nail disease (n=26) 9.34 ± 2.76 9.51 ± 2.71 0.942 0.03 ± 7.58 -1.07 ± 6.41 0.660

BSA=0 (n=33) 9.56 ± 2.71 9.17 ± 2.77 0.594 -2.44 ± 3.90 2.88 ± 9.62 0.05

MDA (n=25) 9.57 ± 2.97 9.28 ± 2.51 0.706 -0.16 ± 5.81 -0.81 ± 8.04 0.264

Current Treatment mean ± SD mean ± SD p-value

Steroids (n=16) 9.86 ± 2.82 9.22 ± 2.68 0.440 -2.36 ± 6.05 0.33 ± 7.30 0.104

cDMARDs (n=26) 9.16 ± 2.65 9.68 ± 2.80 0.475 -0.91 ± 6.24 -0.08 ± 7.78 0.552

Apremilast (n=2) 11.14 ± 2.89 9.31 ± 2.70 0.217 -0.32 ± 7.14 -3.47 ± 2.87 0.455

TNFi (n=23) 9.12 ± 3.28 9.74 ± 1.95 0.634 -0.18 ± 6.26 -0.77 ± 7.67 0.388

IL-23/17i (n=6) 10.12 ± 2.49 9.32 ± 2.76 0.469 1.20 ± 10.65 -0.76 ± 6.38 0.793
Statistically significant values are noted with bold fonts.
BSA, body surface areal IBD, inflammatory bowel disease; MDA, minimal disease activity; cDMARDs, conventional disease modifying anti-rheumatic drugs; TNF, tumor necrosis factor.
* axial disease: when both of the following were present: inflammatory axial symptoms and radiological findings in x-ray or MRI of the sacroiliac joints or the spine. ¶At the time of the enrolment
in the study.
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cohort (n=52) (Supplementary Table 3). First, compared to healthy

individuals, the RNA expression of IL1 and IL6 were found to be

higher in PsA patients ([mean ± SD] 15.8 ± 23.0 vs 83.22 ± 219.0,

p=0.01 and 3.50 ± 3.12 Vs 6.3 ± 15.9, p=0.02, respectively. This was

not the case for IL17 (1.25 ± 0.66 vs 0.98 ± 0.60, p=0.24), IL23 (1.02

± 0.43 vs 1.12 ± 0.84, p=0.55) and TNF (1.60 ± 0.50 vs 7.0 ± 20.60,

p=0.08). (Supplementary Figure 3) Additionally, RNA expression of

IL23 were correlated with that of TNF (p<0.001, r=0.542) and RNA

expression of IL1 was correlated with that of IL6 and IL23 (p<0.038,

r=0.357 and p<0.025, r=0.384, respectively) (Supplementary

Figure 4). Of note, RNA expression of IL6 but not of other

cytokines tested, was correlated with DNA damage levels

(p<0.017, r=0.406) (Supplementary Figure 5).

Assessing both IFN-I score and expression of cytokines as

continuous variables, no statistically significant correlations were

identified. However, when the expression of cytokines were divided

to higher or lower (with cut-off being the median), we found

decreased IFN-I scores in patients with higher IL1, compared to

those with lower IL1 RNA expression (-2.35 ± 5.85 vs 0.98 ± 7.11,

p=0.028) and in patients with both TNF and IL23 high RNA

expression, compared to the rest of the samples examined, (-3.34

± 2.89 Vs 1.42 ± 7.98, p=0.029) (Figure 2).
Discussion

Pathogenetic mechanisms operating in PsA are ill defined thus

far. We hypothesized that DNA damage, which has been found to

be increased in other SRD, and subsequent inducible IFN-I

expression could be aberrant in PsA. Using a well validated assay

(5, 6, 15), we showed that there is increased DNA damage in PsA,

which is more pronounced in patients with high CRP. This is also

reflected in our finding that in our cohort, DNA-damage levels

correlated with IL6 expression. Besides, as it has been shown in
Frontiers in Immunology 05
oncology-studies, there is a relationship between IL6 expression and

DNA-damage. It seems that DNA damage can induce IL6

expression via stimulator of interferon genes (STING) mediated

NF-kB activation and also that IL-6 can affect DNA damage

responses (17, 18). Interestingly, in PsA, only some patients

display high CRP despite having active disease, possibly

suggesting that additional pathogenetic mechanisms may operate.

In our cohort, similar to other studies (19, 20) about 20% of the

patients had increased (>5mg/l) CRP. The data described herein

suggest that inflammation, in at least a subset of patients in whom

CRP is elevated (20), may be associated with DNA damage –

perhaps reflecting the burden of inflammatory disease and

acquired or cumulative target tissue damage or stromal turnover.

Several data support the involvement of IFN-I in PsA. A recent

study examining genetic profile in a large number of patients with

PsA, found that polymorphism in PTPN22 was associated with PsA

but not psoriasis (9). PTPN22 encodes for a protein tyrosine

phosphatase inhibiting signaling in T cells and it has been found

to mediate, via Toll-like receptors, IFN-I response, suppressing

arthritis and colitis in mice models (21). Furthermore, although

results are inconsistent (22), an IFN-I signature has been shown to

be overexpressed in PsA synovium (12, 13). Dolcino et al, using

Affymetrix arrays, have found in samples from 10 patients that

expression of type I interferon inducible genes is increased in

treatment-naïve patients, compared to healthy subjects, in paired

synovium and peripheral blood of patients with PsA (13).

Citrullinated and carbamylated peptides to LL-37 which is

associated with increased IFNa production (23) are increased in

PsA compared to osteoarthritis (12). In fact, in that study, IFNa was

detectable by ELISA in 8/20 PsA synovial fluids tested, but in none

of 12 synovial fluids obtained by individuals with OA. Also, staining

with the protein MxA, which acted as a surrogate marker of the

local IFN-I production, it was shown that this was abundant in PsA

synovial tissue but not in that of OA (12). Finally, the IFN-I
A

B DC

FIGURE 1

Decreased Type-I interferon scores in PsA patients. Graphs showing the type-I IFN score (A) in PBMCs of healthy controls (HC) (n=34) and Psoriatic
Arthritis (PsA) patients (n=52) as a combination of the relative mRNA expression of 3 type I IFN–inducible genes (IFIT1, MX1, and IFI44) [(B–D),
respectively] with RT-qPCR. P-value is derived from Mann-Whitney U test.
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pathway seems to be activated in psoriatic skin, as attested by

increased expression of molecules involved in this pathway, like

Interferon regulatory factor (IRF)-7, IRF-9, MxA and (2–5)

synthetase (24, 25). On the other hand, it seems that triggering

with IFNa is not adequate to induce psoriasis phenotype neither in

HaCaT keratinocytes nor in cultured skin biopsies (25).

Furthermore, IFNa does not appear to be overexpressed in

psoriatic skin. However, IFNa was found to be expressed from

plasmacytoid dendritic cells (pDCs) in developing lesions of

psoriasis (from skin obtained from marginal zones of spreading

psoriasis lesions) (26).

Increased DNA damage has been shown to lead to increased

IFN-I expression via the cGAS-STING (stimulator of interferon
Frontiers in Immunology 06
genes)-IRF3 pathway. More specifically, mice with deletion of the

central DNA repair sensor Atm accumulated unrepaired DNA

lesions, which induced a potent type I IFN response through the

release of damaged DNA into the cytoplasm, where it activated the

cGAS/STING pathway (6, 7). Another mechanistic link between

increased DNA damage and induction of a cGAS/STING-mediated

systemic immune responses is the generation of micronuclei, which

make self-DNA accessible to the cGAS/STING sensors (27, 28).

Interestingly, increased frequency of micronuclei has been reported

in the cells of patients with various systemic autoimmune diseases

(29). Finally, we have previously shown that increased DNA

damage is associated with increased type I IFN-induced gene

expression in PBMCs of patients with systemic sclerosis (6).

Given that increased DNA damage has been shown to lead to

increased IFN-I expression, and also that IFN-I seems to be a player

in pathogenesis of PsA (8, 9), we expected to find IFN-I signature to

be augmented in our patients. To assess IFN-I signature, we

calculated the type-I Interferon score (IFN-I score) as a

composite of three type-I Interferon-inducible genes (IFIT1, MX1

and IFI44). Although, these genes can be upregulated also by other

cytokines, including IFN-g, they are mainly induced by type-I IFN

(30–34).

In contrast to our expectations, it was found that IFN-I

signature was several-fold lower compared to healthy individuals.

Of note, the difference remained statistically significant (p=0.003)

even after adjusting for BMI (which was found to be inversely

correlated with IFN-I score in PsA patients). For the assessment of

IFN-signature, we opted to use the combined expression of three

IFN-I-inducible genes. These 3 genes have been previously

identified as IFNa/b-inducible by ex vivo treatment of healthy

subject-derived whole blood cells with 10 different IFN-a
subtypes and IFN-b, while at the same time being overexpressed

in peripheral blood cells of SLE patients (35), the prototypical

systemic autoimmune disease characterized by elevated type I IFN

responses. Moreover, treatment of human WISH epithelial cell line

with either recombinant IFNa or plasma derived from SLE patients

upregulated the expression of these 3 genes (36), suggesting a direct

association between the calculated type I IFN score and IFN-a
pathway activity. More importantly, the 3 genes have been

previously used as part of the reported type I Interferon signature

in patients with multiple systemic autoimmune diseases (6, 15, 16,

37), as well as to determine response in clinical trials of IFN-a
blockade in SLE (35).

This method (6, 15, 16, 37), which in contrast to the

measurement of IFN with ELISA is not directly affected by factors

like anti-IFN antibodies or lack of detection of the various IFN

species by the antibodies used in the ELISA (37).

The mechanistic reasons for the lack of association between the

accumulation of DNA damage and a prominent type I IFN

signature in PsA PBMCs, as observed in other SRDs such as SSc

(6), are currently unexplained but point to dysregulation of normal

innate immune regulation, which seems to be affected in PsA (38).

Interestingly, in our cohort, high IL-1 expression was inversely

associated with IFN-I expression, in agreement with the hypothesis

of the negative cross-regulation between IFN-I and IL-1 expression

(39, 40). There are other data also supporting the notion that IFN-I
FIGURE 2

Decreased IFN-I scores in patients with higher IL1, compared to
those with lower IL1 RNA expression and in patients with both TNF
and IL23 high RNA expression, compared to the rest of the samples
examined. In total, 34 patients were included in this analysis.
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is suppressed in spondyloarthritis (SpA). In B27 transgenic mice,

which serve as an SpA model, IFN-related genes were down-

regulated (“reverse interferon signature”) (41). Interestingly,

transcriptome analysis of B27 derived DCs showed a) an

upregulation of suppressor of cytokine signaling-3 (SOCS3),

known for its crucial role in limiting cytokine-mediated

inflammatory responses, that may account for reverse IFN

signaling and b) a down-regulation of IL-27, a cytokine that

directly induces IFN production by various cell types, such as

DCs, macrophages, NK cells, hepatocytes, and lung epithelial cells

(42). Cantaert et al, examined 40 patients with spondyloarthritis

(pathogenetic mechanisms of which are quite similar to that of PsA)

and 20 healthy controls and found that the IFN-I signature was

down regulated in the former. In this study, treatment with TNF

inhibitors modulated IFN-1 activity (43), suggesting a

counterbalance between TNF and IFN-I. In another study,

examining patients with psoriasis, it was shown that treatment

with adalimumab downregulated IFNa gene expression in the skin

of the patients who responded to treatment at week 16 (44). Toward

this direction, in our cohort patients who demonstrated high RNA

expression of both TNF and IL23A, displayed low IFN-I scores.

Taken all these together, one could support that pathways involving

TNF, IL-23 and IL-1 might suppress the IFN-I in PsA.

Finally, in our cohort we found that IFN-I score was associated

with psoriasis severity (assessed by body surface area) and inversely

correlated with body mass index. Both observations are consistent

with data from the existing literature suggesting that the IFN-I

signature is robust in psoriatic skin (45) and that there is an

impaired IFN-I response in people with higher BMI (46, 47).

We acknowledge our study has limitations. First, patients in our

cohort have received various treatments including biologic DMARDs.

No differences in DNA damage or IFN-I score were detected, however,

between patients receiving different medications. It would be

interesting to examine these parameters in treatment-naïve patients

as our results cannot be extrapolated for these individuals. Along the

same lines, CRP was elevated in only 20% of our patients, therefore the

correlation of CRP with levels with DNA damage should be interpreted

with caution. This, considering also the heterogeneity of PsAmight be a

plausible explanation for the differences between our findings and those

reported by Dolcino et al. (13), in the study of which patients had not

received treatment with DMARDs. Of note, in our study more patients

(n=52 Vs n=10) were tested for IFN-I signature. Second, it has been

suggested that IFN-I is increased in patients suffering from

inflammatory arthritis, in earlier rather than later stages of the

disease (48). In our study, disease duration did not seem to affect

IFN-I expression. Third, ideally, we would like to test differential gene

expression, simultaneously, at a tissue level. This has been assessed

previously in 10 PsA patients (13), and it has been suggested that genes

are modulated similarly at synovium and peripheral blood level.

Additionally, we tested for the expression of cytokines having role in

the pathogenesis of PsA, in a subgroup (n=34) of the total cohort

(n=52). Of note, characteristics of patients did not differ between these

two groups. Moreover, the number of individuals enrolled is not

sufficient to draw firm conclusions and larger validation studies that

would exploit a cytokine-based clustering of PsA patients would be of

interest. A comprehensive study of DNA repair proteins and their
Frontiers in Immunology 07
potential association with IFN-I signature or proinflammatory gene

expression would shed light in the involvement of the DDR pathway in

immune aberrations in these patients, which unfortunately was not

possible in our study due to limited biomaterial availability. Finally,

further transcriptome-wide analyses like RNA-sequencing or

microarray analysis to comprehensively study gene expression

profiles in different PsA subpopulations can provide meaningful

insights into disease pathogenesis, the effect of treatment on the

transcriptomic profile of patients’ cells and the prognostic value of

deregulated genes for disease progression or treatment response.

Prospective RNA-seq. analysis of PsA patients’ blood transcriptome

and its predictive value are a part of an ongoing project of our team. Of

interest, a recent RNA-seq. study of PBMCs derived from PsA patients

vs healthy controls showed a positive enrichment in PsA of several

terms related to inflammation such as ‘inflammatory response’, ‘TNFa

signaling via NFkB’, ‘complement’, ‘IL2 signaling’, and ‘IFNa and IFNg

response’ (49) consistent with our results. Interestingly, longitudinal

assessment of PBMC transcriptome revealed that transcriptomic

alterations as soon as 1 month after treatment initiation could

predict response at 6 months, with responders showing early

downregulation of the proinflammatory gene signatures (49).

In conclusion, we show that DNA damage is increased in PsA

patients, especially in the subgroup with higher CRP values which is

also reflected in the correlation between the DNA damage and IL6

expression. Unexpected IFN-I downregulation, albeit is reminiscent

to findings in experimental models of spondyloarthritis, was

observed regardless of CRP and treatment modalities and may be

indicative of dysregulated innate immune regulation in PsA

pathogenesis. It is possible that IFN-I expressing cells have been

recruited to tissues leading to the reduced level of expression in

blood. Whether IFN-I expression in the peripheral blood is

suppressed by other proinflammatory molecules like TNF and IL-

1 or is an intrinsic feature of patients with PsA warrants

further studies.
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SUPPLEMENTARY FIGURE 1

(A) Representative alkaline comet assay images of PBMCs from one healthy
adult (A1) and one PsA patient (A2). (B)Dotplots representing the endogenous

DNA damage levels (Olive tail moment arbitrary units) as assessed by alkaline
comet assay in peripheral blood mononuclear cells (PBMCs) from healthy

controls (HC) (n= 53) and PsA patients (n= 52). p-value is derived from Mann-
Whitney U test. *** P<0.001.

SUPPLEMENTARY FIGURE 2

Correlation of DNA damage levels (Olive tail moment arbitrary units) with CRP

(mg/l) levels in the patients of our cohort (n=52), (p=0.012, r=0.354).

SUPPLEMENTARY FIGURE 3

RNA expression of IL1b, IL6, TNFa, IL17A, IL23A in peripheral blood

mononuclear cells obtained from patients with psoriatic arthritis (n=34) and

from healthy controls (n=9).

SUPPLEMENTARY FIGURE 4

Correlations between RNA expression of IL1b, IL6, TNFa, IL17, IL23 in

peripheral blood mononuclear cells obtained from patients with psoriatic
arthritis (n=34). Axes are in log10 scale.

SUPPLEMENTARY FIGURE 5

Correlations between DNA damage, as assessed by olive tail moment (OTM)

and RNA expression of IL1b, IL6, TNFa, IL17, IL23 in peripheral blood
mononuclear cells obtained from patients with psoriatic arthritis (n=34).

Only correlation with IL6 expression was statistically significant
(p<0.017, r=0.406).
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