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Natural killer (NK) cells, as fundamental components of innate immunity, can

quickly react to abnormalities within the body. In-depth research has revealed

that NK cells possess regulatory functions not only in innate immunity but also in

adaptive immunity under various conditions. Multiple aspects of the adaptive

immune process are regulated through NK cells. In our review, we have

integrated multiple studies to illuminate the regulatory function of NK cells in

regulating B cell and T cell responses during adaptive immune processes,

focusing on aspects including viral infections and the tumor microenvironment

(TME). These insights provide us with many new understandings on how NK cells

regulate different phases of the adaptive immune response.
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1 Introduction

1.1 The development and maturation of NK cells

Derived from common lymphoid progenitor cells (CLP), NK cells serve as a vital

element of the innate immune system. Both human and mouse NK cell development

initiates from oligopotent CLPs. In mice, once CLPs are generated from multipotent self-

renewing hematopoietic stem cells (HSCs), their subsequent differentiation pathways

include NK cell progenitors (NKPs) (1). The definition of NKP cells is characterized by

the expression of IL2RB (CD122) when CLPs enter the lymphoid lineage (2). The

developmental process thereafter mainly consists of immature NK (iNK) and mature

NK (mNK) stages.

The iNK stage begins with the expression of the NKG2D-DAP10 activation receptor

complex by NK cells. During this stage, NK cells express NCR1, L-selectin (CD62L),

DNAM-1 (CD226), NK1.1,NKG2A, and cell adhesion molecules. The expression of CD49b

(DX5) and CD51 marks the transition of NK cells into the mature stage. The expression of

different combinations of Ly49 receptors signifies the diversity of NK cell functions (3).

In contrast to mouse NK cells, which primarily mature in the bone marrow(BM),

human NK cell development and maturation occur in both the BM and secondary

lymphoid organs (4). Human NK cell development is categorized into six stages, with
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the transition from iNK to mNK status determined by the

expression of CD56 (NCAM) (3). CD56Bright NK cells are

considered an early stage of maturation, while CD56Dim NK cells

are regarded as fully mature NK cells. CD56Dim NK cells exhibit

high cytotoxic activity and are mainly found in peripheral blood,

where they efficiently kill target cells (5, 6). CD56Bright NK cells have

lower cytotoxicity but produce high levels of cytokines like IFN-g
and are commonly found in secondary lymphoid organs (7, 8).

After expressing Killer cell Lectin-like Receptor G1 (KLRG1),

mNK cells partially migrate to secondary lymphoid organs (9, 10).

Once NK cells reach maturity, they are extensively distributed

throughout the body, including the BM, lungs, spleen, liver,

lymph nodes(LN) and peripheral blood (11–14).
1.2 Activation and inhibitory receptors of
NK cells

The activation state of NK cells is determined by the stimulation

received through either activating or inhibitory receptors. When the

signaling from activating receptors predominates, NK cells become

activated; conversely, their activity is suppressed (15). Several

previous reviews have provided comprehensive descriptions of

NK cells’ activating and inhibitory receptors, encompassing their

respective ligands and associated signaling molecules (16–18).

In general, these receptors can be categorized into the following

families: Ly49, KIRs (Killer Cell Immunoglobulin-like Receptors),

CD94-NKG2, NKG2D, and NCRs (Natural Cytotoxicity Receptors)

(18). The Ly49 receptor family in mice shares similarities with the

KIR receptor family in humans, although they do not have a one-to-

one correspondence (19). Among the Ly49 receptors, Ly49D and

Ly49H are activating receptors, while the rest are inhibitory

receptors. Notably, the ligand for Ly49H is m157 protein, while

the ligands for other Ly49 receptors are H-2D or H-2K molecules

(18). Similarly, the ligands for KIR receptors are HLA molecules,

and different receptors correspond to different ligands, including

HLA-G, HLA-C, HLA-B, or HLA-A. Among them, KIR2DL1,

KIR2DL2/3, KIR2DL5, KIR3DL1, and KIR3DL2 are inhibitory

receptors, while others are activating receptors (17). The CD94-

NKG2 receptor family is expressed on not only mouse but also

human NK cells. NKG2A is an inhibitory receptor, whereas NKG2E

and NKG2C are activating receptors. However, the ligands for these

CD94-NKG2 receptors differ between mice (Qa1b) and humans

(HLA-E) (18). NKG2D does not belong to the CD94-NKG2 family

because it lacks the corresponding CD94 subunit to associate with

(20). NKG2D is an activating receptor, with its ligands being

ULBP1-4 and MICA/B in humans and H60, MULT-1, and RAE-

1 in mice (17). The NCRs family mainly includes NKp46, NKp44,

NKp30, etc. These receptors are all activating receptors for NK cells.

NKp44 and NKp46 share the common ligand Viral HA, with

NKp46 also sharing the ligand HSPG with NKp30. However,

NKp30 has two additional ligands, BAT-3 and B7-H6 (18).
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In addition to the receptor-ligand pairs described above,

interactions such as 2B4 with CD48 (21), DNAM-1 with PVR

(CD122) (22, 23), and LILR with MHC class I molecules (HLA class

I molecules) (24) also significantly influence the modulation of NK

cell states.
1.3 The role of NK cells in maintaining
homeostasis in the body

In summary, NK cells play four primary roles in maintaining

homeostasis in the body, including immune regulation, immune

homeostasis, immune defense, and immune surveillance. Immune

defense is the action of NK cells to resist foreign substances,

encompassing their resistance to viruses, bacteria, and parasites

(25). Immune surveillance refers to the process through which NK

cells identify and eliminate aberrant cells within the body, where

clearing tumor cells is the most common manifestation of their

immune surveillance function (26). Tumor cells trigger NK cell

cytotoxicity because they lack all or part of the MHC class I

molecules, thus making them recognizable by NK cells as non-self

cells and subject to elimination (27, 28). It is worth noting that in

most conditions, NK cells mediate broad-spectrum cytotoxicity

without the need for prior antigen stimulation (29), exhibiting

non-specific and MHC-unrestricted cytotoxicity (30). However,

recent research has provided evidence suggesting that peptide-

specific recognition of HLA-I molecules is not confined solely to

T cell receptors (TCRs) alone, KIRs on NK cells also exhibit a

notable degree of specificity for HLA class I-peptide complexes.

Therefore, the response of NK cells to infection or disease can also

vary based on the immunopeptides bound to HLA-I molecules (31).

The immune homeostasis function exerted by NK cells

primarily focuses on maintaining internal equilibrium and

stability within the body. An essential manifestation of NK cells

in self-regulation is their clearance of senescent cells, a process that

requires collaboration with macrophages (32). NK cells recognize

senescent cells through the NKG2D receptor and kill them through

a perforin-dependent mechanism (33). Simultaneously, NK cells

release cytokines to activate macrophages, which subsequently clear

these senescent cells (32). The immune regulation function is

another crucial role of NK cells that should be emphasized.

Abundant cytokines such as IFN-g, GM-CSF, TNF-a, and IL-10

secreted by activated NK cells, which is an important mechanism of

NK cells to modulate adaptive immunity (34–36). When activated

by activating signals, NK cells exert important regulatory functions

in adaptive immunity, impacting both B cell and T cell

responses (37).

It is crucial to have an understanding of the intricate regulatory

role of NK cells in adaptive immune processes within various

immune microenvironments. Such understanding aids in

selecting optimal immunotherapeutic strategies. Our review

comprehensively elucidates the regulatory role of NK cells in
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adaptive immune processes. By elucidating these regulatory

mechanisms, we can gain insights into the intricate behavior of

NK cells within distinct immune contexts, contributing to selecting

the most effective immunotherapeutic approaches.
2 NK cells enter their site of action
through various mechanisms

While NK cells are primarily distributed in peripheral blood, BM,

spleen, lung, and liver before activation, they exhibit rapid

responsiveness to infected or abnormal cells whenever required (38,

39). NK cells are chemotactically attracted to LN by chemokine

during infection because of the expression of CXCR3. After entering

the LN, NK cells furnish the surrounding T cells with the IFN-g
signals needed for their initial activation (40). Infection sites or tumor

microenvironments can generate chemotactic factors such as

CXCL10 or CCL5, which lead NK cells to migrate to these

locations (41–43). Cell adhesion molecules are also crucial for the

migration of NK cells towards infection sites. NK cells interact with

the endothelial cells at the infection site through adhesion molecules,

including the binding of VLA-4 to VCAM-1 and LFA-1 to ICAM-1

(44, 45). This supports the NK cells in rolling, adhering, and

transmigrating across the vascular wall and into the site of

infection. Moreover, tumor cells and inflammatory reactions can

increase vascular permeability, enabling the passage of NK cells

through the blood vessels to reach sites of inflammation or tumors
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(46). These studies demonstrate that NK cells can accumulate at sites

of abnormalities in the body through various mechanisms, exerting

their cytotoxic or regulatory functions (Figure 1).
3 Enhancement of T cell responses by
NK cells

3.1 Cytokines and co-stimulatory
molecules expressed by NK cells enhance
T cell responses

Actually, NK cells mount an early antiviral response against

cytomegalovirus infection while also modulating the intensity of

adaptive immune responses. The response of CD8+T cells against

the virus is significantly enhanced because NK cells contribute to

regulation by producing optimal levels of IFN-a/b (47).

The TNF-a and IFN-g secreted by NK cells that have been

activated produce a stimulating response on the activation and

proliferation of T cells (48). The IFN-g released by NK cells can bind

to the IFN-gR on the surface of naïve CD4+ T cells, initiating the

transcription of T-bet (49). Consequently, naïve CD4+ T cells

exhibit a tendency to differentiate into Th1 cells (40, 50), which

ult imately enhances cel l-mediated immune responses

against infections.

In addition to enhancing T cell immune responses through the

secretion of cytokines like TNF-a and IFN-g, NK cells also impact T
FIGURE 1

The localization and migration mechanism of NK cells. Before activation, NK cells are distributed in various locations such as the bone marrow,
spleen, liver, lungs, and peripheral blood. After activation, NK cells can migrate to other sites through various means. They enter LN in a CXCR3-
dependent manner to provide IFN-g for TH1 priming. CXCL10 and CCL5 released from the TME and sites of viral infection drive NK cell chemotaxis
to corresponding locations. Increased vascular permeability also facilitates NK cell extravasation from blood vessels to the TME and sites of
inflammation. NK cells interact with endothelial cells at the infection sites through adhesion molecules such as LFA-1 with ICAM-1 and VLA-4 with
VCAM-1, allowing them to roll along the vessel lumen and migrate towards the infection sites.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275028
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang and Jiang 10.3389/fimmu.2023.1275028
cell immune reactions by expressing specific co-stimulatory

molecules. These molecules offer proliferation and activation

signals to T cells. For example, the interaction between OX40

ligand expressed on NK cells and the OX40 receptor present on T

cells efficiently delivers proliferation cues to the T cells (51).

Although the expression of CD70 on NK cells is transient and

tightly regulated, its interaction with CD27 on T cells can provide

co-stimulatory signals, thereby promoting T cell survival and

proliferation, leading to more efficient immune responses (52,

53) (Figure 2A).
3.2 NK cells enhance T cell response by
improving DC maturation and activation

While there is direct crosstalk between T cells and NK cells, the

regulation of T cell responses by NK cells is mainly achieved

indirectly through the modulation of antigen-presenting cells

(APCs) during the initial priming phase of T cell responses. APCs
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are crucial for T cell responses, as they not only present antigens to

T cells but also provide the first and second signals for T cell

activation (54). Dendritic cells (DCs), as a type of APC, undergo

changes in their quantity, status, and functionality, all of which can

influence T cell responses (55, 56).

Under different conditions, NK cells can influence DCs in

various ways, subsequently impacting T cell response. Mature

DCs (mDCs) migrate to LN in a CCR7-dependent manner and

exhibit highly efficient stimulatory capabilities towards naïve T cells,

whereas immature DCs (iDCs) persist in a stable state in the

periphery (57). The mutual activation of NK cells and DC cells

occurs during the initial stages of the immune response after they

congregate in LN. Multiple investigations have shown that DCs

enhance NK cell activity by releasing type I IFN, TNF,and IL-12 (57,

58). Conversely, activated NK cells secrete TNF and IFN-g,
influencing the maturation of DCs. DCs upregulate the

expression of co-stimulatory molecules under the influence of

TNF, and both TNF and IFN-g synergistically improve DCs’

capability in generating IL-12 (59, 60). In vitro co-culture of iDCs
A

B

FIGURE 2

The mechanism of NK cells in promoting T cell responses. (A) The activation and proliferation of T cells influenced by activated NK cells involve the
effects of OX40L interacting with OX40 and CD70 interacting with CD27. TNF-a and IFN-g from NK cells also promote the activation and
proliferation of T cells. The polarization of Th1 cells is further facilitated by IFN-g from NK cells. (B) NK cells can impact T cell responses in three
ways. Firstly, NK cell-mediated killing of target cells promotes antigen presentation by DCs, ultimately enhancing T cell responses. Secondly, there is
mutual activation between DCs and NK cells, involving the participation of IL-12, TNF, and IFN. The binding of NKp30 to Bat3 provides additional
activation signals to DCs, leading to an increase in the expression of CD86 in activated DCs. These favorable behaviors toward DCs promote T cell
responses. Thirdly, the elimination of iDCs by NK cells reduces their interference with T cell responses.
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with NK cells induces the maturation of DCs and enhances IL-12

secretion by DCs. The maturation process of DCs is strongly relies

on cell-to-cell contact with NK cells, even though the generation of

TNF and IFN-g by NK cells is already crucial for DC maturation

(57). In vivo imaging techniques have revealed direct contacts

between NK cells and DCs (61). IFN-g from NK cells not only

stimulates the maturation of DCs but also heightens the expression

of MHC-I on DCs (62). NK cells must possess a specific inhibitory

receptor that permits them to discern MHC class I molecules (63).

Once the expression of MHC class I molecules on DCs is

upregulated, it reduces the likelihood of their recognition as non-

self cells by NK cells, thereby establishing stronger immune

tolerance (64). This suggests that IFN-g participates in promoting

the maturation of DCs and providing them with enhanced

protection, enabling them to assume a more significant role in

promoting T cell responses. The addition of lipopolysaccharides

(LPS) into the co-culture system amplifies the NK cells’ ability to

enhance DC maturation. This results in a notable increase in the

expression of the co-stimulatory molecule CD86 on DC surfaces

and a heightened release of IL-12 (65). Following this, after being

stimulated by CD40L, DCs produce an increased amount of IL-

12p70, consequently bolstering the T cell response (66). Despite IL-

2-activated NK cells can also trigger DC maturation and bolster

their capacity to activate naïve CD4+ T cells from the same species

but different donors. Nevertheless, when iDCs are co-cultured with

NK cells in the presence of IL-2, NK cells exhibit cytotoxicity

towards iDCs and secrete IFN-g (67). Interactions between the

NKp30 receptor found on NK cells and Bat3 expressed on DCs have

been observed, contributing to the activation and maturation of

DCs. It can provide additional signals for inducing DC maturation

while recognizing DCs (68).

The “DC editing” process of NK cells is a crucial pathway

through which NK cells promote T cell immunity. Since the

antigen-presenting ability is typically found in mDCs rather than

iDCs, NK cells selectively eliminate iDCs and spare the survival of

immunogenic mDCs, thus facilitating effective T cell immune

responses. mDCs are not susceptible to lysis by NKG2A+ NK cells

due to their higher expression levels of HLA class I molecules

compared to iDCs. Furthermore, as the levels of NKG2A on NK

cells decrease, their sensitivity to the HLA-E expression of iDCs

increases (69). NKp30 significantly contributes to the “DC editing”

process by recognizing and eliminating iDCs (70), and this process

relies onMHC-I expression, as mDCs exhibit higher levels ofMHC-I,

allowing them to escape NK cell recognition (71). Similar phenomena

have been observed in tumor immunology research, wherein the

elimination of iDCs by NK cells is pivotal for the proliferation of

tumor-specific CTLs (Cytotoxic T Lymphocytes) (72).It is intriguing

that, under inflammatory conditions, iDCs are also susceptible to NK

cell cytotoxicity. This phenomenon can be comprehended as a

“braking mechanism” that occurs after the resolution of the

inflammatory response. It serves to regulate the quantity of DCs

capable of initiating T cell responses, thereby preventing the

development of excessive inflammatory reactions (73).

Additionally, in studies focusing on mouse DC vaccines, NK cells

enhance antigen-specific T cell responses by killing iDCs through the

TRAIL pathway (74). However, further validation is required to
Frontiers in Immunology 05
ascertain whether these iDCs obtained through in vitro culture

represent the in vivo state accurately (69) (Figure 2B).
3.3 NK cells augment antigen presentation
opportunities for DCs

The existing evidence indicates NK cells have significant impact

on the cross-presentation ability of DCs. One perspective is DCs can

uptake antigens which from target cells killed by NK cells and

present them via MHC-I molecules (75, 76). This process enhances

antigen presentation, leading to effective activation of adaptive

immune responses. When allogeneic B cells are transplanted into

mice, NK cells mediate the identification and eradication of non-self

cells, thereby facilitating DC phagocytosis of apoptotic bodies and

the antigen presentation process. This initiates subsequent adaptive

immune responses (76). In vivo, the lysis of OVA-expressing

splenocytes mediated by NK cells leads to antigen release, which

is taken up by DCs and enables efficient activation of CD8+ T cell

and CD4+ T cell responses (75). Evidently, the ability of NK cells to

lyse abnormal cells may facilitate DCs in capturing and cross-

presenting antigens, ultimately promoting adaptive immunity.

On the other hand, the antigen presentation process by DCs

requires assistance from NK cells. The antigen presentation by DCs

may become compromised without this supportive role. In vitro

experiments concerning the antigen presentation from DCs to

CD8+ T cells, the necessity of this assisting role of NK cells has

been established. This is because the maturation of DCs and the

capture of tumor cells are closely intertwined with the involvement

of NK cells (77). It has been confirmed that depleting NK cells in a

murine melanoma model results in the complete loss of CD8+ T cell

response initiation. This is because the stimulation of CD8+ T cells

through antigen presentation is heavily reliant on the presence of

NK cells (78). Also, in an experiment using monocytes derived from

PBMCs and induced to a semi-mature phenotype of DCs through

IFN-a and GM-CSF, the presence of NK cells is necessary under

these culture conditions, as DCs cannot effectively stimulate T cell

immunity without NK cells (79). Upon stimulation by NK cell-

secreted IFN-g and TNF, these monocyte-derived DCs efficiently

present tumor-derived antigens, thereby promoting the activation

of tumor-reactive CD8+ T cell responses (80). In summary, both the

antigen cross-presentation capacity and antigen load of DCs are

regulated by NK cells. These influences have profound implications

for subsequent T cell responses (Figure 2B).
4 Inhibition of T cell responses by
NK cells

4.1 Cytokine-mediated suppression of T
cell function by NK cells

In preceding scientific inquiries, the negative regulatory

function of NK cells in adaptive immunity has not been as

extensively studied as their promoting effect on adaptive
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immunity. However, similar to regulatory T cells (Tregs) exerting

regulatory functions by suppressing the activity of other immune

cells, the concept of regulatory NK cells has been proposed early on

(81). This implies that T cell responses can be negatively regulated

by NK cells.

TGF-b and IL-10 are cytokines secreted by NK cells that exert

inhibitory effects on T cell function (82, 83). NK cells can secrete IL-

10 during viral infections and indirectly affect T cells by non-

contact-dependent mechanisms, inhibiting antigen-specific T cell

proliferation (84–86). During the course of lymphocytic

choriomeningitis virus (LCMV) infection, NK cells can suppress

CD8+ T cell responses by secreting IL-10, thus causing suboptimal

control of viral infection (87). When perforin-deficient mice are

infected with MCMV, the viral infection persists, and NK cells

secrete IL-10 to inhibit the function of CD8+ T cells (88). In human

PBMCs, IL-10-secreting NK cells have been observed, and they can
Frontiers in Immunology 06
inhibit antigen-specific CD4+ T cell proliferation in vitro (89).

Surprisingly, the knockout of the IL-10 gene in NK cells did not

lead to an enhancement of T cell responses during chronic LCMV

infection (90), casting uncertainty on the functional relevance of IL-

10 derived from NK cells in the context of viral infections. This

implies that the mechanism by which NK cells suppress T cell

function is not singular (Figure 3A).
4.2 Competition between T cells and NK
cells limits T cell function

The phenomenon of competitive inhibition is evident between

T cells and NK cells, whereby T cell functionality is likewise

suppressed as a result of such interactions. NK cells can engage in

competition with CD4+ T cells for binding to MHC-II on DCs,
A B

C

FIGURE 3

The inhibitory effects of NK cells on T cells and DCs. (A) The production of TGF-b and IL-10, as well as competing with CD4+ T cells and CD8+ T
cells for cytokines like TNF, IL-15, IL-12, IL-2, and MHC-I on DCs, are all mechanisms by which NK cells inhibit T cells. (B) The figure illustrates three
receptor-ligand interactions that enable CD4+ T cells and CD8+ T cells to evade targeting by NK cells, including NKG2A-HLA-E (Qa-1), 2B4-CD48,
and Type I IFN-IFNAR. (C) NK cells employ various receptor-ligand interactions to target CD4+/CD8+ T cells, as well as DCs. For CD4+/CD8+ T cells,
these interactions involve TRAIL, NKG2D, FAS/FASL, and DNAM-1. Regarding DCs, the receptor-ligand interactions include Ly49H, NKp46, NKp30,
DNAM-1, NKG2A, and NKG2D.NK cells exhibit different interactions with DCs when stimulated by various cytokines.
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resulting in a reduction of accessible antigen signals for CD4+ T

cells. Consequently, this limited availability of antigen signals

restricts the proliferation of CD4+ T cells (91). There is also

competition between NK cells and CD8+ T cells. Using TGF-b
antibody and IL-2 for combined anti-tumor therapy, there is dual

competition between activated NK cells and CD8+ T cells. After

combination treatment, depletion of either activated CD8+ T cells

or NK cells leads to the expansion and compensatory anti-tumor

effects of the remaining cell population (92). T cells and NK cells

also compete in their interaction with cytokines, as both express

various identical cytokine receptors, including IFN-g, IFN-a/b, IL-
15, IL-12, and IL-2 (93–96). During MCMV infection, there exists a

distinctive phenomenon whereby NK cells rapidly upregulate

IL2Ra (CD25) (97). This upregulation allows NK cells to bind

more IL-2, promoting their own proliferation. This observation also

implies the likelihood of T cells and NK cells competing for IL-2

binding. Additionally, the homeostatic proliferation of CD8+ T cells

is constrained by NK cells, but this restraint can be overcome by

supplementing IL-15 (98). This indicates potential competition

between CD8+ T cells and NK cells for limited levels of IL-

15 (Figure 3A).
4.3 T cell responses suppressed by direct
killing from NK cells

NK cells exert their most direct inhibitory effect on T cells

through direct killing. Both human and murine experiments have

manifested that T cells can be directly killed by NK cells. During the

development of chronic colitis, NK cells alleviate the

immunopathological condition by exerting cytotoxic effects on

effector CD4+ T cells (99). It’s worth noting that most T cells

sensitive to NK cell cytotoxicity are in an activated state, while

resting T cells exhibit a degree of resistance to NK cell-mediated

killing (100, 101). The window of sensitivity of activated T cells to

NK cell cytotoxicity is also primarily within the early stages of their

activation. As time progresses, the sensitivity decreases until the T

cells encounter the same antigen again. The upregulation of

NKG2D ligands on activated T cells may be the reason for their

increased sensitivity to NK cell cytotoxicity (102, 103). ULBP1,

ULBP2, ULBP3, and MICA are NKG2D ligands that activated

CD8+ T cells and CD4+ T cells may upregulate, and NK cells use

NKG2D to recognize whether these T cells are in an activated state

(104). Following autologous IL-2 activation of NK cells, activated

CD8+ T cells and CD4+ T cells are killed by NK cells through a

perforin-dependent mechanism (104). Upon NK cell depletion, the

number of memory CD8+ T cells significantly increases after

vaccination, suggesting that NK cells may have a direct cytotoxic

effect on T cells. This cytotoxic effect also relies on the release of

perforin and the expression of NKG2D (103). While NK cells’

inhibitory effects on T follicular helper (Tfh) and B cells also involve

the release of perforin, NKG2D is not implicated in these processes

(105). TRAIL is expressed by NK cells, and activated T cells express

TRAIL receptors, including TRAIL-R1 (DR4) and TRAIL-R2

(DR5).There have been reports indicating that NK cell-mediated

killing of CD4+ T cells involves TRAIL molecules (101). CD56bright
Frontiers in Immunology 07
NK cells expressing TRAIL in humans can selectively bind to

TRAIL receptors on activated T cells, thereby inducing T cell

apoptosis (101). After stimulation by superantigens and during

the proliferative phase (S phase, G2M phase), T cells upregulate

DNAM-1 ligands such as PVR. NK cells preferentially kill

proliferating T cells through the activation receptor DNAM-1

(106). Tregs, like other T cells, are also subject to the cytotoxic

effects of NK cells. Activated human NK cells can kill Tregs during

the cellular antigen response, and the elimination of Tregs by NK

cells may be a mechanism by which NK cells promote T cell

responses (107). In addition, NK cell-mediated cytotoxicity

against T cells also involves the Fas/FasL pathway (108).

In both chronic and acute LCMV infections, NK cells can

eliminate T cells activated in vitro. The presence of NK cells

accelerates the viral infection process because the depletion of NK

cells increases the frequency of LCMV-specific CD8+ T cells and

reduces viral titers (102). However, it should not be overlooked that

the role of NK cells during LCMV infection is also dependent on the

infecting dose and the strain of the virus. LCMV-Clone13 strain

establishes widespread chronic infection in the host, while LCMV-

Armstrong strain causes acute infection. In high-dose LCMV-

Clone13 virus infection, the presence of NK cells prevents mouse

death but leads to persistent viral infection. Although the depletion

of NK cell population increases the number of T cells and improves

T cell exhaustion, the survival of mice is not optimistic. In

moderate-dose LCMV-Clone13 virus infection, NK cell deplete

completely eliminates viral infection and blocks lethal immune-

mediated pathological processes (109). In contrast to the previously

described mechanisms, in this study, the inhibition of CD8+ T cells

by NK cells is an indirect consequence of NK cell-mediated

suppression of CD4+ T cells, rather than a direct interaction

between CD8+ T cells and NK cells (109). When mice are

infected with low doses of LCMV-Clone13 or LCMV-Armstrong

strains, the depletion of NK cells only has a weak effect on T cell

responses, and mild tissue pathology is present in the organs

regardless of NK cell depletion (102, 109, 110) (Figure 3C).
4.4 The behavior of T cells evading NK
cell-mediated cytotoxicity

Both non-classical and classical MHC-I molecules expressed on

autologous cells are crucial for evading NK cell-mediated killing

(111). Classical MHC-I molecules are expressed on self-nucleated

cells and interact with inhibitory receptors including KIR in

humans or Ly49A, C, and D receptors in mice (18). The

expression of MHC-I molecules is regulated by NLCR5, and T

cells lacking NLCR5 become susceptible to NK cell targeting (112).

Mouse Qa-1 and human HLA-E, which belongs Non-classical

MHC-I molecules have the capability to interact with NKG2A,

thereby preventing the lysis of self-cells by NK cells (113). Under

normal conditions, the downregulation of MHC-I molecule

expression occurs in infected cells or tumor cells, rendering these

cells sensitive to NK cell-mediated killing (114). Activated T cells

need to modify their state to avoid being recognized by NK cells.

Activated CD8+ T cells and CD4+ T cells lacking type I interferon
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receptors can be targeted by NK cells, leading to the secretion of

perforin and killing of these cells during the acute LCMV infection

phase (115). T cells expressing type I interferon receptors also avoid

recognition and killing by NK cells through the absence of NKp46

ligands (115). Researchers were surprised to discover that when NK

cell-regulated T cell responses during LCMV viral infection, NK

cells lacking the 2B4 receptor can cause cytotoxicity in activated

CD8+ T cells, even when these T cells express MHC-I molecules

(116). This cytotoxic behavior of NK cells is alleviated when the 2B4

receptor is expressed or when NK cells are depleted, suggesting the

involvement of the 2B4 receptor in the evasion of LCMV-specific

CD8+ T cell killing by NK cells (117). In summary, the expression of

ligands for inhibitory receptors and MHC molecules by T cells can

both effectively help T cells evade NK cell-mediated

cytotoxicity (Figure 3B).
4.5 APCs modulation by NK cells
influences T cell immune response

The changes in APCs induced by NK cells not only exert

promoting effects on T cell responses but also demonstrate

inhibitory effects. In the context of MCMV infection, the

depletion of NK cells leads to an amplified proliferative ability

and elevated IFN-g production by T cells (110). Subsequent studies

revealed that factors restricting T cell antiviral responses and

survival are attributed to the targeting of MCMV-infected DCs by

NK cells, thereby weakening the antigen sensing by T cells (118).

NK cells directly recognize and eliminate DCs presenting the m157

protein through Ly49H, leading to a reduced number of antigen-

presenting DCs during MCMV infection. Consequently, this

impairment of DC antigen presentation results in compromised T

cell immunity. However, if Ly49H+ NK cell-mediated killing of DCs

is inhibited, the T cell immune response in mice can be restored

(118). In the LCMV model, a similar phenomenon exists. In the

absence of NK cells, APCs stimulate CD8+ T cell activation and

enhance CD8+ T cell cytotoxicity, leading to effective control of viral

infection. However, NK cells need to be eliminated within the first

two days of viral infection. This enhancement is attributed to the

increased number of APCs after the removal of NK cells, rather

than an augmentation of APC co-stimulatory capacity

(119).Additionally, NK cell-mediated elimination of DC

populations may also involve the activating receptor NKp46, as

mutations in the NKp46 gene have been reported to cause excessive

NK cell responses and failure to mount optimal anti-MCMV

responses (120). NKG2A also participates in the killing of DCs,

iDCs express lower levels of HLA-E, making them a primary target

for NK cells via NKG2A-mediated cytotoxicity. However, even

mDCs expressing high levels of HLA-E can still be partially

targeted and eliminated by certain NK cells (69). The receptors

DNAM-1 and NKp30 on NK cells may synergistically contribute to

the elimination of DC populations. The impact of DNAM-1

receptor on DC killing partially depends on the expression levels

of Nectin-2 and PVR on DCs (121). It is worth noting that during

chronic viral infections, NK cells can produce IL-10, which induces

distinct phenotypic changes in DCs. Under the influence of IL-10,
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iDCs upregulate MHC-I expression, while mDCs downregulate

MHC-I expression. Subsequently, NK cells promote upregulation

of activating receptor NKG2D expression, contributing to the

recognition and elimination of mDCs through NKG2D-mediated

cytotoxicity. This circumstance inevitably leads to the accumulation

of numerous immunogenically poor iDCs in the LN, ultimately

resulting in impaired immune function (122).

The interaction between DC populations and NK cells depends

on various factors. Whether their interaction promotes maturation

or leads to cytotoxicity depends on an important factor, which is the

ratio of DCs to NK cells. At a low NK : DC ratio (1:5), NK cells

promote DC expansion and their ability to secrete cytokines. On the

other hand, at a high NK : DC ratio (5:1), NK cells mediate

cytotoxicity against autologous DCs (65). Accordingly, changes in

the ratio between NK cells and DCs in different disease

environments can affect subsequent T cell response.

In fact, the impact of NK cells on DCs is further influenced by the

kind of cytokine stimulation received by NK cells. For instance, under

the stimulation of IL-2, NK cells display a cytotoxic state towards DCs.

Moreover, NK cells can promote DCs to release IL-12 when activated

by IL-18 (123). IL-18-activated NK cells also secrete a highly migratory

and pro-inflammatory molecule, HMGB1(high-mobility group box 1),

which aids in protecting DCs from NK cell-mediated killing and

promotes DC maturation (124). NK cells activated by IL-12 have

also been shown to promote DC maturation and enhance their

capacity to induce Th1 cell production of IFN-g (125). Therefore, the
response of NK cells to different cytokine stimulations results in distinct

behaviors of DCs, leading to diverse immune responses (Figure 3C).

Furthermore, due to the activation of NK cells by low doses of

IL-15 delivered in a trans-presentation manner through APCs

(126), IL-15 exerts a more intricate influence on NK cell immune

modulation. IL-15 can promote myeloid DCs to produce IL-12,

which subsequently acts on NK cells and impacts their activation

(127). While IL-12 is not a decisive factor for NK cell activation, it

effectively enhances NK cell secretion of IFN-g (128). NK cells

lacking IL-18 signaling fail to secrete IFN-g when stimulated with

IL-12 in vitro, but the induction of IFN-g transcription levels by IL-

12 is similar in NK cells with or without intact IL-18 signaling. This

suggests that IL-18 stimulation of NK cells may improve the

translation of IFN-g mRNA (129). The actions of IL-12, IL-15,

and IL-18 on NK cell status and function are complex, indicating

that various cytokines can influence NK cell regulatory behavior.

Furthermore, the synergistic effects of multiple cytokines or the

absence of specific cytokine actions may introduce novel influences

on NK cell immune modulation.
5 Dual regulation of B cell responses
by NK cells

5.1 Promotion of B Cell responses by
NK cells

Direct or indirect communication between B cells and NK cells

gives rise to various regulatory influences of NK cells on B

cell responses.
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The influence of activated NK cells on B cell responses is

multifaceted, in certain instances, activated NK cells can enhance

B cell responses (130). In vitro co-culturing of B cells with NK cells

results in NK cells enhancing B cell activation, promoting

immunoglobulin (Ig) production, and facilitating antibody class

switching (131–133). Although these effects may involve IFN-g,
TNF, and CD40-CD40L interaction, they are independent of T cells

(134–136). The proliferation capacity and subtype switching of B

cells are influenced by NK cell-secreted IFN-g, as the presence of

IFN-g leads to alterations in B cell proliferation capacity and

subtypes (137). Similarly, NK cells have the potential to promote

antibody production by B cells and activate B cells in vivo (138). In

experiments where mice lacking NK cells were immunized with

ovalbumin or keyhole limpet hemocyanin, a reduction in antigen-

specific IgG2a production occurred when certain NK cell

stimulants, such as polyI:C or complete Freund’s adjuvant, were

used (139–142). This highlights the indispensable role of NK cells in

the in vivo environment for B cells (Figure 4).
5.2 NK cells employ various mechanisms to
inhibit B cell responses

Contrary to the aforementioned studies highlighting NK cell-

enhanced B cell responses, several reports have described in detail the

inhibitory role of NK cells in humoral immunity during viral

infections and vaccination processes. In research carried out with

human subjects, NK cells can inhibit B cell proliferation and prevent

their differentiation into plasma cells (143, 144). Under many
Frontiers in Immunology 09
conditions, both murine and human NK cells can kill activated B

cells (145–149). Multiple in vitro studies have indicated that NK cells

can inhibit B cell antibody responses triggered by mitogenic

stimulation with phytohemagglutinin (150). Since the sensitivity of

B cells to natural killer activity is related to their cell differentiation

status, the killing effect of NK cells on B cells appears to be selective.

Using B cells at different stages as target cells for NK cell killing

demonstrates that B cells in the late stage are more susceptible to

recognition and killing by NK cells (151).

The inhibitory effect of NK cells on T cell responses ultimately

affects B cell reactions as well. TGF-b and IL-10 expressed by NK cells

can indirectly inhibit B cell responses by suppressing T cell reactions

(86, 152, 153). NK cells achieve the regulation of B cell responses

indirectly by suppressing helper CD4+ T cells (154–156). This

inhibitory mechanism of NK cells may involve direct cell-cell contact

or cytokine secretion. NK cell inhibition of Tfh responses limits

humoral immunity during chronic and acute viral infections (105,

157). Therefore, when NK cells are depleted, the antibody response

becomes more sustained because the reduction in the numbers of Tfh

cells and GC B cells is alleviated (105). Depleting NK cells before

LCMV infection in mice leads to abundant Tfh cells, promoting the

formation of germinal centers and plasma cells, then enhancing control

of the viral infection and increasing the concentration of anti-LCMV

antibodies (157). The inhibitory effect of NK cells on Tfh responses also

occurs during the immunization process of vaccines, consequently

constraining the vaccine-induced germinal center-mediated antibody

affinity maturation (158). Disrupting this mechanism during HIV

infection also contributes to the generation of high-affinity broadly

neutralizing antibodies (159). Surprisingly, the killing effect of activated
FIGURE 4

NK cells impact B cell responses from multiple angles. NK cells can secrete IFN-g and TNF to promote B cell maturation and enhance their ability to
produce antibodies and undergo antibody class switching. In the context of inhibiting B cell responses, aside from the direct killing of B cells by NK
cells, the primary mechanisms involve the influence of NK cells on the interaction between CD4+ T cells and B cells. This includes the role of TGF-b
and IL-10 in suppressing CD4+ T cell responses or making CD4+ T cells more susceptible to NK cell-mediated killing.
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NK cells on T cells is also influenced by the inhibitory receptor-ligand

expressed on B cells (160). All of the aforementioned observations also

highlight that while B cell responses and T cell responses are distinct,

they do exhibit intersecting regulatory mechanisms within the immune

system (Figure 4).
6 Conclusions

Initially, NK cells were regarded as the “innate guardians”.

Indeed, NK cells live up to expectations by protecting the body

against foreign attacks in many cases. However, with further

research, the “dark” side of NK cells has gradually been revealed.

It is recognized that not everything is beneficial and harmless in all

circumstances, and the same applies to NK cells. NK cells regulate

adaptive immunity, and this regulation can occur through multiple

pathways, both promoting and inhibiting the processes of adaptive

immunity. The role of NK cells in viral infections as well as tumor

immune processes also vary with changing conditions. Although

the above discussion focuses on a wide range of immune regulation

mediated by NK cells, we still have limited knowledge of how NK

cells will function under different conditions and undergo different

processing. Why do NK cells exhibit cytotoxicity towards T cells or

B cells? The Intracellular mechanisms underlying their cytotoxic

actions lack a clear understanding. Hence, elucidating the

heterogeneity of NK cells under diverse conditions holds

paramount significance. This also highlights the importance of

carefully selecting therapeutic agents in NK cell-based

immunotherapy and evaluating whether the functionality and

state of NK cells may be altered during treatment or research. It

is crucial to prevent the dominant suppression of immune

responses by NK cells.
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