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Of mice and lymphoid
aggregates: modeling tertiary
lymphoid structures in cancer

Alessandra Vaccaro*†, Tiarne van de Walle*†,
Mohanraj Ramachandran, Magnus Essand and Anna Dimberg*

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck
Laboratory, Uppsala University, Uppsala, Sweden
Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form

in association with chronic inflammation or cancer. Mature TLS are organized

into B and T cell zones, and are not encapsulated but include all cell types

necessary for eliciting an adaptive immune response. TLS have been observed in

various cancer types and are generally associated with a positive prognosis as

well as increased sensitivity to cancer immunotherapy. However, a

comprehensive understanding of the roles of TLS in eliciting anti-tumor

immunity as well as the mechanisms involved in their formation and function

is still lacking. Further studies in orthotopic, immunocompetent cancer models

are necessary to evaluate the influence of TLS on cancer therapies, and to

develop new treatments that promote their formation in cancer. Here, we review

key insights obtained from functional murine studies, discuss appropriate models

that can be used to study cancer-associated TLS, and suggest guidelines on how

to identify TLS and distinguish them from other antigen-presenting niches.

KEYWORDS
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Introduction

Tertiary lymphoid structures (TLS) are ectopic immune aggregates that form at sites of

chronic inflammation such as cancer (1). By definition, TLS are tight clusters of lymphoid

cells that can organize in distinct B and T cell compartments, thus resembling secondary

lymphoid organs. B cell-rich areas of these structures can contain evidence of B cell class

switching, actively proliferating B cells in germinal centers (GCs) as well as follicular

dendritic cells (FDCs). TLS also contain antigen-presenting cells (APCs) and can form in

close proximity of high endothelial venules (HEVs) (2–5). TLS maturation has been

categorized into three stages: (i) early TLS, characterized by dense lymphocytic aggregates

without follicular dendritic cells (fDCs); (ii) primary follicle-like TLS, having B cell clusters

and an fDC network without GCs; and (iii) secondary follicle-like TLS, which includes B

cell clusters, an fDC network, and GCs (6, 7). However, recent advances indicate that the
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maturation of TLS is a dynamic process which can vary depending

on the underlying chronic inflammatory condition and the specific

tissue involved (6, 8, 9).

TLS have been identified in numerous cancer types, and their

correlation with extended survival and response to immunotherapy

has been extensively explored (10, 11), establishing TLS as robust

biomarkers with potential clinical utility in patient stratification.

Due to their resemblance to lymph nodes in terms of organization,

it is speculated that TLS may serve as local sites for initiating anti-

tumor immune responses in cancer. Nevertheless, the precise

biological role and function of these structures remain to be

elucidated. While association-based studies can be conducted

using biobanked patient tissues, functional studies necessitate

dynamic systems where different variables can be manipulated to

address specific questions. Murine models of cancer, when

appropriately employed to replicate the human scenario, offer

powerful tools to shed light on these questions and obtain

insights into the impact of TLS on tumor biology and immune

responses. Here, we highlight important advances in the

understanding of TLS biology, which were made possible by

functional studies in mice, and discuss critical aspects to consider

when modeling cancer-associated TLS.
Unleashing the potential of orthotopic
models to explore TLS in cancer

The significant variation in composition, maturity, and localization

of TLS among different cancer types is becoming increasingly evident.

This diversity can be attributed to the organ-specific

microenvironment where tumors develop. Notable examples include

gastrointestinal cancers, which are influenced by the intestinal flora,

metastatic cancers that establish in a non-primary niche, and cancers of

the central nervous system, where immune responses are tightly

regulated and often suppressed. Unraveling cancer-specific functions

of TLS necessitates the use of orthotopic, immunocompetent models

that not only replicate the tumor phenotype but also faithfully mimic

its anatomical location and interactions with the immune system.

Characteristics of the tumor itself as well as the local

microenvironment can affect the immune response and formation

of TLS. For instance, although TLS are observed in the vast majority

of colorectal cancer (CRC) patients (6, 12), the level of their

maturation varies (6). For instance, patients with microsatellite

instability-high (MSI-H) and/or BRAF mutations exhibit a higher

number of mature secondary follicle-like TLS, indicating that these

genetic alterations can influence TLS maturation in CRC (6).

Interestingly, investigations using the orthotopic azoxymethane-

dextran sodium sulfate (AOM/DSS) murine model of CRC revealed

that specific gut flora also play a role in determining TLS

maturation (13). Indeed, colonization of Helicobacter hepaticus

(Hhep) in the colon of CRC-bearing mice was associated with

increased percentages of mature TLS, which contained Hhep-

specific T follicular helper (Tfh) cells that proved crucial for TLS

formation, immune infiltration, and tumor control (13). These

findings provide insights into how microbiota-specific Tfh cells

can influence the development of mature TLS in CRC.
Frontiers in Immunology 02
The impact of the tumor’s location on the formation of TLS was

elegantly demonstrated by Rodriguez et al. (14), who observed the

presence of TLS in B16-OVA melanomas when the tumors were

implanted intraperitoneally (i.p.), but not when they were grown

subcutaneously (s.c.). The i.p. injected tumors were located below

the stomach and above the cecum, in association with the spleen

and omentum, simulating visceral metastasis rather than cutaneous

melanoma (14). This finding is consistent with observations in

patients, where TLS with distinct B and T cell zones are more

commonly found in the metastatic setting (15). Interestingly, the

authors revealed that a population of PDPNhiFAPneg cancer-

associated fibroblasts (CAFs), which was more abundant in i.p.

tumors compared to s.c. tumors, acted as lymphoid tissue organizer

cells and was responsible for TLS formation (14). The availability of

such CAFs in the subcutaneous versus peritoneal environment

could explain the lower incidence of zonated TLS in cutaneous

versus metastatic melanoma in patients (15).

Another study highlighting the potential of murine models in

understanding TLS function in cancer utilized immunocompetent

xenograft models of CRC. Similar to melanoma, CRC is also a

metastatic cancer and can form TLS in lung and liver metastases

(16–18). In this study, the authors orthotopically implanted patient-

derived organoids in NSG mice with a humanized immune system,

creating a model of metastatic CRC with a primary mass and distal

metastases in the liver and peritoneum (19). Employing this model,

the authors were able to demonstrate that checkpoint blockade

against PD-1 or CTLA-4 induced TLS formation in the primary

tumor and liver metastases, but not in peritoneal metastases.

Intriguingly, CRC patients with peritoneal metastases are usually

resistant to immune checkpoint blockade (20). This work

additionally showed that B cell depletion impaired the clearance

of liver metastases post a-CTLA-4 therapy (19), emphasizing the

functional role of B cells and TLS in anti-CRC immunity.

Furthermore, murine models played a crucial role in the

identification of TLS in human glioma. While TLS had been

previously reported in various peripheral cancers, their presence

in glioma was not documented until 2021 (21, 22). In the syngeneic,

orthotopic GL261 and CT-2A murine glioma models, van Hooren

& Vaccaro et al. demonstrated TLS formation in proximity of the

meninges rather than within the tumor mass (22). Routine core

biopsies of glioma rarely contain meningeal tissue, which likely

contributed to the oversight of TLS in this cancer type. The

observation made in murine glioma was pivotal in defining the

inclusion of meningeal tissue as a requirement in their patient

cohort, leading to the identification of TLS in 8 out of 16

glioblastoma (GBM) samples (22). Similar to the murine setting,

the authors found that TLS mostly formed in close proximity to

meningeal tissues in human GBM. However, a smaller number of

cases with intratumoral or peritumoral TLS were also observed (22).

A subsequent study by Mauldin et al. detected intratumoral

lymphoid aggregates resembling immature TLS in only 8% of the

assessed GBM cases, however this study did not consider the

availability of meningeal tissue as a parameter for selection,

potentially overlooking meningeal TLS (23).

In conclusion, orthotopic murine models have demonstrated

significant utility in advancing our understanding of TLS in cancer.
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These models effectively complement human tissue studies by

enabling a comprehensive investigation into the tumor-specific

attributes and functions of TLS.
Unlocking the secrets of TLS
induction: targeting the LTbR
signaling axis

TLS are linked to positive prognosis in cancer, and as such their

induction is an attractive therapeutic strategy for improving clinical

outcomes. Several approaches to induce TLS have been explored in

preclinical cancer models, with promising results. The

lymphotoxin-b receptor (LTbR) signaling axis is crucial for the

development of lymphoid tissues, making it a prime target in this

respect. In murine cancer models, TLS formation has been

successfully triggered using its two ligands, LTa1b2 and

LIGHT/TNFSF14.

Engineering the murine glioma models GL261 and CT-2A to

overexpress either LTa1b2 or LIGHT induced T cell-rich TLS,

which was recapitulated when delivering LIGHT with an adeno-

associated viral vector that specifically targets brain endothelial cells

(AAV-LIGHT) (24). The presence of LIGHT in the tumor

microenvironment (TME) also correlated with prolonged survival,

increased presence of tumor-associated HEVs (TA-HEVs),

enhanced effector/memory T cell responses, and formation of

intratumoral antigen-presenting niches containing stem-like T

cells. This data suggests that the composition of TLS can be

therapeutically skewed to increase their T cell content and

promote enhanced anti-tumor immunity. Increased TLS

formation and prolonged survival post-AAV-LIGHT therapy

were also observed in the mGC1 glioma model, which is expected

to have a lower mutational burden compared to chemically-induced

GBMs such as GL261 and CT-2A (24, 25). However, TLS

occurrence in untreated mGC1-bearing mice was lower than in

the chemically-induced models, suggesting that the mutational

status of GBM tumors could influence TLS development.

Targeting LIGHT/TNFSF14 to tumor vessels through fusion to

a vascular-targeting peptide (LIGHT-VTP) prolonged survival and

sensitized RIP1-Tag5 pancreatic tumors to immunotherapies, while

inducing formation of TLS and PNAd+ TA-HEVs (26).

Interestingly, intraperitoneal injection of peritoneal macrophages

pre-stimulated with LIGHT-VTP also induced both TLS and TA-

HEVs while depletion of T cells resulted in their reduction,

illustrating the important roles of macrophages and T cells in

LIGHT-induced TLS formation. In line with this, treatment of

orthotopically implanted KPC119 and Panc02 pancreatic ductal

adenocarcinoma (PDAC) models with Nano-sapper, a tumor

stroma-targeted calcium phosphate liposome carrying anti-

fibrotic a-mangostin and a plasmid encoding LIGHT, enhanced

TLS formation and T cell infiltration (27). Additionally, Nano-

sapper treatment improved survival as a monotherapy and

sensitized the tumors to checkpoint blockade.

Thus, targeting the LTbR pathway has demonstrated

remarkable effectiveness in inducing TLS and improving survival
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in murine models, showing great promise for potential therapeutic

applications in treatment of human cancer.
Exploring the potential synergy
between current cancer therapies
and TLS formation

Alongside the focused approach of therapeutically targeting

lymphoid neogenesis to induce TLS, it is crucial to understand

the impact of existing therapies on their formation and

functionality. Thus, studies have been conducted in murine

cancer models involving checkpoint blockade, agonistic CD40

antibody therapy (aCD40) and corticosteroids.

As previously discussed, in their humanized patient-derived

organoid-based model of CRC Küçükköse et al. showed that

checkpoint blockade induced TLS and that response to a-CTLA-
4 therapy was dependent on B cells, tying TLS formation to the

positive effects of checkpoint blockade in CRC (19). Along a similar

line, treatment with an oncolytic adenovirus encoding TNFa and

IL-2 resulted in TLS formation and improved responses to

checkpoint blockade in subcutaneously injected HNSCC tumors

(28). Although the latter paper utilizes a subcutaneous model,

which is not favorable when specifically studying characteristics

of TLS, these therapy-focused findings reveal that TLS and

checkpoint blockade can reciprocally affect each other and

potentially synergise. As a seemingly contrasting result, TLS were

not induced in GL261 or CT-2A gliomas when treated with a-PD-1
(22, 24), or in PDG-Ink4a gliomas when treated with a combination

of radiotherapy and a-PD-1 (29). However, TLS were induced

when CD25+ regulatory T cells (Treg) were depleted in combination

to the treatment in PDG-Ink4a gliomas (29). This suggests that

certain cell types can restrict TLS formation in specific tumor types,

and could be targeted to enhance anti-tumor immunity.

Stimulating B cells with aCD40 was able to induce TLS that

exhibited B cell follicular organization and GC formation in GL261

glioma-bearing mice (22). However, despite the formation of

mature TLS, aCD40 did not provide a survival benefit due to the

systemic induction of a CD11b+ regulatory B cell (Breg) population

that inhibited T cell responses. Similarly, another study in the

murine AOM/DSS CRC model reports the presence of TLS as

well as a subset of Bregs named LARS B cells, which were found to

aid in immune evasion and CRC progression (30). These findings

seem contradictory to those of Küçükköse et al., who found that B

cells are critical in CRC clearance (19). Interestingly, although TLS

contained a large proportion of B cells, the Breg subsets were not

localized within the TLS themselves (22, 30). As such, these

observations underline the intricacy of interplay between TLS and

other immune cells, and further suggest that targeting the

differences in cellular phenotype within or outside the TLS could

minimize adverse events like Breg or Treg expansion while

enhancing TLS formation.

Murine models of lung inflammation and metastasis have been

used as tools for functional and therapeutic research. Silina et al.

utilized these models to unravel the TLS-related effects observed in
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lung squamous cell carcinoma patients treated with corticosteroids.

The study found that patients who received combined

corticosteroid/chemotherapy exhibited lower TLS density and

fewer mature TLS (7). To functionally prove this concept, the

authors induced TLS in the lung of naïve mice through intranasal

administration of Alum/ovalbumin antigen and treated the mice
Frontiers in Immunology 04
with low-dose dexamethasone. The treatment indeed reduced the

proportion of more mature TLS, highlighting the potential impact

of corticosteroids on the TME and anti-tumor immune responses.

These studies laid a strong foundation for comprehending the

impact of pre-existing therapies on TLS formation, which should be

built upon in the future.
TABLE 1 Summary of major TLS components in human cancers versus treatment-naïve mouse models of the respective cancer type.

TLS Components

Cancer
Type

System Model Model Type B
cells

T
cells

APCs Prolife-
rating
cells

GC fDCs PCs HEVs References

Breast Human NA NA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (31–35)

Mouse T12
(p53–/–)

Genetically-
induced,

transplanted cell
line

✓ ✓ – – – – – – (36)

Colorectal Human NA NA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (6, 12, 37–40)

Mouse AOM/
DSS

Chemically-
induced

✓ ✓ ✓ – – – – – (13, 41)

Gastric Human NA NA ✓ ✓ ✓ ✓ ✓ ✓ – ✓ (42–44)

Mouse gp130F/F Genetically-
induced

✓ ✓ – ✓ ✓ ✓ – ✓ (45)

Glioma Human NA NA ✓ ✓ ✓ ✓ – ✓ ✓ ✓ (22)

Mouse CT-2A Chemically-
induced,

transplanted cell
line

✓ ✓ ✓ ✓ – – – – (22, 24)

GL261 Chemically-
induced,

transplanted cell
line

✓ ✓ ✓ ✓ – – – – (22, 24)

mGC1 Genetically-
induced,

transplanted cell
line

✓ ✓ – – – – – – (24)

Lung Human NA NA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (7, 46–48)

Mouse KP-F Genetically-
induced

✓ ✓ ✓ ✓ – ✓ – ✓ (49)

Melanoma Human NA NA ✓ ✓ – ✓ ✓ ✓ – ✓ (8, 50, 51)

Mouse B16;
B16-
OVA

(visceral/
i.p.)

Chemically-
induced,

transplanted cell
line

✓ ✓ ✓ – – – – ✓ (14)

Pancreatic Human NA NA ✓ ✓ ✓ ✓ ✓ ✓ – ✓ (52–54)

Mouse KPC Genetically-
induced

✓ ✓ ✓ – ✓ ✓ – – (53)

TB32048 Genetically-
induced,

transplanted cell
line

✓ ✓ – – – ✓ – – (53)
The check symbol (✓) indicates that the cell type has been reported within TLS in that cancer type/model. The dash symbol (–) indicates that the cell type has not been investigated or found
within TLS in that cancer type/model. NA: not applicable; APCs: antigen-presenting cells; GC: germinal center; fDCs: follicular dendritic cells; PCs: plasma cells; HEVs: high endothelial venules.
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Discussion

TLS have rapidly emerged as important players in orchestrating

anti-tumor immunity due to their association with prolonged

survival and response to immunotherapy in human cancer (10,

11). Despite this, the bulk of available data remains correlative and

we lack a thorough understanding of how these structures form in

tumors. This includes which cell types and soluble factors

contribute, and what oncogenic factors in tumor cells stimulate or

block TLS formation. Therefore, investigating TLS development in

experimental cancer models will be instrumental for obtaining

functional data and developing new therapies. Importantly,

identifying models that correctly recapitulate TLS formation in

specific cancer types will be critical for obtaining translational data.

As such, orthotopic, immunocompetent models are necessary to

draw cancer-specific observations, and should be carefully chosen

to correctly mirror the pattern of TLS formation observed in human

tumors. Murine tumor models reported to naturally form TLS have

been reviewed in Table 1.

Genetically-engineered mouse models (GEMMs) recapitulate

the oncogenic drivers and the histopathological characteristics of

human tumors, and have been central in unravelling cancer-specific

biomarkers and tumor cell biology (55). However, when studying

the interactions between tumors and the immune system, it is also

crucial to ensure that the specific aspects of the immune response

being examined are accurately represented. GEMM-derived tumors

are usually poorly immunogenic due to a lack of neo-antigens,

which are likely central in eliciting T cell responses in human cancer

(56). Thus, while GEMMs are excellent research tools, they may not

always represent the best alternative to study certain aspects of

immune oncology such as TLS biology. As such, model selection to

study TLS formation should be preceded by investigations of how

these structures present in the chosen tumor models compared to

their human counterpart. As an example, genetic glioma models

such as PDG-Ink4a, which is induced by RCAS-vectors encoding

PDGFB in Nestin-Tv-a; Ink4a/Arf-/- transgenic mice, better
Frontiers in Immunology 05
recapitulate the mutational landscape of glioma patients

compared to the chemically-induced GL261 glioma (29).

However, TLS are absent in the untreated setting in PDG-Ink4a

mice, suggesting that the immune response may differ to the one of

human glioma, where TLS are present in treatment-naïve patients

(29). In contrast, syngeneic orthotopic glioma models such as

GL261 and CT-2A can form TLS (22, 24), and despite their high

mutational burden, their immune profiles resemble the one of

human GBM (57, 58). Enhancing GEMMs to more closely mimic

the human anti-tumor immune response is an appealing strategy.

For instance, introducing tumor antigens in autochthonous murine

lung cancer using conditional GEMMs has proven effective to study

endogenous T cell responses (59) and allowed for the formation of

TLS (49), which are also found in lung cancer patients (7, 46–48).

The fact that TLS maturation and composition vary across

different cancer types has rendered the task of determining whether

an aggregate of immune cells qualifies as a TLS more challenging.

This complexity is further magnified when studying TLS in murine

models, which have been less frequently utilized than patient tissues

for this purpose. Additionally, it has become clear in recent years

that lymphoid aggregates in cancer are not limited to TLS alone.

Antigen-presenting niches (APNs) have been identified in human

cancers (60, 61) and mouse models (24, 62). APNs consist of

CD8+TCF1+ stem-like T cells and APCs which co-localize within

the tumor and exhibit a less-organized and loose structure

compared to the compact and well-organized TLS (24, 60). In

line with this, quantification of TLS is typically accomplished by

counting the number of these structures (6, 22, 24), as they can be

easily distinguished from their surroundings. On the other hand,

APNs are often assessed by measuring the proximity between APCs

and CD8+TCF1+ T cells (24, 60, 62). Due to some similarities

between these aggregates, misclassification across the two categories

can occur as the field continues to gain insight into their

characteristics. For instance, preclinical studies using

subcutaneous B16 or B16F-10 melanoma models describe the

induction of TLS following therapies aimed to improve DC
FIGURE 1

Distinguishing between tertiary lymphoid structures (TLS) versus antigen-presenting niches (APNs) based on spatial organization. Minimal
requirements for identifying a lymphoid aggregate as a TLS include dense lymphocyte clustering with a defined border, containing at least T cells, B
cells and antigen-presenting cells (APCs). On the other hand, APNs can be identified as immune niches that are more loosely clustered and lack a
defined border, which should contain CD8+TCF1+ T cells in close proximity to APCs.
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function, including artificial adjuvant vector cells (aAVCs) (63),

STING adjuvants (64) and oncolytic adenoviruses carrying IL-15

(Ad-IL15) (65). These studies identified TLS by staining for T cells,

dendritic cells (DCs) and HEVs without incorporating a B cell

marker, and two of them classified the induced structures as “non-

classical TLS” (64, 65). However, their composition and loosely

clustered appearance suggests a closer resemblance to APNs.

Similarly, in murine PyMT and E0771 breast cancer models, Hua

et al. found that they could boost CD8+TCF1+ immune niches

forming around TA-HEVs using immunotherapies, but designated

these structures as tertiary lymphoid-like structures (TLLSs) rather

than APNs (66). As such, clearer guidelines to differentiate TLS

from other lymphoid aggregates are needed, starting from their

level of clustering and organization. We propose that TLS can be

defined as densely clustered immune aggregates with a defined

border that can be present either intratumorally or peritumorally,

and contain at least T cells, B cells and APCs (Figure 1). The

maturity of TLS can be further judged by the presence of HEVs,

fDCs and GCs. On the other hand, APNs can be identified as

intratumoral immune niches that are more loosely clustered and

lack a defined border, containing CD8+TCF1+ T cells in close

proximity to APCs (Figure 1).

To summarize, TLS are complex, heterogenous structures that

include multiple cell types, and whose functional investigation

requires dynamic systems that can be manipulated. Combining

observations of TLS in human tumors with their modeling in the

murine context will be instrumental to tease apart the mechanisms

regulating their function and formation. This integrated approach

will build the pillars to the development of therapies that can

successfully boost anti-tumor immunity (Figure 2). Paramount to

this aim will be the judicious selection of pertinent murine models,
Frontiers in Immunology 06
coupled with the adherence to clear guidelines to discriminate

different types of immune niches.
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