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multiplexed imaging
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and Wan L. Lam1*
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The growth and metastasis of solid tumours is known to be facilitated by the

tumour microenvironment (TME), which is composed of a highly diverse

collection of cell types that interact and communicate with one another

extensively. Many of these interactions involve the immune cell population

within the TME, referred to as the tumour immune microenvironment (TIME).

These non-cell autonomous interactions exert substantial influence over cell

behaviour and contribute to the reprogramming of immune and stromal cells

into numerous pro-tumourigenic phenotypes. The study of some of these

interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion,

has led to the development of breakthrough therapeutic advances. Yet many

common analyses of the TME either do not retain the spatial data necessary to

assess cell-cell interactions, or interrogate few (<10) markers, limiting the

capacity for cell phenotyping. Recently developed digital pathology

technologies, together with sophisticated bioimage analysis programs, now

enable the high-resolution, highly-multiplexed analysis of diverse immune and

stromal cell markers within the TME of clinical specimens. In this article, we

review the tumour-promoting non-cell autonomous interactions in the TME and

their impact on tumour behaviour. We additionally survey commonly used image

analysis programs and highly-multiplexed spatial imaging technologies, and we

discuss their relative advantages and limitations. The spatial organization of the

TME varies enormously between patients, and so leveraging these technologies

in future studies to further characterize how non-cell autonomous interactions

impact tumour behaviour may inform the personalization of cancer treatment.

KEYWORDS

tumor immune microenvironment (TIME), tumor microenvironment (TME), tumor-
infiltrating lymphocytes, immune checkpoint blockade, non-cell autonomous
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1 Introduction

The solid tumour microenvironment (TME) is a tumour-

supporting niche that encompasses a diverse population of cells,

including malignant, stromal, endothelial, bacterial, and immune

cells. Within the larger TME, the population of immune cells is

referred to as the tumour immune microenvironment (TIME). The

TME is highly heterogeneous and can impact the progression of

tumours, as well as their response to various therapeutics. The

various cells of the TME influence tumour growth and invasiveness

in numerous ways, including secreting cytokine factors that can

activate cytotoxic effector cells, polarize immune cells, and drive

both local and distal inflammation (1). The precise impacts of these

cytokines on tumour biology vary between different cancer types

and stages of tumour progression (1). Tumour microenvironments

often have distinct physical and chemical traits, such as chronic

hypoxia, which develops as a result of cancer cell growth outpacing

the circulatory system’s capacity for expansion (2), and acidity,

which arises largely as a consequence of high rates of glycolysis and

the export of lactate and H+ ions by cancer cells (3). Many solid

tumour microenvironments also contain distinct bacterial

microbiomes, with taxonomic compositions that differ from those

seen in healthy organs (4, 5).

Exposure to these unique characteristics of the TME, as well as to

the cytokines and other signaling molecules secreted by malignant

cells, frequently reprograms tumour-infiltrating and surrounding

cells toward phenotypes and polarizations that further advantage

the cancer cells. Reprogrammed stromal cells, such as cancer-

associated fibroblasts (CAFs), create a highly cross-linked, stiff

extracellular matrix (ECM) that promotes cell migration and

invasion (6, 7). Reprogrammed cells of the TME, such as tumour-

associated macrophages (TAMs), engage immunosuppressive

programs that limit the anti-tumour activities of T cells (8). In this

way there is extensive crosstalk through metabolites, cell surface

receptor interactions, and secreted signaling molecules between

cancer cells and other tumour-associated cells.

Specific features of an individual patient’s TME are now

recognized to significantly impact their prognosis. Survival

outcomes have been linked to a variety of factors, including

diversity of species within the tumour microbiome (4), abundance

or subtypes of CAFs (9, 10), or extent and distribution of tumour

hypoxia (11), but the most well-described associations with patient

outcomes are those pertaining to abundance, phenotypes, and

distribution of immune cells both in the TME and within

tumours themselves. DNA-, RNA-, and protein-level alterations

acquired during malignant transformation can cause cancer cells to

produce antigens with unique peptide sequences (“neoantigens”)

(12, 13). Tumours that have greater genomic instability and a larger

number of mutations (i.e. a higher mutational burden) are expected

to display more neoantigens. Since neoantigens are not protected by

central tolerance, their display on the surface of cancer cells can lead

to T cell recognition and precipitate an anti-tumour immune

response that improves patient outcomes (12, 14). Consequently,

high quantities of tumour-infiltrating CD8+ T cells, and of cells that

stimulate their function (e.g. CD4+ T cells, conventional type 1
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dendritic cells, and B cells), are generally associated with relatively

good prognoses (15–18). Conversely, large quantities of regulatory

T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and

TAMs, all of which broadly impede anti-tumour immune

responses, have been linked to poor prognoses in multiple cancer

types (19–21). Furthermore, low levels of CD8+ T cells increase the

risk of recurrence or progression for ductal carcinomas in situ and

oral leukoplakias, suggesting that the composition of the immune

cell infiltrate may also be predictive of the behaviour of

precancerous lesions (22, 23).

Therapeutic strategies that target the TME, including immune

checkpoint blockade (ICB) therapies, have profoundly impacted

cancer patient survival rates, due in large part to their remarkable

efficacy and even curative capability in some of the deadliest and

most prevalent cancer types, such as melanoma and lung cancer.

However, ICB induces responses in only a minority of patients, and

is broadly ineffective against tumours that evade immune

surveillance by preventing the generation or infiltration of

tumour-specific T cells (24, 25). Patient responses to more

widely-used treatments such as chemotherapy, radiation therapy,

and various targeted therapies can also be impaired by TME-related

factors, including low quantities of immune cell infiltration, dense

stroma and poor circulation, and large areas of chronic hypoxia (2,

26, 27). The tremendous variance in the spatial organization of the

TME between patients, even those with tumours driven by the same

oncogene(s), remains a major confounding factor to treatment

decisions and clinical outcomes. As an example, the confinement

of immune cells to the tumour stroma and their exclusion from the

tumour core has been associated with a decreased likelihood of

response to anti-PD-L1 therapy (28), as well as poorer overall

survival (29).

The spatial organization of TME-resident cells also influences

the frequencies of non-cell autonomous interactions. These

interactions can be driven by cell-cell contact, secreted proteins,

or metabolites, and they contribute to cancer phenotypes. However,

many methods used to study the TME, such as flow cytometry, only

provide information about the abundance of cell subtypes and do

not capture their spatial distribution. Imaging-based methods such

as multiplex immunofluorescence (mIF) do record these spatial

data, but the capacity for these technologies to deeply characterize

interactions between specific cell subtypes is limited by their

inability to visualize more than 6-8 markers in a given sample

(30). Consequently, the recent creation of imaging technologies that

enable highly multiplexed, high-resolution spatial profiling of solid

TMEs is impactful, and has the potential to elevate the study of the

malignant immune microenvironment from measuring cell

abundance to investigating “cell sociology” – the myriad

relationships, interactions, and communications between cells

(31). In this article, we review the study of cell sociology in the

TME through (a) summarizing the well-described non-cell

autonomous interactions within the TME and their impact on

tumour behaviour and therapeutic response, (b) discussing the

image analysis programs and computational methods currently

used to decipher cell sociology in the TME, and (c) reviewing

recently developed highly-multiplexed spatial imaging technologies.
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2 Non-cell autonomous interactions
within tumors

2.1 Non-cell autonomous interactions
mediated by cell-cell contact

The development of multiplex immunohistochemistry (mIHC)

and mIF has made it possible to quantify how often cells of different

types exist close to each other in the tumour microenvironment and

consequently to estimate the frequency of specific cell-cell contacts.

As we will discuss, physical contacts between cancer, immune, and

bacterial cells within the TME play significant roles in the

modulation of the anti-tumour immune response and cancer cell

proliferation (Supplementary Table 1).

CD8+ T cells are among the most critical immune components

of the TME, due to their ability to recognize, bind, and kill

neoantigen-expressing tumour cells. However, tumour cells are

only susceptible to this destruction if they come into direct

contact with CD8+ cells. In metastatic colon cancer, having a high

percentage of tumour epithelial cells located in proximity to CD8+ T

cells has been linked to increased survival, despite overall CD8+ T

cell infiltration being lower in these patients’ tumours (32).

Similarly, the likelihood of lung adenocarcinoma recurrence has

been observed to correlate more strongly with the frequency with

which CD8+ cells neighbour tumour epithelial cells than with the

overall CD8+ cell density (31). Underscoring the importance of

immune cell subtyping, relapse-free survival in triple-negative

breast cancer (TNBC) has been linked specifically to high levels

of CD8+CD103+ T cells in immediate proximity to cancer cells (33).

CD8+ T cell function is also mediated by other immune cells; for

example, an increased proximity of CD8+ T cells to CD3+CD8-

FOXP3- helper T cells (32) and B cells (34) has been associated with

improved patient outcomes.

Direct interactions between T cells, B cells, and dendritic cells

occur in tertiary lymphoid structures (TLSs), which are dense

clusters of immune cells commonly present in chronically

inflamed areas, including the tumour microenvironments of

multiple cancers (35). TLSs contain both T and B cell regions and

are transient sites of the germinal centre reactions, which lead to B

cell differentiation (35). T follicular helper (Tfh) cells are significant

components of TLSs, being involved in both TLS formation and the

germinal centre reactions (36, 37). While the production of IL-21

and CXCL13 by Tfh cells can stimulate adaptive anti-tumour

immunity at a distance (38), the direct engagement of Tfh cells

with B cells through ICOS/ICOSL and CD40L/CD40 binding is also

critical to the anti-tumour immune response (39).

The presence of TLSs has been linked to improved prognoses in

a number of cancers, including melanoma (40), head and neck

squamous cell carcinoma (41), pancreatic ductal adenocarcinoma

(PDAC) (42), and muscle-invasive bladder cancer (43), and can

have greater prognostic value than the bulk count of infiltrating

CD8+ T cells (44–46). Tumours with TLSs tend to have distinct

features, including increased infiltration by CD20+ B cells and both

CD8+ and CD4+ T cells (44, 47), decreased infiltration of CD163+

M2 macrophages (48), decreased expression of the Treg markers
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FOXP3 and CD25 by CD4+ T cells (48, 49), and higher levels of Bcl-

2 and lower levels of TIM3 expressed by T cells (40). These

associations may in part reflect an increased likelihood of TLS

development in the presence of chronic inflammation caused by a

pre-existing anti-tumour immune response, as suggested by Cabrita

et al. (40), but are also due to the local amplification of that response

by TLSs through recruiting lymphocytes and facilitating antigen

presentation and lymphocyte maturation (35, 50, 51) (Figure 1A).

Supporting the idea that TLSs have a regional impact on the

immune response, shorter distances between TLSs and the

invasive front of bladder tumours have been linked to increased

disease-specific survival (43). There is also some evidence that intra-

tumoural TLSs are more prognostically favourable than peri-

tumoural TLSs (48, 53).

Tumour-resident bacteria within the TME can influence tumour

phenotypes in numerous ways, including through cell-cell contacts

with cancer and immune cells. One of the best-characterized

examples is Fusobacterium nucleatum, a Gram-negative bacterium

that is normally present in the oral cavity, but that has been found

within the TME of a number of cancer types, most prominently

colorectal cancer (CRC) (54) (Figure 1B). The Fap2 protein of F.

nucleatum can bind the immune checkpoint protein TIGIT,

commonly expressed by NK and T cells, limiting their cytotoxic

activity (55). F. nucleatum also expresses FadA adhesin, which can

bind the E-cadherin expressed by CRC cells. This induces the nuclear

translocation of b-catenin and downstream expression of oncogenic

proteins, including Wnt, Myc, and cyclin D1, which stimulate

tumour growth (56). F. nucleatum additionally exerts a number of

pro-tumour effects through interactions between lipopolysaccharide

(LPS) and host-expressed TLR4, including upregulation of hsa-miR-

21-5p, which stimulates cancer cell growth and invasion (57), and

downregulation of hsa-miR-18a-3p and hsa-miR-4802, which

induces autophagy and confers resistance to oxaliplatin and 5-

fluorouracil (58).
2.2 Influence of cell-cell contacts on
immunotherapy response

As mentioned, the targeting of the PD-1/PD-L1 axis by ICB

therapy represents a breakthrough in cancer therapy for thousands

of patients, but the majority of treated patients do not experience

responses (Figure 1C) (59). It has been frequently proposed that

response to ICB is more common in the case where PD-L1

expression is not simply constitutive, but is instead induced by

cytokines produced during an adaptive immune response (25, 60).

Proxies for the presence or likelihood of an adaptive immune

response, including tumour mutational burden, PD-L1

expression, various signatures of inflammatory gene expression,

and biomarkers based on mIHC or mIF have all been correlated

with response to anti-PD-1 or PD-L1 therapy, with a recent meta-

analysis by Lu et al. finding mIHC/mIF biomarkers to be the most

accurate predictors of therapeutic response (61). These spatial

biomarkers offer unique insight into whether PD-L1+ cells are

enriched in the vicinity of functional targets (in which case
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inhibition of the PD-1/PD-L1 axis is thought to be more likely to

amplify anti-tumour immunity) (60) or randomly distributed

throughout the TME, and can only be measured through

multiplexed imaging. For instance, high levels of proximity

between PD-L1+ cells and either PD-1+ cells (25, 62, 63),

exhausted CD8+ cells (64), or cancer cells (65) have been

associated with improved outcomes after ICB therapy. Similarly,

high expression of PD-L1 by M1 macrophages that were located

near both CD8+ T cells and the tumour-stroma boundary has been

correlated with increased likelihood of response of metastatic

melanoma to ICB therapy (66).

While adaptive expression of PD-L1 may represent a

therapeutic opportunity, the PD-1/PD-L1 interaction is not

uniformly associated with improved patient outcomes. Frequent
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interactions between PD-L1+ cells and CD8+ cells or PD-1+ cells

have been correlated with poor outcomes in HPV- oral and

oropharyngeal squamous cell carcinomas, while overall PD-L1+

abundance has not (67, 68). Interestingly, a study of diffuse large B

cell lymphoma found that PD-1+/PD-L1+ interactions were

associated with poor outcomes in patients with high infiltration

of CD3+ cells, but improved outcomes in patients with low CD3+

infiltration (69). These improved outcomes may arise because PD-

1+/PD-L1+ interactions indicate that the few CD3+ cells present are

concentrated near tumour cells, which, despite the consequent

immune checkpoint activation, is more favourable than them

being isolated (69). This highlights how the prognostic

interpretation of cell-cell interaction scores should be informed by

the overall immune context of the tumour.
A

B

C

FIGURE 1

Direct contacts between cells in the TME modulate tumour phenotypes. (A) Cell-cell interactions within TLSs, particularly the germinal centre,
influence TME composition and immune phenotypes. TLS image is reproduced from (52) with permission of the authors; (B) Interactions between F
nucleatum and TME-resident cells have pro-tumour effects; (C) T cell anti-tumour activity is attenuated by direct contact with Tregs and PD-L1+

cells.
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2.3 Non-cell autonomous interactions
mediated by intermediaries

CD4+ and CD8+ regulatory T cells generally suppress immune

responses, and consequently, their infiltration into tumours has

been linked to worsened prognoses in many forms of cancer (19).

Tregs attenuate anti-tumour immune activity through a variety of

mechanisms, including depleting IL-2 from the TME (70),

pushing antigen-presenting cells (APCs) towards tolerogenic

phenotypes characterized by the downregulation of CD80/86

and the upregulation of IDO1 (71), inducing apoptosis in CD8+

cells via expression of the Fas ligand (72) or granzyme and

perforin (73), and secreting immunosuppressive cytokines,

including IL-10 and TGF-b (74). Links to poor outcomes have

been observed for Tregs located near CD8+ T cells in HPV- oral

squamous cell carcinoma (OSCC) (68) and in CRCs with

microsatellite instability (75), and for both CD4+ and CD8+

Tregs located near non-small cell lung cancer (NSCLC) cells

(76, 77). However, increased proximity between Tregs and

CD8+ T cells has been associated with improved prognoses in

gastric tumours and NSCLC (76, 78). Taken together, these results

suggest not only that Treg/CD8+ interactions have distinct

functional repercussions in different cancer types, but also that

the dominant functions of tumour-infiltrating Tregs depend on

their immediate immune context. As a further example of this,

mouse models suggest that lung TLSs commonly contain Tregs,

which limit the activation and proliferation of the TLS-localized T

cells (79). A study of TLS-localized Tregs in breast cancer linked

their presence to poorer patient outcomes, despite finding that the

presence of Tregs in the tumour bed had no significant prognostic

value (80).

High densities of TAMs are associated with poor outcomes in

many types of cancer (21), owing to a range of functions that

includes the secretion of growth factors, survival factors, and

immunosuppressive cytokines (81). The impact of these growth

and survival factors has been observed in NSCLC, where cancer

cells undergoing apoptosis were on average located closer to pro-

inflammatory M1-polarized macrophages than to anti-

inflammatory M2-polarized macrophages, while the reverse was

true for proliferative Ki67+ cancer cells (82). Accordingly, higher

numbers of cancer cells located in proximity to M2 macrophages

were found to be associated with poor patient outcomes, while the

opposite was true for M1 macrophages (82). High M2

macrophage/cancer cell proximity has been correlated with poor

outcomes in PDAC (83), although in gastric cancer it has been

linked to improved outcomes (84). M2 macrophages can also

engage CD8+ T cells in lengthy, antigen-specific interactions that

do not instigate T cell proliferation, but instead induce an

exhausted, PD-1+ phenotype (85). Short distances between

CD8+ T cells and HLA-DR- (predominantly M2) macrophages

have been associated with decreased survival in melanoma,

potentially due to the immunosuppressive nature of the CD8+/

M2 interaction (86).
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2.4 Generation of pro-tumour metabolite
profiles in the TME

Cells within the TME can induce pro-tumour metabolite

profiles in a number of ways, including depleting metabolites

required for the cytotoxic activity of immune cells, secreting

immunosuppressive metabolites, and secreting metabolites that

stimulate cancer cell growth and division.

Within the TME, the catabolic action of the IDO1 and TDO

enzymes can convert the amino acid tryptophan into kynurenine

(87, 88). Kynurenine engenders an immunosuppressive

environment by promoting Treg development and decreasing the

viability and IFNg expression of CD8+ T cells, while also directly

increasing cancer cell proliferation (Figure 2A) (89–91). IDO1 and

TDO can be expressed constitutively by cancer cells, in which case

they inhibit lymphocyte infiltration, or expressed by cancer and

stromal cells in response to IFNg, which limits the activity of

tumour-infiltrating lymphocytes (92). A number of IDO1

inhibitors have been developed, but initial phase III trials have

not shown any clinical benefit from adding IDO1 inhibitors to anti-

PD-1 therapy regimens (93). It has been suggested that the relative

benefit of IDO1 inhibition may be greater in immune-cold tumours

that constitutively express IDO1 (94), as it could enable increased

lymphocyte infiltration and in turn amplify the utility of PD-1 or

PD-L1 inhibition.

The metabolic activity of commensal bacteria can also influence

the tumour microenvironment. Intratumoural bacteria that express

the long isoform of cytidine deaminase, such as Enterobacteriaceae,

are found commonly in human PDACs and have been shown to

convert the chemotherapeutic agent gemcitabine into an inactive

form, which confers drug resistance in mouse models (95).

Conversely, various species of gut bacteria participate in the

conversion of primary bile acids to secondary bile acids and the

fermentation of dietary fibre into short-chain fatty acids (SCFAs).

The SCFA butyrate, which is exclusively synthesized by the gut

microbiome, has histone deacetylase inhibitor activity at high

concentrations and is known to inhibit CRC cell proliferation and

promote apoptosis through a range of mechanisms, including

upregulating miR-203 (96), limiting ERK phosphorylation (97,

98), and upregulating p21 (Figure 2B) (97).

The metabolic composition of the TME is also altered by

hypoxia, as it prevents cells from obtaining energy through

oxidative phosphorylat ion and induces, among other

transcriptional programs and adaptive phenotypes (99),

compensatory upregulation of the glucose importer GLUT1 and

the lactate exporter MCT4 (100). Expression of GLUT1 and MCT4

is thus highest in tumour regions that are far from blood vessels

(101). This metabolic shift results in an excess of lactate within the

TME, which can then be imported by MCT1-expressing cells within

normoxic tumour regions and used as an energy source or anabolic

building block (102–104) (Figure 2C). This lactate shuttle facilitates

the survival of cancer cells in hypoxic regions through decreasing

the glucose requirements of cells in nearby normoxic
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neighbourhoods (102). Establishment of this shuttle is an observed

mechanism of resistance to angiogenesis-inhibiting therapy in a

number of tumour types (105–107). The secretion of lactate by

cancer cells also contributes to the reprogramming of immune cells,

including through promoting the M2 polarization in macrophages

(108, 109) and augmenting Treg induction (110).

Interactions between cancer cells and CAFs can induce HIF-1

and redox-mediated expression of MCT1 in cancer cells and both

GLUT1 and MCT4 in CAFs, thereby creating a CAF-cancer cell

lactate shuttle (103, 111, 112). Cancer cells involved in this shuttle

generally exhibit MCT1-dependent increases in proliferative (103,
Frontiers in Immunology 06
113, 114), invasive (115, 116), and migratory (116) capacity. Ippolito

et al. have shown that the exposure of prostate cancer cells to CAF-

conditioned media increases their mitochondrial mass and oxygen

consumption, which were further augmented by the uptake of

mitochondria from neighbouring CAFs along cytoplasmic bridges

(115). Prostate cancer patients with both MCT1high cancer cells and

MCT4high stromal cells tend to have later stage (pT3) tumours (117),

and experience poor, stage-independent, biochemical failure-free

survival (118). Neither of these associations were seen in patients

with high expression of only one MCT (117, 118), which highlights

the clinical significance of lactate shuttling.
A

B

D

C

FIGURE 2

TME metabolite profiles alter tumour behaviour. (A) Production of kynurenine by IDO1+ or TDO+ cells enhances cancer cell proliferation and impairs
T cell functionality. (B) Conversion of dietary fibre into butyrate by intestinal bacteria suppresses colorectal cancer cell proliferation. (C) Lactate
shuttling is induced by oxygen gradients, promoting resistance to angiogenesis-inhibiting treatments. (D) Pancreatic cancer cells induce autophagy
in nearby pancreatic stellate cells, liberating alanine, which the cancer cells use to fuel the TCA cycle.
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Similarly, an alanine shuttle is induced by interactions between

pancreatic stellate cells (PSCs) and PDAC cells. Exposure to PDAC-

conditioned media causes PSCs to undergo autophagy and secrete

alanine, which can be imported by PDAC cells and used as a carbon

source for the synthesis of TCA cycle metabolites (119) (Figure 2D).

Knockdown of the alanine importer SLC38A2 abrogates the increase

in tumour growth seen when PSCs are injected into mouse xenograft

models in addition to PDAC cells, which suggests that alanine

shuttling is responsible for this growth advantage (120).
Frontiers in Immunology 07
3 Emerging approaches for
quantifying cell-cell interactions

Most of the multiplexed spatial data collected from tumour

samples is in the form of multi-channel images derived from mIHC

or mIF, imaged by either absorption or fluorescence microscopy.

These images must undergo processing, typically including spectral

unmixing, selection of regions of interest (ROIs), nuclear and cell

segmentation, and cell phenotyping (Figure 3A) (30).
A

B

C

FIGURE 3

Distance and neighbour-based methods quantify cell-cell interactions differently. (A) Extracting rates of cell-cell interactions from imaging data
requires image preprocessing, which includes cell segmentation and phenotyping. Raw multi-channel image reproduced from (31) with permission
of the authors. (B) Distance-based metrics calculate interaction frequencies by considering a pair of cells to interact if they are in physical proximity
(e.g. within a given radius of one another). (C) In contrast, neighbour-based metrics consider a pair of cells to interact if they are neighbours (e.g. if
they share a Voronoi edge), regardless of the distance between them. In the examples illustrated here, frequencies of interaction between
CD3+CD8- cells and three different cell types are calculated.
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Cell segmentation and phenotyping performed during image

processing enables subsequent extraction and analysis of cell

sociology features, most notably the extent of interaction between

different cell types (e.g. A+ and B+ cells). Cell-cell interactions are

most commonly quantified using metrics that depend on

intercellular distances, including the mean or median distance

from an A+ cell to the nearest B+ cell (32, 65, 77, 86), the absolute

number of B+ cells located within a specified distance of one or

more A+ cells (63, 67, 68, 82, 121), the percentage of A+ cells with a

B+ cell located within a specified distance (32, 84), and the area

under the curve of the A+-B+ G-cross function (76, 122) (Figure 3B).

The choice of metric, which can also require choosing a specific

threshold distance (commonly between 10 and 40 µm) (32, 63, 67,

68, 82, 84, 121), and the decision of whether to apply cell density

normalizations should be guided by the specific biological

hypothesis being tested. Distance-based metrics are generally

useful for determining the frequency of particular short-range

cell-cell interactions in a sample, but they are influenced by cell

size and do not identify direct contacts between cells.

The second class of metrics used to quantify the frequency of

interaction between cell types can be referred to as ‘neighbour-

based’ (Figure 3C). Starting from the positions of cell nuclei,

Voronoi diagrams, or equivalently Delaunay triangulations, can
Frontiers in Immunology 08
be constructed to identify pairs of cells that are immediate

neighbours and are likely in physical contact (31, 123).

Alternatively, a cell’s neighbours can be identified through

dilating its binary mask (62, 69). Neighbour-based metrics

include the mean fraction of the neighbours of A+ cells that are

B+ (31); the number of B+ cells that neighbour at least one A+ cell,

normalized to the total number of immune cells (62, 69); and the

ratio of the number of observed A+-B+ neighbour pairs to the

expected number of such pairs, based on the proportions of all

imaged cells that are A+ or B+ (123). These metrics are less

dependent on cell size, but they are not suitable for the analysis

of cell-cell interactions that do not require direct contact, and

careful specification of ROIs is necessary to avert analysis

artifacts, such as cells in isolated areas of a slide being assigned

unreasonably large volumes (31). While they aim to measure the

same quantity, distance-based and neighbour-based metrics can

yield significantly different results (Figures 3B, C). Both classes of

metrics have advantages in particular cases, and so the best metric

for a given experiment depends on the hypothesis being tested.

With the growth of digital pathology, many bioimage analysis

programs, both open and closed-source, have been developed to

analyze these metrics (Table 1). In the open-source domain, in

addition to ImageJ, researchers now have access to a range of
TABLE 1 Characteristics of selected bioimage analysis programs.

Software
Name

Open
Source

Base
Language

Utility and Notable Features*
AI

Modules
WSI

ImageJ/FIJI Open Java Comprehensive low level image processing; many user-developed macros and plug-ins No No

QuPath Open JavaFX
Tissue image analysis: stain and cell quantification, etc.; batch processing using user-created
extensions and workflows

Yes Yes

CellProfiler 4.0 Open Python
High-throughput cell image analysis; customizable, modular pipelines for image analysis;
user-developed modules

No No

Cytomapper Open R
Visualization of pixel- and cell-level information; input single-cell expression values and cell-
specific metadata from highly multiplexed imaging; Bioconductor package

Yes No

Icy Open Java
Comprehensive image analysis platform; graphical programming interface for workflow
design; many user-developed plug-ins; dependency management

No No

HALO Closed –
Tissue image analysis; automated tissue classification; modular workflow; bespoke modules
for cell-cell analyses

Yes Yes

Visiopharm Closed – AI-based tissue image analysis; automated cell phenotyping; high-throughput TMA analysis Yes Yes

Aperio Closed – Tissue image analysis; variety of algorithmic tools for quantification of multiplex images Yes Yes

TissueGnostics
Quest suites

Closed –
Tissue image analysis; automatable macros and pre-made apps; compatible with ImageJ and
MATLAB scripts; import tools for wide range of image formats

Yes Yes

MCMICRO Open
Any

(Nextflow
and Galaxy)

Tissue image analysis and spatial neighborhood image analysis; input multiplexed WSI,
TMA; optional segmentation step; run multiple algorithms in parallel; use of software
containers makes it interoperable with any programming language

Yes Yes

SPIAT Open R
Spatial neighborhood image analysis; input is cell location/coordinates and characteristics;
automated detection of cellular neighbourhoods; fast processing

Yes No

Giotto Open R
Spatial neighborhood image analysis; input is cell location/coordinates and characteristics;
interactive Giotto viewer

Yes No

histoCAT/
NeighbouRhood

Open R
Spatial image analysis of cells in tissues; uses ‘CellProfiler output’ or ‘CellProfiler output’-like
data; visualization of images and single-cell analysis in parallel; graphical user interface
(histoCAT) and R implementation (neighbouRhood)

Yes No
frontier
*All listed programs are compatible with both brightfield and fluorescence images.
WSI, whole slide imaging; TMA, tissue microarray.
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alternatives, including QuPath, CellProfiler, Icy, MCMICRO,

Cytomapper, and others (Table 1) (124–129). Open-source tools

have become increasingly important, as they allow users to develop,

customize, and share their own analysis solutions, commonly in the

form of plug-ins, which makes these programs highly flexible and

stimulate innovation (130). Closed-source software generally does

not permit users to modify, augment, or share the software, but it

frequently possesses superior ease of use, available online support,

and vertically integrated support for common analysis tasks. HALO

(Indica Labs, Albuquerque, NM, USA) and Visiopharm (Visiopharm

A/S, Hørsholm, Denmark) are examples of closed-source tools, but

there are a variety of others, frequently integrated with image

acquisition hardware such as Aperio image analysis (Leica

Biosystems, Buffalo Grove, IL, USA) and TissueGnostics Quest

suites (TissueGnostics, Vienna, Austria) (Table 1). Each image

analysis program offers its own advantages, and identifying the

most suitable program for a given analysis project requires

consideration of a number of factors, including project objectives,

the scale of required analysis, and user experience and training. More

recently, programs that focus on the statistical analysis of spatial cell

distributions within tissues (cell neighbourhood analysis) have been

developed. Many of these (SPIAT, Giotto, histoCAT/

NeighbouRhood) (131–134) take only the spatial location of the

cells and their quantified characteristics (such as protein marker

expression and RNA sequence counts) as input and are

predominantly written in R, allowing for user-specific optimization

and modifications. Generally, these programs allow the user to define

the size (in the number of cell layers, the distance from the cell, or

both) of the neighborhood that they want to consider. Giotto in

particular allows users to interactively refine cell marker positivity

based upon neighbourhood characteristics. As these newer programs

demonstrate, the capability of programs available for digital

pathology analysis continues to expand, giving researchers access to

a constantly evolving toolkit to meet the computational demands of

highly-multiplexed imaging technologies.
4 Advantages and applications
of highly-multiplexed
imaging technologies

As discussed above, the advent of mIHC and mIF has greatly

enhanced our understanding of non-cell autonomous mechanisms

within the tumour microenvironment. Imaging with a fluorescence

microscope can achieve sub-micrometer resolutions, and the use of

secondary antibodies and tyramide signal amplification allows for

the detection of even lowly-expressed molecular species (135). Yet

even with the application of increasingly sophisticated

computational analysis, the width and consequent overlapping of

the spectra of common fluorophores makes the simultaneous

fluorescence imaging of more than 6-8 markers infeasible (30,

136). The TME commonly contains a wide variety of cell types,

which may be reprogrammed into various phenotypes or

polarizations, and so many relevant questions cannot be answered

with only these 6-8 markers. Recently developed imaging
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technologies can achieve considerably higher levels of

multiplexing, which greatly expands their potential applications,

but each technology has its own advantages and disadvantages in

areas such as imaging resolution, sensitivity, sample throughput,

and sample integrity (Figure 4, Tables 2, 3).
4.1 Antibody-based methods

Cyclic immunofluorescence, which broadly involves repeated

stain-image-bleach/wash cycles being performed on the same tissue

sample, is the simplest extension of mIF. One of the furthest

developed forms of this technology is t-CyCIF, in which each

imaging cycle visualizes three fluorophore-conjugated primary

antibodies and a DNA dye (137). Sample integrity declines with

successive imaging cycles, but 60-fold multiplexing has been

successfully demonstrated (137). t-CyCIF achieves this

multiplexing at high, diffraction-limited resolutions and does not

require a specialized microscope, but each imaging cycle is 6-8

hours long (137). Other variants of cyclic IF elute antibodies instead

of photobleaching fluorophores (149). This enables the use of

secondary antibodies, but harsh elution conditions can alter the

structure of some epitopes, and so careful optimization of staining

order and antibody choice is necessary (149).

Co-detection by indexing (CODEX) imaging is another cyclic

technique, and involves staining with antibodies that are conjugated

to oligonucleotide tags with 5’ overhangs of different lengths,

followed by multiple cycles of imaging (123). In each cycle, a mix

of unlabelled (‘indexing’) and fluorescently labelled dNTPs is added,

causing each type of labelled dNTP to be incorporated into a unique

tag. CODEX was later re-engineered so that each imaging cycle

instead involved the addition of three fluorophore-conjugated

oligonucleotides, each complementary to a region on a single

antibody’s tag (150). This newer version of CODEX has

demonstrated 56-fold multiplexing, and can be performed using a

standard fluorescence microscope (150). However, species

limitations make the use of secondary antibodies impossible at

these high levels of multiplexing, and so imaging sensitivity

is limited.

Similar to CODEX, DNA-Exchange-Imaging (DEI) is a cyclic

technique in which a fluorophore-conjugated oligonucleotide is

introduced during each imaging cycle, and binds to a single

antibody-conjugated oligonucleotide (138). DEI is compatible

with super-resolution platforms (138), but it shares CODEX’s

drawback that the expansion of multiplexing beyond levels

achievable through mIF makes the use of secondary

antibodies impossible.

Exchange-SABER combines DEI with immunostaining with

signal amplification by exchange reaction (Immuno-SABER). In

Immuno-SABER, each antibody-conjugated oligonucleotide is

bound by a DNA concatemer that has been synthesized via

primer exchange reactions. This hybridization creates a lengthy

overhang that contains numerous binding sites for short,

fluorophore-conjugated ‘imager’ oligonucleotides (139). This

approach allows for significant (5 to 180-fold) signal

amplification, with the high-end being achieved when secondary
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and tertiary concatemers are used (Iterative-SABER) (139).

Exchange-SABER holds the potential for high levels of

multiplexing, but the imaging of more than 10 markers

simultaneously has yet to be demonstrated (139).

Multiplexed ion beam imaging (MIBI) involves the preliminary

staining of tissues with lanthanide-conjugated antibodies (151).

During the imaging process a narrow primary ion beam is

scanned across the sample pixel by pixel, which liberates

secondary ions from the antibodies, allowing the lanthanide

isotopes to be quantified by a mass spectrometer (151). MIBI-

TOF, an improved version of MIBI that uses time-of-flight mass
Frontiers in Immunology 10
spectrometry, has demonstrated simultaneous imaging of up to 36

markers at sub-micrometer resolution, and can approach single-

antibody sensitivity (140). However, despite improvements in

MIBI-TOF’s throughput, achieving resolutions comparable to

mIHC substantially increases the image acquisition time (140).

When used to assess protein expression, digital spatial profiling

(DSP) employs antibodies that are conjugated via a UV-cleavable

linker to unique oligonucleotides (141). After ROIs are determined,

each is sequentially exposed to UV light, and the oligonucleotides

released after each exposure are quantified through sequencing or

the nCounter system (141). High levels of multiplexing (44
FIGURE 4

Technologies that preserve spatial information have broad applications. Tumours that carry identical densities of immune cells, and that would
appear similar if evaluated by bulk methods, can vary significantly in their spatial organization. Imaging technologies provide a bevy of information on
samples, both within multiple-cell ROIs (useful for e.g. assessing intra-tumour heterogeneity) and at the single-cell scale (ideal for e.g. subtyping
individual cells or quantifying cell-cell interactions), greatly expanding the range of possible analyses.
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proteins) have been demonstrated, and the ability to establish ROIs

of any shape allows for the profiling of highly specific areas of tissue

(141). However, using very small (~single-cell) ROIs significantly

impairs the detection of lowly-expressed proteins.

Collectively, these antibody-based techniques excel at providing

information needed to answer questions about the prevalence,

identity, and location of specific immune and stromal cell

subtypes within the TME, and about how the proximity or

interaction of different cell types impacts tumour behaviour.

Demonstrated applications of these technologies include the

identification of cellular phenotypes that are consistently located

in close spatial proximity in the TNBC TME (121) and the

screening of many protein markers simultaneously in distinct

compartments of the non-small-cell lung cancer TME, in order to

identify protein/compartment pairs that are associated with
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improved survival outcomes in patients treated with anti-PD-1

checkpoint blockade therapy (152). These technologies can also be

combined with computational approaches that operate on a larger

spatial scale through treating samples not only as mixtures of single

cells but as aggregations of regions (cellular neighbourhoods) with

distinct compositions and functions. For instance, the use of

clustering and tensor decomposition techniques on CODEX data

has enabled the characterization of a granulocyte-enriched

neighbourhood within the CRC TME whose functional state, as

defined by the expression of PD-1 and CD4 on T cells, was

associated with patient outcomes (150). Another example is the

use of a recently reviewed technique, imaging mass cytometry (153),

to interrogate the TME of lung adenocarcinoma and identify spatial

features from 5 µm sections that were predictive of recurrence

(154). This group used the same technique to reveal cellular
TABLE 2 Technologies for spatial analysis of protein expression in the TME.

Technology
Antibody

Conjugation
Multiplexing*
(proteins)

Spatial
Resolution

Sensitivity Reference

mIF/mIHC
Fluorophore or
chromogen

8 DL; SR-compatible 2° antibodies usable (135)

t-CyCIF Fluorophore ≥ 60 DL; SR-compatible Use of 2° antibodies limited (137)

CODEX Oligonucleotide ≥ 56 DL Use of 2° antibodies limited (123)

DEI Oligonucleotide ≥ 8 DL; SR-compatible Use of 2° antibodies limited (138)

Exchange-
SABER

Oligonucleotide ≥ 10 DL; SR-compatible
5 to 180-fold increase in 1° antibody

signal
(139)

MIBI-TOF Lanthanide ≥ 36 Comparable to DL Near single-antibody (140)

DSP Oligonucleotide ≥ 44
Defined by choice of

ROI
Use of 2° antibodies limited (141)
*Value indicates the highest level of multiplexing that has been demonstrated.
DL, diffraction-limited resolution; SR, super-resolution.
TABLE 3 Technologies for spatial analysis of RNA expression in the TME.

Technology RNA-Binding Probes
Multiplexing*

(RNAs)
Spatial

Resolution
Detection
Threshold

Reference

DSP
Oligonucleotide-conjugated

oligonucleotides
≥ 2093

Defined by choice of
ROI

~600 copies of a transcript (141)

seqFISH+ Barcoded oligonucleotides ≥ 10,000 SR ~2-fold higher than smFISH (142)

STARmap Primer and padlock probes ≥ 1020
DL; diminished by

RCA
Comparable to scRNAseq (143)

HiPR-FISH Barcoded oligonucleotides ≥ 65 bacterial taxa Single-cell ~790 ribosomes per cell (144)

FISSEQ
RT primers containing random

hexamers
Whole transcriptome

DL; diminished by
RCA

~200-400 copies of a
transcript

(145)

ST Spatially barcoded oligo(dT) probes Whole transcriptome 100 µm
~14-fold higher than

smFISH
(146)

HD-ST Spatially barcoded oligo(dT) probes Whole transcriptome 2 µm
~77-fold higher than

smFISH
(147)

Slide-seqV2 Spatially barcoded oligo(dT) probes Whole transcriptome 10 µm
~2-fold higher than

scRNAseq
(148)
*Value indicates the highest level of multiplexing that has been demonstrated.
DL, diffraction-limited resolution; SR, super-resolution.
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neighbourhoods that were associated with survival in glioblastoma,

which were then used to identify a specific population of

macrophages that were associated with long-term survival (155).

Antibody-based techniques are a classical method to interrogate the

spatial organization of the TME, and technological advances are

facilitating highly-multiplexed applications to improve our

understanding of this organization.
4.2 Oligonucleotide probe-based methods

While antibody-based protein analysis is suitable for many

applications, antibodies against some proteins are challenging to

create, and achieving whole-proteome multiplexing is currently

unrealistic. Interrogating RNA expression instead, such as

through the use of oligonucleotide probes, can circumvent these

difficulties and streamline the investigation of transcript-level

variations (141).

Conjugating the ‘indexing’ oligonucleotides used in DSP to

single-stranded RNA probes instead of antibodies allows DSP to be

used for the analysis of mRNAs (141). This method has achieved

over 2000-fold mRNA multiplexing, but the detection of above-

background signal for a given transcript requires around 600 copies

of that transcript, and consequently most mRNAs can only be

detected in relatively large (≥ 50 µm diameter) ROIs (140, 156).

seqFISH+ employs primary oligonucleotide probes that each

contain a unique four-region barcode, with each region being

complementary to a single ‘readout probe’ sequence (142).

Imaging consists of four rounds, each with 20 hybridize-image-

strip cycles in which three distinct readout probes, each conjugated

to a different fluorescent dye, are hybridized to regions of the

primary probes (142). Each primary probe’s barcode can be

uniquely identified by the set of three readout probes that

hybridize with it, one during each imaging round, with the final

round used for correcting errors. In a given imaging cycle only 1 in

60 mRNAs is visualized, which minimizes optical crowding and

enables the sub-diffraction limit localization of each mRNA

molecule (142). seqFISH+ has demonstrated 10,000-fold

multiplexing, with a sensitivity greater than that of single-cell

RNA sequencing (scRNA-seq), but like most cyclic or sequential

imaging methods, it requires lengthy workflow times (142).

In spatially-resolved transcript amplicon readout mapping

(STARmap), DNA amplicons are constructed in hydrogel-

embedded tissue through reverse transcription (RT), cDNA

circularization, and rolling circle amplification (RCA), with

primer and padlock probes used to prevent non-specific

amplification (143). Each padlock probe is specific to a single

gene and contains a unique five-base barcode, which can later be

decoded by sequencing with error-reduction by dynamic annealing

and ligation (SEDAL) (143). The degree of multiplexing depends on

barcode length, and thus far 1020-fold multiplexing has been

demonstrated at single-cell resolution, but high degrees of

multiplexing limit STARmap’s sensitivity, due to the difficulty of

optically resolving amplicons that are located in physical proximity

(143). Under ideal conditions, STARmap’s sensitivity is comparable

to that of scRNA-seq.
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Oligonucleotide probes can also be used for the identification of

bacterial taxa, through methods such as HiPR-FISH. In HiPR-FISH,

several probes per interrogated taxon, each specific to the same

unique sequence within that taxon’s rRNA, are first introduced to

the sample (144). Each probe carries two flanking sequences, each

complementary to one of ten fluorescent readout probes, chosen in

such a way that each taxon’s probes collectively contain sequences

complementary to a unique subset of the readout probes. After

hybridization of the readout probes and fluorescence imaging, cells

are segmented and then a machine learning classifier is used to

assign each cell to a taxon based on its emission spectra (144).

HiPR-FISH can potentially differentiate between 1023 distinct taxa

in only one round of imaging, but notably it cannot detect

unexpected or rare taxa for which probes were not designed (144).
4.3 Sequencing-based methods

The second major approach to spatially quantifying mRNA

expression is to employ sequencing, either in situ or after spatially

barcoding transcripts, which enables whole-transcriptomemultiplexing.

With fluorescent in situ sequencing (FISSEQ), sequencing

libraries are constructed in situ through a process of RT, cDNA

circularization, and RCA (145). Cross-linking of aminoallyl dUTP

residues introduced during RT prevents cDNA diffusion. Each

amplicon is sequenced by oligonucleotide ligation and detection

(SOLiD): sequencing primers are annealed, and fluorescently-

tagged oligonucleotides are used to identify every fifth nucleotide

(145). The primer is then stripped and the procedure is repeated

with primers of incrementally shorter lengths, so that all nucleotides

in the sequence are eventually ascertained. FISSEQ operates at

single-cell resolutions, but with low sensitivity, as just ~200

mRNA reads are acquired from each cell (145). FISSEQ is also

relatively slow, as the SOLiD sequencing step requires around 10

days on the microscope.

In spatial transcriptomics (ST), mRNAs are captured from

tissue by oligo(dT)-containing probes that have been affixed to a

slide in an array of 55-100 µm diameter spots (146). The probes in

each spot carry a unique barcode, so that after all captured mRNAs

are pooled and sequenced, individual reads can be assigned to their

spot of origin. This strategy achieves whole-transcriptome

multiplexing at levels of sensitivity comparable to standard next

generation RNA sequencing techniques, but at ~10-cell resolutions

(146). High-definition spatial transcriptomics (HD-ST) is a variant

of ST that achieves significantly higher spatial resolution by affixing

barcoded probes to 2 µm diameter beads, which reside in individual

wells on a slide (147). HD-ST maintains the whole-transcriptome

multiplexing capacity of ST, and operates at resolutions much closer

to those of hybridization-based imaging techniques, but the

decreased area of tissue that corresponds to each well greatly

reduces its RNA capture efficiency and consequently

sensitivity (147).

Slide-seq is a similar sequencing-based method that also relies

upon barcoded oligo(dT)-containing probes (157). Barcoded

probes are affixed to 10 µm diameter beads, which are deposited

on a glass coverslip, and SOLiD is used to map each barcode to the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275890
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cohn et al. 10.3389/fimmu.2023.1275890
corresponding bead (157). The tissue being studied is then

transferred onto the coverslip for mRNA hybridization, after

which the captured mRNA can be pooled and sequenced (157).

The strengths and weaknesses of Slide-seq are similar to those of

HD-ST: it achieves whole-transcriptome multiplexing at a moderate

resolution, but with relatively low sensitivity (roughly 5% of that of

scRNA-seq) (157). Slide-seq has been followed by Slide-seqV2,

which replaces SOLiD encoding with a barcoding scheme that is

more robust to errors and includes an additional second-strand

synthesis step between the reverse transcription of captured mRNA

and PCR, making Slide-seqV2 an order of magnitude more

sensitive (148).

Successful applications of these RNA-interrogating techniques

include investigating intra-patient heterogeneity in the expression of

genes associated with neuroendocrine and androgen receptor activity

in metastatic prostate cancer (156), characterizing the specific cell

subpopulations and phenotypes present at the leading edge of

squamous cell carcinomas (158), and identifying three recurring

types of spatial cellular communities within PDAC tumours, each

with a unique composition of malignant, stromal, and immune cell

subtypes (159). Another recent application was the use of Slide-seqV2

to describe transcriptomic alterations induced by neighbouring cells

in the immune-suppressive TME that promote tumourigenesis of

prostate cancer (160). The authors further combined the spatial data

obtained via Slide-seqV2 with computational approaches to ligand-

receptor pair identification, which enabled them to identify candidate

ligand-receptor pairs that were specifically expressed in neighbouring

cells, and hence uncover a specific axis that contributes to prostate

TME immunosuppression (160).
5 Conclusions

An increasing appreciation for the tremendous inter- and intra-

tumor functional and phenotypic heterogeneity that exists in nearly

every cancer type, both at the tumour and TME levels, underscores

the importance of actualizing the goals of precision medicine for

individual cancer patients. Achieving these goals will require

expanded access to molecular profiling for more patient tumours

and a more complete understanding of what these data mean in the

context of spatially heterogeneous TMEs, including how they

impact therapeutic response. Historically, the widespread use of

mIF and mIHC to interrogate the TME has revealed how the

abundance and degree of infiltration of immune and stromal cells

impact cancer phenotypes. The application of increasingly

sophisticated computational methods to mIF and mIHC data has

shown that non-cell autonomous interactions within the TME,

driven either through direct cell-cell contacts or indirect

mechanisms such as metabolite secretion, greatly influence

cellular functions and ultimately tumour behaviour. These

advances have already led to the development of promising novel

treatment modalities, including immune checkpoint blockade

therapy. Recently developed profiling technologies offer the

multiplexing capacity and the spatial resolution that are needed to

further expand our understanding of tumour biology and
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therapeutic response. Of these technologies, those that are

operable without prohibitive amounts of expertise and that can be

made available to many patients by virtue of low cost or high sample

throughput hold the most potential for effective translation into the

clinic. A combination of increased use of these novel technologies

and computational advances that improve the interpretation of

multiplexed imaging data will give researchers and clinicians the

opportunity to develop and apply treatment protocols tailored to

the unique dynamics of every patient’s TME.
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Glossary

APC antigen-presenting cell

CAF cancer-associated fibroblast

CODEX co-detection by indexing

CRC colorectal cancer

DEI DNA-Exchange-Imaging

DSP digital spatial profiling

ECM extracellular matrix

FISSEQ fluorescent in situ sequencing

HD-ST high-definition spatial transcriptomics

ICB immune checkpoint blockade

LPS lipopolysaccharide

MDSC myeloid-derived suppressor cell

MIBI multiplexed ion beam imaging

mIF multiplex immunofluorescence

mIHC multiplex immunohistochemistry

NSCLC non-small cell lung cancer

OSCC oral squamous cell carcinoma

PDAC pancreatic ductal adenocarcinoma

RCA rolling circle amplification

ROI region of interest

RT reverse transcription

SABER signal amplification by exchange reaction

SCFA short-chain fatty acid

scRNA-
seq

single-cell RNA sequencing

SEDAL sequencing with error-reduction by dynamic annealing and
ligation

SOLiD sequencing by oligonucleotide ligation and detection

ST spatial transcriptomics

STARmap spatially-resolved transcript amplicon readout mapping

TAM tumour-associated macrophage

Tfh T follicular helper

TLS tertiary lymphoid structure

TME tumour microenvironment

TIME tumour immune microenvironment

TNBC triple-negative breast cancer

Treg regulatory T cell.


	Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging
	1 Introduction
	2 Non-cell autonomous interactions within tumors
	2.1 Non-cell autonomous interactions mediated by cell-cell contact
	2.2 Influence of cell-cell contacts on immunotherapy response
	2.3 Non-cell autonomous interactions mediated by intermediaries
	2.4 Generation of pro-tumour metabolite profiles in the TME

	3 Emerging approaches for quantifying cell-cell interactions
	4 Advantages and applications of highly-multiplexed imaging technologies
	4.1 Antibody-based methods
	4.2 Oligonucleotide probe-based methods
	4.3 Sequencing-based methods

	5 Conclusions
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References
	Glossary


