
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Junji Xing,
Houston Methodist Research Institute,
United States

REVIEWED BY

Francesco Vallania,
Freenome Inc, United States
Marina Yurieva,
Jackson Laboratory, United States

*CORRESPONDENCE

James F. Read

James.Read@Telethonkids.org.au

Anthony Bosco

abosco@arizona.edu

RECEIVED 10 August 2023

ACCEPTED 04 October 2023
PUBLISHED 17 October 2023

CITATION

Read JF, Serralha M, Armitage JD,
Iqbal MM, Cruickshank MN, Saxena A,
Strickland DH, Waithman J, Holt PG and
Bosco A (2023) Single cell transcriptomics
reveals cell type specific features of
developmentally regulated responses
to lipopolysaccharide between
birth and 5 years.
Front. Immunol. 14:1275937.
doi: 10.3389/fimmu.2023.1275937

COPYRIGHT

© 2023 Read, Serralha, Armitage, Iqbal,
Cruickshank, Saxena, Strickland, Waithman,
Holt and Bosco. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 17 October 2023

DOI 10.3389/fimmu.2023.1275937
Single cell transcriptomics
reveals cell type specific features
of developmentally regulated
responses to lipopolysaccharide
between birth and 5 years
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4Genomics WA, Joint Initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research
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Background: Human perinatal life is characterized by a period of extraordinary

change during which newborns encounter abundant environmental stimuli and

exposure to potential pathogens. To meet such challenges, the neonatal

immune system is equipped with unique functional characteristics that adapt

to changing conditions as development progresses across the early years of life,

but the molecular characteristics of such adaptations remain poorly understood.

The application of single cell genomics to birth cohorts provides an opportunity

to investigate changes in gene expression programs elicited downstream of

innate immune activation across early life at unprecedented resolution.

Methods: In this study, we performed single cell RNA-sequencing of

mononuclear cells collected from matched birth cord blood and 5-year

peripheral blood samples following stimulation (18hrs) with two well-

characterized innate stimuli; lipopolysaccharide (LPS) and Polyinosinic:

polycytidylic acid (Poly(I:C)).

Results: We found that the transcriptional response to LPS was constrained at

birth and predominantly partitioned into classical proinflammatory gene

upregulation primarily by monocytes and Interferon (IFN)-signaling gene

upregulation by lymphocytes. Moreover, these responses featured substantial

cell-to-cell communication which appeared markedly strengthened between

birth and 5 years. In contrast, stimulation with Poly(I:C) induced a robust IFN-

signalling response across all cell types identified at birth and 5 years. Analysis of

gene regulatory networks revealed IRF1 and STAT1 were key drivers of the LPS-

induced IFN-signaling response in lymphocytes with a potential developmental

role for IRF7 regulation.
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Conclusion: Additionally, we observed distinct activation trajectory endpoints for

monocytes derived from LPS-treated cord and 5-year blood, which was not

apparent among Poly(I:C)-induced monocytes. Taken together, our findings

provide new insight into the gene regulatory landscape of immune cell

function between birth and 5 years and point to regulatory mechanisms

relevant to future investigation of infection susceptibility in early life.
KEYWORDS

single cell genomics, scRNA-Seq, toll-like receptors, lipopolysaccharide, poly(I:C),
interferon, proinflammatory, cord blood
Introduction

Newborns experience remarkable environmental change as they

transition from a protected, tolerogenic intrauterine environment to

the outside world with an abundance of stimuli and pathogens (1).

The neonatal immune system has evolved unique functional

characteristics suited to the challenges of perinatal life (2). For

example, neonatal myeloid cell cytokine production is skewed to

promote Th2 and Th17 responses, while those that promote Th1 and

Type I interferon (IFN) responses are attenuated (3–7). Within the

lymphoid compartment, neonatal T cells arise from distinct

hematopoietic stem cell populations (8), express more broadly

reactive T cell receptors (9, 10), display distinct epigenetic

patterns (11, 12), and exhibit impaired memory capacity (13, 14)

compared to adult counterparts (2). Importantly, cord blood-

derived T cells demonstrate enhanced responses to innate

immune signals (2), including those associated with activation of

the Toll-like Receptor (TLR) family (15, 16). Despite these

functional adaptions, newborns are nonetheless highly susceptible

to developing severe disease following microbial infections.

Innate immune responses are triggered by the binding of

evolutionarily conserved pathogen-associate molecular patterns

(PAMPs) to germline encoded pathogen recognition receptors

(PRRs) of the innate immune system. The Toll-Like Receptor

(TLR) family are the most well characterized PRRs, and are

expressed on the cell surface (e.g., TLRs 1, 2, 4, 5, 6) or in

intracellular endosomes (e.g., TLRs 3, 7, 8) (17). Cell surface

TLRs bind to bacterial cell membrane/wall components and viral

proteins, whereas the intracellular TLRs bind to nucleic acids (17).

Downstream signalling of TLR activation is predominantly

mediated by either Myeloid differentiation factor 88 (MyD88)

and/or Toll-Interleukin 1 Receptor-domain-containing adapter-

inducing IFN-b (TRIF) (17, 18). TLR-signaling induces

subsequent effector gene expression programs following

engagement of specific transcription factor (TF), including

Nuclear Factor kappa-B (NF-kB) and members of the IFN

Regulatory Factor family (e.g. IRF3/7) (17, 18), resulting in the

promotion of proinflammatory (e.g. IL-1b, IL-6) and Type I IFN/

antiviral (IFNa/b) response programs, respectively (17–20). TLR4

media te s immune responses fo l lowing de tec t ion of
02
lipopolysaccharide (LPS), a cell wall component of Gram-negative

bacteria. Uniquely among TLRs, TLR4 ligation triggers both the

MyD88-dependent proinflammatory and TRIF-dependent Type I

IFN response pathways (17). TLR3 recognises viral RNA and

triggers TRIF-dependent Type I IFN production (17, 18).

Innate immunity has traditionally been viewed as a first line of

defence capable of responding rapidly and non-specifically to

pathogen encounters that lacks memory and therefore cannot

mediate resistance to reinfection. This view has been challenged

by the demonstration that exposure to vaccines, infections, or

microbial products can induce prolonged epigenetic and

functional changes in innate immune cells that provide enhanced,

non-specific protection to subsequent encounters with the same

pathogen or an unrelated pathogen (21). This evolving view of early

life immunity provides motivation for more studies to further our

understanding of how innate immune function at birth is

programmed during the first years of life, a crucial period of

heightened plasticity and window of susceptibility for the

development of chronic diseases. The advent of single cell

genomics enables a deeper understanding of the cell type specific,

stimuli specific, and age-related changes that underlie the

development and regulation of innate immune function in early

life. Here, we deploy these powerful tools to analyse matched cord/

peripheral blood mononuclear cell (C/PBMC) samples collected at

birth and five years of age from two donors to provide a unique level

of insight into the developmental regulation of innate immune

function at birth versus early childhood at single cell resolution.
Materials and methods

Study subjects

The study was designed to assess matched birth (CBMC) and 5

years (PBMC) blood samples following LPS and Polyinosinic:

polycytidylic acid (Poly(I:C)) treatment, along with matched

untreated controls, from two donors (one male, one female). The

samples were curated from the Childhood Asthma Study (CAS)

cohort, a prospective birth cohort described previously (22). Cord

blood samples were collected from healthy, full-term, singleton
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births. Matched 5-year samples were collected from the same donor

by home visit close to their 5th birthday. Ethics was approved by The

University of Western Australia (reference RA/4/1/7560), and fully

informed parental consent was obtained for each subject.
In vitro cell culture and innate
immune stimulation

Cryopreserved CBMC/5yr PBMC samples were thawed and

stimulated with 1ng/ml LPS (Enzo Biochem) or with 50mg/ml Poly

(I:C) (InvivoGen), alongside an untreated control, and culture

plates were incubated at 37°C (5% CO2) for 18 hours (Extended

Methods). LPS is a bacterial cell wall component and a

quintessential TLR4 ligand (23). Poly(I:C) is a synthetic analogue

of double-stranded RNA (dsRNA) and a potent activator of TLR3

and other viral nucleic acid sensing receptors (24). Each

cryopreserved sample was cultured separately so that matched

stimuli/control samples were processed alongside each other in a

batch. Following cell culture, samples were re-suspended at target

concentration of 2000 cells/ml. Post-culture viability is recorded in

Table S1.
Library preparation and sequencing

Single cells were processed on Chromium using the Chromium

Next GEM Single Cell 3’ Kit v3.1 (4 reactions, PN-1000269, 10X

Genomics) on Chip G (PN-1000127, 10x Genomics) according to

the manufacturer’s protocol with targeted recovery of 5,000 cells per

channel. Libraries were sequenced on the NovaSeq 6000 platform in

a single batch.
Alignment and initial quality control

Raw fastq.qz files were processed with the CellRanger Toolkit

(Version 6.1.1, 10x Genomics) and the Human GRCh38 genome

assembly (refdata-gex-GRCh38-2020-A) was used as the reference

genome. The CellRanger count pipeline was run with standard

parameters. CellRanger web_summary outputs were assessed with

no alerts (warnings or errors) recorded for any sample. Selected

CellRanger outputs are recorded in Table S1; briefly, this project

generated (on average) 5527.17 cells per sample with 63,098.75

mean reads per cell and a median of 1980.17 genes detected per cell,

as estimated by CellRanger. The raw count matrix, and

corresponding barcodes and features, were used for downstream

QC and analysis, and these are available via the Gene Expression

Omnibus (GSE232186).
Sample pre-processing and quality control

Count matrices were imported into the R statistical

environment (version 3.6.2) for quality control (QC) and analysis.

The open-source R toolkit Seurat (version 3.2.0) (25) was primarily
Frontiers in Immunology 03
used for pre-processing and data exploration (Extended Methods).

Briefly, cells/UMIs were excluded if they had low feature counts

(approximately < 2000) according to dynamic thresholding of the

count distribution or if their mitochondrial gene content was

greater than three median absolute deviations (MADs) above the

median. Features were filtered to only those expressed in at least

0.01% of cells. Doublets were detected and removed with

DoubletFinder (26) and the cell cycle phase was estimated with

the CellCycleScoring function (Seurat) using known cell cycle

related genes. Pre-processing and quality control metrics are

recorded in Table S1.
Integration, annotation, and
dimensionality reduction

Seurat (25) was used to integrate individual pre-processed

samples (Extended Methods). Briefly, 2,000 anchors were

identified with the FindIntegrationAnchors function with

k.anchor = 5, reduction = “rpca”, and dims = 1:30. These anchors

were input into the IntegrateData function to integrate the data.

Individual cells were annotated with Azimuth (27) which provides

reference-based mapping to unbiasedly annotate scRNA-Seq

profiles. The human PBMC reference data set was used as the

reference; a CITE-seq dataset with gene expression for hundreds of

thousands of cells alongside a large panel of antibodies to accurately

identified cell types present in the PBMC (27). The level 2 cell type

resolution was used, and cells were excluded if they had a score less

than 0.5. Uniform Manifold Approximation and Projection

(UMAP) was employed for dimensionality reduction. First, the

integrated data set was scaled and centered with the ScaleData

function, and the first 30 principal components were calculated with

the RunPCA function. Although non-linear dimensionality

reduction methods such as UMAP are widely used to visualize

relationships between cells within high dimensional data in 2-

Dimensional space (e.g., cell type clusters), these methods often

do so at the cost of preservation of the local and/or global structure

of the data (28). We tested whether the plots generated from our

UMAP analysis were robust to different values of two of the most

influential parameters, the number of nearest neighbors

(n.neighbors) and the minimum distance (min.dist) between cells.

Plots were created with combinations of nearest neighbour values of

5, 10, 15, 20, 30, 40, 50 and minimum distance values of 0.1, 0.2, 0.3,

0.4, and 0.5. These values were chosen as they span the suggested

values for these parameters. The UMAP plot with nearest

neighbour value 20 and a minimum distance values of 0.3 was

selected as a representative to display integrated cell type clustering

with Azimuth annotations, group variables, and marker gene

expression intensities.
Differential gene expression and
pathways analysis

To identify differentially expressed genes (DEGs) between LPS/

Poly(I:C) and corresponding unstimulated controls for each cell
frontiersin.org
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type, we employed MAST (29) via the FindMarkers function from

Seurat, and included cellular detection rate, mitochondrial gene

proportion, and cell cycle phase as covariates. As each donor

represents a different biological sex (male, female), this variable

was also included as a latent variable. This approach was selected to

accommodate our small sample size (two biological donors) (See

Extended Methods). Genes were considered differentially expressed

if they recorded a Bonferroni-corrected p value less than 0.01 and an

average Log2 fold-change in expression greater than 0.25

(upregulated) or less than -0.25 (downregulated). To assess

whether a discrepancy between the number of CD14+ monocytes

from each donor impacted the differential expression analysis, we

randomly selected an even number of CD14+ monocytes (1,000 per

donor) from each donor and applied MAST analysis as above.

Significantly enriched pathways associated with DEGs between cell

type/stimuli groups were identified with enrichR (30) in R to query

biologically relevant annotated gene sets from the Reactome (31),

KEGG (32), and Gene Ontology (33) databases.
Pseudotime trajectory inference

We applied Monocle3 (34) to infer stimuli-related activation

trajectories from transitional cellular states present in the data

(Extended Methods). For each analysis, only the raw counts from

cells relevant to that comparison (e.g., CBMC/5yr PBMC untreated

and LPS-treated monocytes) were included. Regions enriched with

unstimulated controls were selected as pseudotime start points so

that trajectories extended into stimuli-activated regions.
Gene Regulatory Network (GRN) analysis
and in silico perturbations

We employed CellOracle (35) (version 0.12.0) to build GRNs

and identify key TF drivers and their corresponding target genes for

selected cell type/stimuli groupings. For this analysis, SCANPY (36)

(1.9.3) was used for pre-processing and force directed graph

construction and CellOracle was run with Python (3.10.6) on

Ubuntu 22.04.1 (Extended Methods). The dataset was filtered to

include the top 3000 most variable genes for each comparison, and

the data was normalized, log transformed and scaled (Extended

Methods). Separate analyses were run from raw counts for each cell

type/stimuli comparison and group specific GRNs were constructed

from the base Human promoter GRN provided, and the Monocle3-

defined pseudotime values for each cell were included for analysis.

GRNs were used to perform in silico TF perturbations of IRF1,

IRF7, and STAT1 to simulate the changes in cellular states after

nullifying the regulatory effects of these TFs.
Ligand-receptor interaction analysis

We employed CellCall (37) to identify putative ligand-receptor

(L-R) communication between selected cell types following LPS-

and Poly(I:C)-induced activation. For each stimuli/age comparison,
Frontiers in Immunology 04
the genes were filtered to the top 3000 most variable genes

(compared to untreated control) and single cell profiles were

restricted to selected cell types of interest. Raw counts were use as

input and the transcriptional communication profile was

constructed with the TransCommuProfile function. The LR2TF

function was used to extend the analysis by capturing putatively

activated TFs downstream of receiver cell receptor binding of

sender cell ligands for reciprocal communication between CD14+

monocytes and naïve CD4+ T cells.
Results

Cord and 5yr blood-derived single cell
transcriptomic profiles display age-related
compositional differences

We cultured matching CBMC and 5yr PBMC samples from two

donors in the presence or absence of LPS or Poly(I:C) and generated

single cell transcriptomic profiles (n=12) to investigate the immune

responses elicited. Following pre-processing and quality control,

57,908 single cells were included for downstream analysis (mean =

4826.7 cells per sample) with an average of 7400.4 counts and

2190.3 genes detected per cell (Table S1).

CD4+ naive and central memory T cells, NK cells, naïve B cells,

CD8+ naïve T cells, and CD14+ monocytes had the greatest cell

numbers of the 28 cell types detected with Azimuth reference-based

annotation mapping (27) (Figure 1A). The contribution of cell

numbers was generally comparable between donors, although some

variation was present among some cell types (e.g., Donor 1 had

1,127 CD14+ monocytes whereas Donor 2 had 2,470) (Figures S1A–

C). Negligible cell numbers were detected for several cell types (e.g.,

dendritic cells subsets, plasmablasts, and platelets) (Figure 1A), and

these were not considered in downstream analysis. We performed

UMAP analysis of the integrated data set to visualize the single cell

gene expression profiles in lower dimensional space. This analysis

demonstrated clustering according to the major immune subsets,

displaying prominent populations of CD4+ and CD8+ T cells, B

cells, NK cells, and monocytes, alongside a smaller population of

hematopoietic stem and progenitor cells (HSPC) (Figure 1B). As,

expected, HSPCs were more prominent among CBMC samples and

memory B cells were largely restricted to 5yr PBMC samples

(Figures 1A, C, S1C). Several T cell subtypes, including gdT cells

and MAIT cells, also had greater cell counts at 5 years compared to

birth, although they were rare or non-existent among Poly(I:C)

treated samples (Figurea 1A, C, S1C). Analysis of the estimated cell

cycle phase indicated that the majority of monocytes were in G1

phase and the majority of HSPCs were in S phase (Figure S1C).

Plotting the expression intensity of canonical cell type marker genes

over the UMAP coordinates confirmed Azimuth annotation of the

major mononuclear cell subtypes (Figure S1D). To assess whether

our UMAP analysis was robust to a range of parameters, we

generated UMAP plots with several combinations of two of the

most influential parameters, the number of nearest neighbors and

the minimum distance between cells, and the clustering was

generally comparable between plots (Figure S2).
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Differential expression analysis reveals
an LPS-specific division of labor
among myeloid and lymphoid
immune cell compartments

To investigate changes in gene expression following in vitro

exposure to LPS and Poly(I:C) we employed MAST (29) analysis to

identify DEGs (Log2FC > |0.25| and Bonferroni-corrected p < 0.01)

between stimulated cells and corresponding unstimulated controls

for each cell type. In general, changes in gene expression magnitude

induced by Poly(I:C) were greater than LPS for both CBMC and 5yr

PBMC samples (Figures 2A, B, S3A, B). Genes encoding

proinflammatory cytokines, such as IL1B and CXCL8, were

prominently upregulated by monocytes following LPS stimulation

of CBMCs, and this proinflammatory gene expression signature

strengthen at 5 years of age (Figures 2A–C, S3A). Additionally,

there was a marked increase in the number of DEGs by CD16+

monocytes between CBMC and 5yr PBMC samples (Figures 2A, B,

S3A). Interestingly, HSPCs demonstrated a substantial gene

expression response to stimuli at birth with a distinctive LPS-

induced transcriptional profile – which includes CXCL8 and

CXCL13 – compared to the IFN-related Poly(I:C)-stimulated HSPC

profile (Figures 2A, B, S3B). Strikingly, several CBMC-derived T and

B cell subsets exhibited upregulation of IFN-related genes, such as

IRF1 and STAT1, following LPS stimulation at birth (Figures 2A, C,

S3A). Furthermore, we found that IFN-related genes exhibited
Frontiers in Immunology 05
enhanced upregulation in lymphocytes isolated from LPS-treated

5yr PBMCs compared to LPS-treated CBMCs (Figures 2A–C, S3A).

Individual volcano plots of the LPS-induced gene expression

comparisons for naïve CD4+ T cells and CD14+ monocytes are

shown in Figure 2C to highlight the elevated upregulation of IFN-

related genes by CD4+ T cells at 5yrs compared to birth and the

substantial proinflammatory monocyte response (Figure 2C). In

contrast to the LPS-stimulated samples, Poly(I:C) induced a strong

IFN-mediated response in all cell types in the CBMC and 5yr PBMC

samples, exemplified by upregulation of IFN Stimulated Gene 15

(ISG15) (Figures 2A, B, S3A). Assessment of the overlap of

upregulated genes showed approximately twice as many genes were

conserved between CBMC and 5yr PBMC responses to Poly(I:C)

compared to LPS (Figure S3C). Differential gene expression results

for all cell types and comparisons have been compiled together and

are presented in the Supplementary Data. As mentioned above,

Donor 2 contributed substantially more CD14+ monocytes to the

data set than Donor 1. To assess whether this discrepancy impacted

the differential expression analysis, we randomly selected 1,000

CD14+ monocytes from each donor and re-run the analysis. The

results show a substantial overlap (~90%) between the top

dysregulated genes (ordered by adjusted-p value) identified for the

analysis of all CD14+monocytes and the randomly selected (n=1,000/

donor) subset (Figure S4).

Overall, the differential expression analysis demonstrates that

LPS treatment of mononuclear cells induces contemporaneous
A

B

C

FIGURE 1

Overview of single cell RNA-Seq profiles generated. (A) Heatmap showing the number of cells identified for each Azimuth-annotated cell type,
stratified by stimuli/age group. The final row of indicates the total number of cell detected for that cell type. (B) UMAP plot generated from the
integrated data, overlaid with Azimuth annotations. (C) Stacked bar plot demonstrating the proportional contribution of cell numbers among stimuli/
age groups.
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upregulation of classical proinflammatory genes by monocytes and

IFN-related genes by lymphocytes. Furthermore, these partitioned

responses show apparent strengthening between samples collected

at birth and 5 years of age. Importantly, matched samples treated
Frontiers in Immunology 06
with Poly(I:C) demonstrated uniform upregulation of IFN-related

genes across all cell types with a comparable number and change in

expression magnitudes of dysregulated genes between birth and

5 years.
A

B
C

FIGURE 2

Differential expression analysis between stimulated samples and matched unstimulated controls. (A) Aligned volcano plots displaying differentially
expressed genes compared to unstimulated controls for the LPS-stimulated CBMC (i), LPS-stimulated 5-year PBMC (ii), Poly(I:C)-stimulated CBMC
(iii), and Poly(I:C)-stimulated 5-year PBMC (iv) comparisons. Each point represents a differentially expressed gene (Adjusted-p value < 0.01
(Bonferroni correction), average Log2FC > 0.25) ordered by decreasing Bonferroni corrected p value and stratified by cell type (x-axis). The left y-axis
corresponds to points on the plots and shows the average Log2 fold change for that gene/cell type. The right y-axis corresponds to dashed black
line and represents the -Log10 Bonferroni corrected p value. Solid red line (blue line) represents an average Log2 fold change of 0.25 (-0.25).
(B) Heatmap showing the number of significant differentially expressed genes that were upregulated (i) and downregulated (ii) for each group compared
to their corresponding unstimulated control. Columns correspond to the age/stimuli group, where cord refers to CBMC samples and 5yr refers to 5yr
PBMC samples. Increased color intensity corresponds to a greater number of differentially expressed genes for that comparison and comparison with
insufficient cell numbers for analysis a denoted as not applicable (grey). (C) Volcano plots of the comparison of LPS versus unstimulated control of naïve
CD4+ T cells from CBMC (i) and 5yr PBMC (ii) samples, and CD14+ monocytes from CBMC (iii) and 5yr PBMC (iv) samples. The x-axis shows the average
log2 fold change and the y-axis shows the -Log10 Bonferroni-corrected p value. The dashed grey line indicates a Bonferroni-corrected p value of 0.01.
Points colored red and blue represent gene with are considered significantly upregulated and downregulated, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275937
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Read et al. 10.3389/fimmu.2023.1275937
IFN-signaling pathways are activated by
LPS in lymphocytes at birth and
intensify by 5 years

We leveraged the Reactome (31), KEGG (32), and Gene

Ontology (33) databases to determine significantly enriched

biological pathways from our DEG lists. LPS-induced upregulated

genes from CBMC-derived naïve CD4+ T cells exhibited

enrichment of cytokine signaling pathways, including IFN-

signaling, among several immune-related pathways (Figure 3A).

At 5 years, IFN-related pathways were among the dominant

pathways identified from upregulated genes of LPS-induced naïve

CD4+ T cells (Figure 3A), aligning with the findings from our

differential expression analysis. Comparable results were observed

for naïve B cells, naïve CD8 T cells, and NK cells (Figures S5A, B).

Upregulated genes from LPS-induced CD14+ monocytes exhibited
Frontiers in Immunology 07
similar pathways enrichment from CBMC and 5yr PBMC samples,

including several pathways associated with antibacterial responses

and specific LPS response pathways (Figure 3B). IFN-related

pathways dominated the significantly enriched results from the

upregulated gene lists for all cell types detected from Poly(I:C)-

treated CBMC and 5yr PBMC samples (Figures S5C–E).

Taken together, analysis of DEGs and pathways enrichment

suggests that the immune response to Poly(I:C), and thus some viral

pathogens, is to some degree hardcoded at birth to elicit a

substantial IFN-mediated response from all immune cell types,

and this biological feature remains relatively unchanged at 5 years

of age. In contrast, LPS-induced CBMC/PBMCs demonstrate a

division of labour whereby cells of the myeloid immune

compartment express proinflammatory genes commonly

associated with antibacterial responses at birth and age 5 whilst

lymphocytes upregulate detectable quantities of IFN-signaling
A

B

FIGURE 3

Pathway analysis of differentially expressed genes. (A) Horizontal bar plots of significantly enriched pathways from upregulated genes found for the
comparison of CD4+ naïve T cells stimulated with LPS versus corresponding unstimulated control from CBMC (i) and 5yr PBMC (ii) samples. (B)
Horizontal bar plots of significantly enriched pathways from upregulated genes found for the comparison of CD14+ Monocytes stimulated with LPS
versus corresponding unstimulated control from CBMC (i) and 5yr PBMC (ii) samples. For the above plots, the x-axis shows the -Log10 adjusted-p
value associated with pathways enrichment, the dashed red line indicates an adjusted-p value of 0.001. Results are ordered from top by decreasing
adjusted-p value for significantly enriched pathways identified from the Reactome, KEGG, and Gene Ontology (GO) databases. BP, Biological
Process; MF, Molecular Function; CC, Cellular Compartment.
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related genes/pathways at birth, which demonstrate a subsequent

and substantial increase in prominence, and presumably function,

at 5 years of age.

Following our primary analysis of gene expression above,

we focussed our subsequent secondary analysis of inferred

activation trajectories, gene regulatory networks, and ligand-

receptor interactions on CD14+ monocytes and naïve CD4+

T cells as exemplars of the myeloid and lymphoid immune

compartment, respectively.
Pseudotime mapping of cell differentiation
trajectories demonstrates cell type- and
age-specific immune activation

The various intermediary cellular states captured by single cell

transcriptomics can be used to infer pseudotime trajectories and

reconstruct biological processes (38). For this purpose, we

employed monocle3 (34) to infer dynamic trajectories underlying

LPS and Poly(I:C) activation of CD14+ monocytes and naïve CD4+

T cells in CBMC and 5yr PBMC samples. Our analysis shows that

CD14+ monocytes from unstimulated CBMC and 5yr PBMC

control samples cluster together, indicating that baseline

expression is relatively similar at birth and in early childhood

(Figure S6A). However, stimulation with LPS promotes distinct

activation endpoints with respect to the age at which the sample was

collected (Figure S6A). In contrast, treatment with Poly(I:C)

produces a single activation trajectory for CD14+ Monocytes

isolated from CBMC and 5yr PBMC samples (Figure S6B). The

unstimulated controls from CBMC- and 5yr PBMC-derived naïve

CD4+ T cells cluster separately suggesting distinct baseline profiles,

and subsequently produced distinct activation states following LPS

treatment (Figure S6C). Similar trajectory characteristics were

observed for CD8+ T, B, and NK cells stimulated with LPS

(Figures S6D–F), although there was minimal distinction between

LPS-treated and control B and NK cells from CBMC samples –

likely explained by their relatively small gene expression change

following LPS-activation. Gene expression profiles from T, B, and

NK cells treated with Poly(I:C) exhibited a stimuli effect

substantially greater than the difference between the CBMC and

5yr PBMC responses, resulting in the inability to fit a biologically

meaningful trajectory to the data (Figure S6F). Summarizing the

above analysis, these results indicate that LPS-treated CD14+

monocytes may exhibit distinct age-related (CBMC/5yr PBMC)

activation branches from common baseline profiles, whereas CD4+

naïve T cells exhibit distinct age-related baseline profiles and

subsequent activation trajectories.
Gene regulatory network analysis identifies
IRF1 and STAT1 as key regulators of LPS-
induced lymphocyte response

Genes are expressed by the coordinated action of cis-regulatory

elements and TFs. Construction of context specific Gene Regulatory

Networks (GRN) allows investigation of the relationship between
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TFs and their target genes (TGs). To this end, we constructed

context-specific GRNs with CellOracle (35) to identify predicted

TFs which act as putative master regulators of the innate immune

responses investigated in this study. This approach identified the

key IFN-signaling drivers STAT1, IRF1, and IRF7 among the top

TFs identified from LPS-induced naïve CD4+ T cell isolated from

CBMC samples (Figure 4A). Furthermore, STAT1 and IRF1 were

the top regulators of the 5yr naïve CD4+ T cell response to LPS,

using eigenvector centrality as the metric. Indeed, these TFs were

among the top regulators of all LPS-induced lymphocytes assessed

in this study from CBMC and 5yr PBMC samples, and this result

was consistent across metrics used to assess the GRN (eigenvector,

betweenness, or degree centrality) (Figures S7A–D). Several known

mediators of myeloid inflammation (e.g., FOS, JUN, ATF3) were

identified as the key regulators of the LPS-induced monocyte

responses (Figure S7E).

As we previously identified IFN-related genes and pathways

characterized the lymphocyte response to LPS, we further

investigated the role of IRF1, IRF7, and STAT1, alongside related

TF STAT2, within our experimental context. We used Venn

diagrams to visualize the overlap of all target genes with

significant connections (p value < 0.01) to these TFs (Figures 4A,

B). This analysis demonstrated similar overlap in target genes

between CBMC- and 5yr PBMC-derived naïve CD4+ T cells

stimulated with LPS. Additionally, IRF1 and STAT1 accounted

for approximately 90% of TG connections and the response

network was independent of STAT2 activity (Figures 4A, B). We

next plotted wiring diagrams of the top 100 TG connections for the

selected TFs to assess the relationships among the most strongly

regulated interactions (Figurez 4A, B). IRF1 and STAT1 were

strongly connected to each other, reflecting the functional

association of IRF1 with STAT1 homodimers (39), and STAT1

demonstrated the greatest number of connections for LPS-induced

naïve CD4+ T cells birth and 5 years (Figures 4A, B). Interestingly,

IRF7, which was only peripherally connected at birth, integrates

more strongly with STAT1 and IRF1 via IFN-related TGs (e,g.,

ISG15, IFIT3, IFI6) at 5 years (Figures 4A, B). IRF1, IRF7, STAT1,

and STAT2 were consistently among the top drivers of the Poly(I:

C)-induced lymphocyte response following identical analysis

(Figures S8A–D). The overlap of significantly connected TG was

similar between Poly(I:C)-induced naïve CD4+ T cells from CBMC

and 5yr PBMC samples and the contribution of STAT2 stands in

stark contrast to its absence in the corresponding LPS response

analysis (Figures 4C, D). Additionally, wiring diagrams of the most

connected TG were dominated by the interaction between IRF7,

STAT1, and STAT2 and IFN-associated target genes, and this was

comparable between birth and 5 years of age (Figures 4C, D).

A core functionality of CellOracle is the ability to perform in

silico perturbations to simulate TF knock-out and assess the

outcome on cellular states (35). Simulated knock-out of IRF1 or

STAT1 results in a reversal of the activation trajectory of LPS-

induced naïve CD4+ T cells from CBMC and, to a lesser extent, 5yr

PBMC samples, whereas knock-out of IRF7 primarily affects 5yr

PBMC-derived samples (Figure S9), aligning with inferences from

the corresponding wiring diagrams (Figures 4A, B). These findings

demonstrate that IRF1 and STAT1 are central drivers of the
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lymphocyte response to LPS in early life and suggest an important

developmental role for IRF7.
Ligand-receptor interaction analysis reveal
dynamic immune cell crosstalk patterns at
birth and 5 years

PAMP recognition by PRRs provokes downstream production

of effector ligands by activated immune cells. These ligands enact

subsequent intercellular communication by binding to their cognate

receptors on other immune cells, prompting a signal cascade which

mediates downstream transcription factor activity. We employed

CellCall (37) to predict cell-cell communication pairings and

capture putative signaling cascades following LPS- or Poly(I:C)-

induced activation of selected cell types in this study. This approach
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revealed complex interconnectedness within lymphoid subsets and

between lymphoid subsets and monocytes from stimulated samples

(Figure 5A). HSPCs also demonstrated ligand-receptor pairing

(Figure 5A), suggesting they participate in the CBMC response to

stimuli investigated in this study. Interestingly, receptors of several

5yr PBMC-derived lymphocyte subsets (e.g., naïve CD4+ and CD8+

T cells) recorded limited or absent incoming signals, which were

active in corresponding CBMC-derived samples (Figure 5A).

We next focussed on the receptor-ligand interactions between

LPS-induced naïve CD4+ T cells and CD14+ monocytes. At birth,

CD4+ T cell-associated cytokine and growth factor ligands (e.g.,

IFNG, IL1A/B, PDGFA) were identified as inducers of several TFs,

including the activating protein-1 (AP-1) TF complex members

FOS and JUN [Figure 5B(i)]. JUN and FOS are also predicted to be

activated by naïve CD4+ T cell ligands in CD14+ monocytes at 5

years, and there is prominent additional signaling from suite of
A B

D

C

FIGURE 4

Identification of master regulators of in vitro stimulation responses of CBMC- and 5yr PBMC-derived naïve CD4+ T cells. (A, B) Output plots from
CellOracle (34) network analysis showing transcription factors and target genes ranked by eigenvector centrality for LPS-induced naïve CD4+ T cells
(i) isolated from CBMC (A) and 5yr PBMC (B) samples (panels continue downward). Venn diagrams (ii) depict the overlap in target genes between the
selected IFN-related transcription factors identified in the CellOracle analysis for the corresponding analysis above; all target genes which were
significantly associated (p value < 0.01) with one of the IFN-related TFs were included in the analysis. TF-TG wiring diagrams (iii) illustrate the
interrelationship between the selected IFN-related TF and the top 100 connections to target genes by connection strength (absolute coefficient) for
the corresponding analysis above. The regulators (TFs) are identified by black text and target genes are identified by grey text. Red connections
indicate positive relationships (increased TG activity) and blue connections indicate a negative relationships (suppressed TG activity). The width of the
connecting line illustrates relative strength with the network shown. (C, D) Venn diagrams (i) and TF-TG wiring diagrams (ii) for the analysis of Poly(I:
C)-induced naïve CD4+ T cells isolated from CBMC (C) and 5yr PBMC (D) samples. Analysis and plotting parameters are identical to those used for
the LPS-induced response shown in (A) and (B).
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chemokine (e.g., CCL1-5) promoting FOXO3 activity [(Figure 5B

(ii)]. Analysis of the reverse direction identified interactions

between CD14+ monocytes ligands, including CCL chemokines,

IFNG, and IL6, and naïve CD4+ T cell receptors, all of which

putatively induced STAT1 activity which may in part explain the
Frontiers in Immunology 10
STAT1 prominence within the LPS-induced naïve CD4+ T cell

regulatory networks observed in Figure 4. No interactions from

CD14+ monocyte ligands to naïve CD4+ T cell receptors were

detected for 5-year PBMC samples from this analysis. Taken

together, these intracellular signaling analyses reveal complex
A

B

FIGURE 5

Cell-to-cell communication and subsequent transcription factor activation. (A) Circos plots of ligand-receptor communication for selected cell types
for LPS-stimulated CBMC (i) and 5yr PBMC (ii) samples and Poly(I:C)-stimulated CBMC (iii) and 5yr PBMC (iv) samples. Cell type ligands are
represented by black bars, cell type receptors are represented by grey bars, and the strength of the signal is represented by the color intensity. (B)
Sankey plots demonstrating the cell-to-cell communication from ‘sender’ cell ligands (left column) to ‘receiver’ cell receptors (central column) and
the subsequent transcription factor putatively activated from the ligand-receptor interaction (right column). Plots shows the communication from
naïve CD4+ T cells to CD14+ monocytes for LPS-induced CBMC (i) and 5yr PBMC (ii) samples, and the reverse communication (CD14+ monocytes to
naïve CD4+ T cells) for LPS-induced CBMC samples (iii). TF, Transcription factor.
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ligand-receptor interactions between immune cell types isolated

from CBMC and 5yr PBMC samples treated with LPS and Poly(I:

C), and that the relationship of these interactions are subject to

change between birth and 5 years of age.
Discussion

The neonatal immune system exhibits unique functional

characteristics that are tailored to the challenges of perinatal life

(40). Here, we employed single cell RNA-Seq to deeply profile

innate immune responses to Poly(I:C) and LPS in longitudinally

matched CBMC/PBMC samples collected from two donors at birth

versus age five years. We found that Poly(I:C) induced a robust

response across all cell types regardless of age. In contrast, LPS

responses were constrained at birth at which point they were largely

restricted to monocytes and HSPCs. Moreover, we observed a

division of labour in the LPS responses, where monocytes/HSPC

upregulated proinflammatory molecules whereas lymphocyte

populations elicited IRF1/STAT1-mediated IFN-signaling

pathways. Importantly, these responses exhibited substantial

intercellular crosstalk and markedly strengthened between birth

and age 5 years. Finally, we observed distinct activation/response

trajectory endpoints inferred for CBMC- and PBMC-derived

monocytes stimulated with LPS, and this was not apparent

among samples exposed to Poly(I:C). Despite the size of our

study, these findings offer proof-of-principle feasibility to capture

cell type-specific and context-specific gene regulatory programs that

underlie innate immune function at birth versus age 5 and provides

a framework for future studies to track innate immune function

across early life in relation to environment exposures and

disease risk.

From our gene expression analysis, we found that Poly(I:C)

provoked a robust IFN-signalling response by all cell types detected,

and this was relatively stable between birth and 5 years. In contrast,

the LPS response was more constrained at birth compared to early

childhood and, of the cell types detected in this study,

proinflammatory responses were primarily mediated by CD14+

monocytes, alongside HSPCs, supporting their role as immune

effectors (41). Strikingly, we observed a partitioning among

immune cell types following LPS stimulation whereby archetypal

proinflammatory genes (e.g., IL1B, CXCL8) were upregulated in

CD14+ monocytes while IFN-signaling genes (e.g., STAT1) were

upregulated in lymphocytes (T and B cells). Notably, the

transcriptional response to LPS displayed more profound

differences between birth and 5 years compared to matched

samples exposed to Poly(I:C). At the level of gene regulatory

networks, we found that IFN-related IRF1 and STAT1

transcription factors (42) were the master regulators of the

lymphocyte response to LPS stimulation, in agreement with their

corresponding gene expression, whereas the LPS-induced monocyte

response was mediated by inflammatory regulators (e.g., FOS, JUN,

ATF3) (43, 44). Furthermore, in silico perturbation (35) to simulate
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the blockade of IRF1, IRF7, and STAT1, reinforced the central

control of IRF1 and STAT1 in LPS-induced IFN-signalling

networks of CD4 T cells at birth, and demonstrated that the

influence of IRF7, the quintessential driver of type I IFN

responses (45), within this network is more pronounced at 5 years.

Immune responses are mediated by the activation of multiple

cell populations that transition through dynamic molecular states.

Employing pseudotime trajectory inference, we found that naïve

CD4+ T cells from resting CBMC samples clustered separately,

consistent with notion that neonatal T cells represent a distinct

lineage of cells (2, 8). In contrast, LPS-induced monocyte activation

trajectories started from a common baseline which subsequently

diverged into age-specific end points. Monocytes trajectories from

Poly(I:C)-induced CBMC/5yr PBMC responses exhibited a single

trajectory, suggesting that the developmental regulation of innate

immune function is much more profound for LPS responses

compared with Poly(I:C) responses, as we have reported

previously (46, 47). We also observed striking differences in

cellular composition between CBMC/PBMC samples, such as the

lack of MAIT cells at birth, which is presumably explained by the

fact that MAIT cells are driven by bacterial metabolites (48, 49), and

consequently develop in parallel with the infant microbiome (50).

Immune responses are governed by complex cellular

interactions that are primarily mediated by ligand-receptor signals

(51). We systematically inferred intercellular communication

networks from ligand-receptor gene expression data which

revealed substantial crosstalk between myeloid and lymphoid

lineage cell types, indicating a coordinated response to LPS and

Poly(I:C) stimulation. Additionally, we identified several age-

specific interactions, such as extensive HSPC crosstalk in CBMC

samples and less discriminate ligand binding to T cell surface

receptors at birth. For example, molecular interactions were

observed between LPS-induced monocyte ligands (e.g., IL6,

CCL2/3/7) and naïve CD4+ T cell receptors (e.g., IL6R, CCR1/2/

5) in CBMC samples that were not observed at age 5yrs. These

temporally restricted monocyte-CD4+ T cell interactions in turn

elicited STAT1 activity, suggesting that the mechanisms that

determine IFN responses to LPS are qualitatively different at birth

versus 5 years of age. Conversely, our analysis of naïve CD4+ T cell

ligand interactions with monocyte receptors showed that regulatory

activity for FOXO3 – which has been implicated in inflammation

cytokine production and TLR4 upregulation specifically in LPS-

induced monocytes (52) – was restricted to the 5-year LPS response,

serving as an example of age-related differences in the regulation of

LPS-induced monocyte responses that result in activation

trajectory branching.

Our study has several limitations which we acknowledged, as

follows. First, findings from our study are based on data collected

from 12 scRNA-Seq samples generated from two biological donors,

and accordingly follow-up studies in larger sample sizes are

required to extend the findings to the general population. Second,

we studied innate immune function at a single time point using two

ligands. Future studies could investigate multiple time points and a
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broader panel of stimuli including intact viruses and bacteria.

Additionally, we acknowledge that the immune system undergoes

dynamic changes in the first week of life (53), and accordingly,

innate immune responses in cord blood represent baseline

responses at birth. Additionally, our study focused on circulating

immune cells, although cells in the airway may promote additional

layers of control in response to these stimuli (54). Finally, future

studies employing whole blood samples could extend these finding

to cell types not captured among the mononuclear cell

compartment from the samples investigated in this study.

Notwithstanding these limitations, our study highlights several

cell type-, stimuli-, and age-specific features of innate function of

immune cells in early life, including underlying gene expression

response programs, gene regulatory networks, and patterns of

intercellular communication. These findings are relevant to future

studies designed to dissect these mechanisms in relation to

environmental exposures and disease risk.
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immunity of neonates and infants. Front Immunol (2018) 9:1759. doi: 10.3389/
fimmu.2018.01759

41. Granick JL, Simon SI, Borjesson DL. Hematopoietic stem and progenitor cells as
effectors in innate immunity. Bone Marrow Res (2012) 2012:165107. doi: 10.1155/2012/
165107

42. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling.
Nat Rev Immunol (2005) 5(5):375–86. doi: 10.1038/nri1604

43. Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, et al.
Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.
Arthritis Res Ther (2008) 10(1):201. doi: 10.1186/ar2338

44. Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response
network, in the pathogenesis of diseases: is modulation of inflammation a unifying
component? Gene Expr (2010) 15(1):1–11. doi: 10.3727/105221610X12819686555015

45. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the
master regulator of type-I interferon-dependent immune responses. Nature (2005) 434
(7034):772–7. doi: 10.1038/nature03464

46. Read JF, Serralha M, Mok D, Holt BJ, Cruickshank M, Karpievitch YV, et al.
Lipopolysaccharide-induced interferon response networks at birth are predictive of
severe viral lower respiratory infections in the first year of life. Front Immunol (2022)
13:876654. doi: 10.3389/fimmu.2022.876654

47. Troy NM, Strickland D, Serralha M, de Jong E, Jones AC, Read J, et al. Protection
against severe infant lower respiratory tract infections by immune training: Mechanistic
studies. J Allergy Clin Immunol (2022) 150(1):93–103. doi: 10.1016/j.jaci.2022.01.001

48. Schmaler M, Colone A, Spagnuolo J, Zimmermann M, Lepore M, Kalinichenko
A, et al. Modulation of bacterial metabolism by the microenvironment controls MAIT
cell stimulation. Mucosal Immunol (2018) 11(4):1060–70. doi: 10.1038/s41385-018-
0020-9

49. Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A, Niort K, et al. Microbial
metabolites control the thymic development of mucosal-associated invariant T cells.
Science (2019) 366(6464):494–9. doi: 10.1126/science.aaw2719
frontiersin.org

https://doi.org/10.3390/vaccines8040558
https://doi.org/10.1146/annurev-immunol-091319-083608
https://doi.org/10.3389/fimmu.2017.00957
https://doi.org/10.1203/PDR.0b013e3181568105
https://doi.org/10.1203/PDR.0b013e3181568105
https://doi.org/10.1046/j.1365-2249.2002.01817.x
https://doi.org/10.1002/eji.201141847
https://doi.org/10.3389/fimmu.2014.00393
https://doi.org/10.1126/science.1196509
https://doi.org/10.4049/jimmunol.173.5.3084
https://doi.org/10.1016/1074-7613(95)90068-3
https://doi.org/10.4049/jimmunol.168.6.2820
https://doi.org/10.1016/j.celrep.2016.10.056
https://doi.org/10.4049/jimmunol.1400553
https://doi.org/10.1084/jem.20170521
https://doi.org/10.4049/jimmunol.1501297
https://doi.org/10.4049/jimmunol.182.1.55
https://doi.org/10.3389/fimmu.2014.00461
https://doi.org/10.1016/j.cell.2006.02.015
https://doi.org/10.1016/j.immuni.2019.03.027
https://doi.org/10.1016/j.immuni.2019.03.027
https://doi.org/10.3389/fimmu.2021.655528
https://doi.org/10.1016/j.chom.2018.12.006
https://doi.org/10.1097/01.inf.0000226912.88900.a3
https://doi.org/10.1097/01.inf.0000226912.88900.a3
https://doi.org/10.1016/j.cyto.2008.01.006
https://doi.org/10.1016/j.cytogfr.2011.02.001
https://doi.org/10.1016/j.cytogfr.2011.02.001
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1371/journal.pcbi.1011288
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/75556
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1093/nar/gkab638
https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1371/journal.ppat.1009220
https://doi.org/10.3389/fimmu.2018.01759
https://doi.org/10.3389/fimmu.2018.01759
https://doi.org/10.1155/2012/165107
https://doi.org/10.1155/2012/165107
https://doi.org/10.1038/nri1604
https://doi.org/10.1186/ar2338
https://doi.org/10.3727/105221610X12819686555015
https://doi.org/10.1038/nature03464
https://doi.org/10.3389/fimmu.2022.876654
https://doi.org/10.1016/j.jaci.2022.01.001
https://doi.org/10.1038/s41385-018-0020-9
https://doi.org/10.1038/s41385-018-0020-9
https://doi.org/10.1126/science.aaw2719
https://doi.org/10.3389/fimmu.2023.1275937
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Read et al. 10.3389/fimmu.2023.1275937
50. Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-
Chaparro PJ, Han SJ, et al. MAIT cells are imprinted by the microbiota in early
life and promote tissue repair. Science (2019) 366(6464):eaax6624. doi: 10.1126/
science.aax6624

51. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell
interactions and communication from gene expression. Nat Rev Genet (2021) 22
(2):71–88. doi: 10.1038/s41576-020-00292-x

52. Zhang S, Li Z, Weinman S. FoxO3 might be involved in the inflammatory
response of human monocytes to lipopolysaccharide through regulating expression of
Frontiers in Immunology 14
toll like receptor 4. Mol Biol Rep (2022) 49(8):7611–21. doi: 10.1007/s11033-022-
07576-x

53. Lee AH, Shannon CP, Amenyogbe N, Bennike TB, Diray-Arce J, Idoko OT, et al.
Dynamic molecular changes during the first week of human life follow a robust
developmental trajectory. Nat Commun (2019) 10(1):1092. doi: 10.1038/s41467-019-
08794-x

54. Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R, et al. Identification of a role for
TRIM29 in the control of innate immunity in the respiratory tract.Nat Immunol (2016)
17(12):1373–80. doi: 10.1038/ni.3580
frontiersin.org

https://doi.org/10.1126/science.aax6624
https://doi.org/10.1126/science.aax6624
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.1007/s11033-022-07576-x
https://doi.org/10.1007/s11033-022-07576-x
https://doi.org/10.1038/s41467-019-08794-x
https://doi.org/10.1038/s41467-019-08794-x
https://doi.org/10.1038/ni.3580
https://doi.org/10.3389/fimmu.2023.1275937
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single cell transcriptomics reveals cell type specific features of developmentally regulated responses to lipopolysaccharide between birth and 5 years
	Introduction
	Materials and methods
	Study subjects
	In vitro cell culture and innate immune stimulation
	Library preparation and sequencing
	Alignment and initial quality control
	Sample pre-processing and quality control
	Integration, annotation, and dimensionality reduction
	Differential gene expression and pathways analysis
	Pseudotime trajectory inference
	Gene Regulatory Network (GRN) analysis and in silico perturbations
	Ligand-receptor interaction analysis

	Results
	Cord and 5yr blood-derived single cell transcriptomic profiles display age-related compositional differences
	Differential expression analysis reveals an LPS-specific division of labor among myeloid and lymphoid immune cell compartments
	IFN-signaling pathways are activated by LPS in lymphocytes at birth and intensify by 5 years
	Pseudotime mapping of cell differentiation trajectories demonstrates cell type- and age-specific immune activation
	Gene regulatory network analysis identifies IRF1 and STAT1 as key regulators of LPS-induced lymphocyte response
	Ligand-receptor interaction analysis reveal dynamic immune cell crosstalk patterns at birth and 5 years

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


