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Ovarian cancer remains a challenging disease with limited treatment options and

poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor

growth, progression, and therapy response. One characteristic feature of the

TME is the abnormal tumor vasculature, which is associated with inadequate

blood perfusion, hypoxia, and immune evasion. Vascular normalization, a

therapeutic strategy aiming to rectify the abnormal tumor vasculature, has

emerged as a promising approach to reshape the TME, enhance antitumor

immunity, and synergize with immunotherapy in ovarian cancer. This review

paper provides a comprehensive overview of vascular normalization and its

potential implications in ovarian cancer. In this review, we summarize the

intricate interplay between anti-angiogenesis and immune modulation, as well

as ICI combined with anti-angiogenesis therapy in ovarian cancer. The

compelling evidence discussed in this review contributes to the growing body

of knowledge supporting the utilization of combination therapy as a promising

treatment paradigm for ovarian cancer, paving the way for further clinical

development and optimization of this therapeutic approach.

KEYWORDS

ovarian cancer, vascular normalization, tumor microenvironment, antitumor immunity,
immune infiltration, immunotherapy
Abbreviations: VEGF, vascular endothelial growth factor; ANGPT, angiopoietin; ICB, immune checkpoint

blockade; PDGF, platelet-derived growth factor; FGF, fibroblast growth factor; VEGFR, VEGF receptor; PFS,

Progression free survival; TAM, tumor-associated macrophage; MDSC, myeloid-derived suppressor cell; TIL,

tumor-infiltrating lymphocyte; TME, tumor microenvironment.
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1 Background

According to comprehensive global cancer statistics, ovarian

cancer remains a significant health concern for women worldwide.

Annually, over 230,000 females receive a distressing diagnosis of

ovarian cancer, accounting for approximately 3.6% of newly

reported cancer cases. Tragically, the disease claims the lives of more

than 150,000 women each year, representing 4.3% of all cancer-related

fatalities. Thus, ovarian cancer stands as the second leading cause of

death among gynecological malignancies, second only to cervical

cancer (1). Ovarian cancer possesses distinctive characteristics,

including delayed detection, early metastasis, drug resistance, and

challenging treatment protocols, all of which contribute to a poor

prognosis (2–4). Within the hierarchy of fatal gynecological tumors,

epithelial ovarian cancer claims the highest mortality rate (5–7).

Alarming statistics are observed within China, where more than

52,000 women succumb to epithelial ovarian cancer annually,

accompanied by a concerning escalation in both incidence and

mortality rates (8). However, there is a glimmer of hope in the form

of targeted therapies, which have demonstrated promising outcomes as

maintenance treatments (9–11). These innovative drugs not only aid in

disease control but also offer the potential to delay disease progression

and improve the overall prognosis for ovarian cancer patients (12–18).

Among these novel targeted strategies, anti-angiogenesis therapy

has become a key issue in the field of cancer therapeutics (19–21).

Angiogenesis plays a crucial role in the progression of ovarian cancer,

contributing to tumor development and distant metastasis (22). The

humanized monoclonal antibody targeting vascular endothelial growth

factor (VEGF) bevacizumab, has been extensively investigated in

epithelial ovarian cancer (23). The effectiveness of bevacizumab has

been confirmed in multiple clinical studies, even in refractory ovarian

cancer (24–26). Actually, anti-angiogenesis therapy not only disrupts

blood vessels crucial for cancer growth and metastasis but also has a

significant impact on reshaping the tumor microenvironment (TME)

(27). Preclinical and clinical studies have consistently shown that the

combination of anti-angiogenesis with immune checkpoint blockade

(ICB) therapy surpasses the efficacy of monotherapy (28–35). In mouse

models, the combination therapy demonstrates a remarkable ability to

decrease the ratio of pro-tumor to anti-tumor immune cells and

effectively downregulate the levels of immune checkpoints,

surpassing the effects observed with PD-1 blockade alone (36–39).

These findings have generated considerable excitement, leading to the

initiation of numerous clinical trials aimed at investigating the

synergistic effects of this combination therapy, with encouraging

outcomes being observed (40–43). This review provides a

comprehensive summary of the most recent understanding

surrounding ICB plus anti-angiogenesis strategy, highlighting the

significant advances made in relevant clinical trials.

2 Anti-angiogenesis therapy for
ovarian cancer

2.1 Tumor angiogenesis

Angiogenesis, the formation of new blood vessels, was first

described by Scottish surgeon John Hunter. It plays a vital role in
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both normal physiological processes and pathological conditions

(44). Physiological angiogenesis occurs during embryogenesis,

tissue repair, and regeneration, and is a short-term, controlled

process. In contrast, pathological angiogenesis is associated with

diseases and involves uncontrolled endothelial cell proliferation,

migration, and degradation of the extracellular matrix (45). Then,

a groundbreaking study by Folkman revealed the significant

relationship between angiogenesis and tumor growth. He

introduced the concept that tumor growth depends on

neovascularization, marking a milestone in research (46). Tumor

angiogenesis primarily occurs through the budding of new blood

vessels from existing microvascular beds. These newly formed

vessels provide nutrients and oxygen for tumor growth while also

serving as a pathway for distant metastasis (47–53). Folkman’s work

also led to the emergence of “anti-angiogenesis therapy” as a new

approach to cancer treatment and opened up exciting avenues for

biomedical research (54–56).

Angiogenesis in tumor neovascularization is regulated by a

complex interplay of pro-angiogenic and anti-angiogenesis

factors. Pro-angiogenic factors promote angiogenesis, while

endogenous inhibitory angiogenic factors prevent excessive vessel

formation (57). Examples of pro-angiogenic factors include vascular

endothelial growth factor (VEGF), angiopoietin (ANGPT), platelet-

derived growth factor (PDGF), fibroblast growth factor (FGF), and

other cytokines (58–61). On the other hand, endostatin, angiostatin,

platelet factor 4 (PF4), interferon alpha (IFN-a), and other factors

act as inhibitory angiogenic factors (62–65). The balance between

these factors determines the local angiogenesis of a tumor, with an

increase in pro-angiogenic factors or a decrease in anti-angiogenesis

factors tipping the balance towards angiogenesis (66).

The VEGF family, consisting of VEGFA, VEGFB, VEGFC,

VEGFD, VEGFE, and placental growth factor (PIGF), is a central

player in angiogenesis (67). VEGF receptors (VEGFRs), including

VEGFR1 (Flt-1), VEGFR2 (KDR/Flk-1), and VEGFR3 (Flt-4), are

tyrosine kinase receptors involved in signal transduction (68).

Different isoforms of VEGFA exhibit varying levels of activity and

localization in the body. VEGFA primarily activates and binds to

VEGFR-2, triggering a cascade of intracellular signaling pathways

that stimulate endothelial cell proliferation, increase vascular

permeability, and promote neo-angiogenesis (69). Another

important component in angiogenesis, independent of VEGF/

VEGFR, is the ANGPT/TIE system (70). The ANGPT family

includes ANGPT1, ANGPT2, ANGPT3, and ANGPT4, with

ANGPT1 and ANGPT2 being extensively studied (71). ANGPT1

is mainly expressed in perivascular cells such as pericytes and

smooth muscle cells. It interacts with Tie2 receptors in a

paracrine manner, promoting endothelial cell viability and

maintaining vascular integrity. ANGPT2, predominantly

expressed in vascular endothelial cells, competitively blocks the

effects of ANGPT1, leading to increased vascular permeability and

disruption of the resting vascular system (72–74). ANGPT2’s

interaction with endothelial progenitor cells may serve as an

initiating factor in neovascularization (75–77). Understanding the

mechanisms and factors involved in angiogenesis has significant

implications for therapeutic interventions and targeting tumor

growth. Anti-angiogenesis strategies aim to inhibit or disrupt the
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formation of new blood vessels, thereby starving tumors of the

necessary nutrients and oxygen for their growth (78). These

approaches include the use of anti- angiogenesis drugs that target

specific factors or receptors involved in angiogenesis. Generally,

angiogenesis is a complex process crucial for normal physiological

functions and pathological conditions. It is determined by the

delicate balance between anti-angiogenesis and pro-angiogenesis

regulators. The VEGF/VEGFR and ANGPT/TIE systems play

essential roles in angiogenesis, with VEGFA and ANGPT1 being

key players. Intriguingly, nuclear PD-L1 is reported to be implicated

in angiogenesis, elucidating the intricate biological signaling that

orchestrates the interaction between immune responses and

vascularization (79). So far, multiple anti-angiogenesis agents

have been approved for cancer treatment Figure 1; Table 1 (80).
2.2 Anti-angiogenesis therapy for
ovarian cancer

In the microenvironment of ovarian cancer, VEGF signaling is

highly activated and strongly correlated with poor differentiation grade
Frontiers in Immunology 03
and prognosis (81, 82). Therefore, targeting pro-angiogenic signaling

pathways, particularly the VEGF pathway, shows promise as an

effective strategy for ovarian cancer. Bevacizumab, the first

recombinant humanized anti-VEGF-A antibody, is the most widely

used anti-angiogenesis agent (83–85). By inhibiting the binding of

VEGF-A to VEGFR, bevacizumab impedes the formation of new blood

vessels, interferes pre-existing blood vessels, and downregulates

intratumoral microvessel density (86, 87). It has received FDA

approval for platinum-sensitive refractory ovarian cancer (88).

Besides, it has been also approved by European Commission for

advanced epithelial ovarian cancer (89). Bevacizumab has

demonstrated clinical efficacy in advanced and recurrent ovarian

cancer, resulting in delayed tumor development and serving as a

maintenance therapy (90, 91). Combining bevacizumab with

chemotherapy has been explored for the treatment of ovarian cancer

(92–95). However, recent meta-analysis demonstrates a more

pronounced improvement in median progression-free survival (PFS)

achieved by bevacizumab alone or in combination with other

inhibitors, yet it does not indicate any overall survival benefit, even

detrimental to post-progression survival (96). The result highlights the

need to identify predictive biomarkers that can discriminate the
FIGURE 1

Signaling pathways contributing to tumor angiogenesis and approved anti-tumor angiogenesis drugs. Mutiple signas have been validated to promote
tumor angiogenesis, including EGF, FGF, PDGF, HGF, and SCF signaling. Abbrevations: VEGF, Vascular Endothelial Growth Factor; PDGF, Platelet-
Derived Growth Factor; FGF, Fibroblast Growth Factor; HGF, Hepatocyte Growth Factor; SCF, Stem Cell Factor. Adapted from Qin et al., 2019 (22).
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patients potentially benefited from bevacizumab. Although, circulating

Tie2, ascites formation, BRCA1/2, homologous recombination

deficiency and CD31 status can somewhat influence the efficacy, the

identification of predictive biomarkers remains challenging and elusive

(97, 98).

Moreover, cediranib, an inhibitor of VEGFR tyrosine kinase

(VEGFR1-3), has exhibited limited efficacy and increased toxicity in

various cancers, including ovarian cancer (99). Nonetheless,

promising results have been observed in cediranib treatment for

ovarian cancer patients, particularly regarding PFS when used in

combination with chemotherapy and maintenance treatment (99).

The combination of Poly ADP-ribose polymerase inhibitors and

cediranib has demonstrated enhanced efficacy in inhibiting tumor

proliferation and promoting the immune response within the

tumor microenvironment, irrespective of HDR status, in a

patient-derived xenograft model of ovarian cancer (100). The

study conducted by Zhou et al. demonstrated that the plasma

concentration of Tie2 serves as a reliable predictive biomarker for

generic VEGF signaling inhibitor, including cediranib in ovarian

cancer (101). Another murine in vivo investigation revealed that the
Frontiers in Immunology 04
TME intrinsically characterized with higher level of IL6 and JAK/

STAT signaling counteracted the activity of cediranib (102).

Besides, pazopanib (selective multi-targeted receptor tyrosine

kinase inhibitor targeting VEGFR, FGFR, PDGFR, c-KIT, and c-

Fms) effectively inhibits tumor growth and angiogenesis (103, 104).

Although pazopanib is associated with adverse events such as

neutropenia, it has demonstrated advantages in the treatment of

refractory and platinum-resistant ovarian cancer, as well as in

platinum-sensitive maintenance therapy (105–107). Additionally,

nintedanib, another inhibitor targeting various tyrosine kinases,

including PDGFR, FGFR, FLT3, and VEGFR, competitively

suppresses non-receptor tyrosine kinases (108, 109). Nintedanib

is known to cause common adverse events such as diarrhea (110).

Nevertheless, phase 3 trials have exhibited remarkable therapeutic

effects when nintedanib is combined with chemotherapy such as

carboplatin and paclitaxel in ovarian cancer patients, although

serious adverse gastrointestinal events accompany these positive

effects (111–113).

In addition to VEGF signaling, there are alternative pathways

targeted by angiogenesis inhibitors. ANGPT1/2 bind to the Tie-2
TABLE 1 Approved tyrosine kinase inhibitors with anti-angiogenesis capability.

Agents Targets Company Indication Approval status

Sorafenib VEGFR2/3, RAF, PDGFRb, FLT3, c-Kit Bayer and Onyx RCC 2005 (FDA)

HCC 2007 (FDA)

DTC 2013 (FDA)

Sunitinib VEGFR1/2/3, PDGFRa/b, KIT, FLT3, CSF-1R, RET Pfizer GIST 2007 (FDA)

RCC 2007 (FDA)

pNETs 2011 (FDA)

Pazopanib VEGFR1/2/3, PDGFRb, c-Kit, FGFR1, c-Fms GlaxoSmith Kline RCC 2009 (FDA)

STS 2012 (FDA)

Axitinib VEGFR1/2/3, PDGFRb Pfizer RCC 2012 (FDA)

Regorafenib VEGFR1/2/3, TIE2, PDGFR-b, FGFR, KIT, RET, RAF Bayer CRC 2012 (FDA)

GIST 2013 (FDA)

HCC 2017(FDA)

Cabozantinib VEGFR2, MET, RET, AXL, FLT3, c-KIT Exelixis MTC 2012 (FDA)

RCC 2016 (FDA)

Nintedanib VEGFR1/2/3, FGFR1/2/3, PDGFRa/b Boehringer IPF 2014 (FDA)

NSCLC 2014 (EMA)

Lenvatinib VEGFR1/2/3, FGFR1/2/3/4, PDGFR, c-kit, and RET Eisai DTC 2015 (FDA)

RCC 2016 (FDA)

HCC 2018 (FDA)

Apatinib VEGFR2, RET, c-KIT, Src Hengrui GC 2014 (CFDA)

Anlotinib VEGFR2/3, FGFR1/2/3/4, PDGFRa/b, c-Kit, RET Chia-taiTianqing NSCLC 2018 (CFDA)

Fruquintinib VEGFR1/2/3 Hutchison CRC 2018 (CFDA)
CRC, colorectal cancer; DTC, differentiated thyroid cancer; GC, gastric cancer; GIST, gastro-intestinal stromal tumor; HCC, hepatocellular carcinoma; IPF, idiopathic pulmonary fibrosis; MTC,
medullary thyroid cancer; NSCLC, non-small cell lung cancer; pNETs, pancreatic neuroendocrine tumors; RCC, renal cell carcinoma; STS, soft tissue sarcoma; CFDA, China Food and Drug
Administration; EMA, European Medicines Agency; FDA, United States Food and Drug Administration.
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receptor and promote endothelial cell proliferation, survival, and

motility. Trebananib, a non-VEGF-dependent anti-angiogenesis

agent, binds to ANGPT1/2 and counteracts their action on the

Tie-2 receptor, thereby effectively suppressing angiogenesis (114).

Trebananib, when combined with paclitaxel, effectively improves

the PFS of patients with recurrent ovarian cancer (115). In

summary, targeting angiogenesis through VEGF/VEGFR signaling

has shown promising results in ovarian cancer. Bevacizumab,

cediranib, pazopanib, and nintedanib are among the agents that

have been investigated in this context. However, challenges persist

in terms of optimizing therapeutic responses, managing side effects,

and identifying predictive biomarkers to facilitate better patient

selection (116). Further research and clinical investigations are

needed to improve the efficacies of anti-angiogenesis agents in

ovarian cancer.
3 Anti-angiogenesis therapy reshapes
the TME and enhances ICB efficacy

3.1 Angiogenesis and anti-tumor immunity

The antitumor immunity and ICB efficacy are regulated by the

presence and status of tumor-infiltrating lymphocytes (TILs) as well

as the process of angiogenesis (117–121). TILs are critical

components of the immune response against tumors, and their

presence is essential for successful tumor regression with ICB

therapy, particularly with interventions targeting the PD-1/PD-L1

pathway. Angiogenesis plays a crucial role in the status of TILs and

the response to ICI therapy. In the cancer-immunity cycle, the

presentation of neoantigens initiates the formation of tumor-

specific T cell clones, which then traffic to and infiltrate the

tumor (122). TILs recognize these neoantigens and eliminate

tumor cells in an immunosupportive TME (122). However,

hyperactive angiogenesis leads to an immunosuppressive TME by

affecting multiple processes of the immune response (123–125).

Abnormal angiogenesis negatively impacts the abundance and

function of TILs (29). It creates physical barriers that impede T cell

infiltration, such as leaky vessels with high interstitial fluid pressure

and reduced expression of adhesion molecules like VCAM-1 (126).

Additionally, the lack of adequate vasculature compromises the

oxygen supply to the tumor, leading to hypoxia. Hypoxia, in turn,

upregulates immunoinhibitory signals, including IL-6, IL-10, PD-

L1, and IDO (19). Moreover, circulating VEGF hinders the

maturation and activity of dendritic cells, facilitating immune

evasion of tumor cells (127, 128). On the contrary, hyperactive

angiogenesis promotes the expansion of immunohibitory

lymphocytes. Tumor hypoxia resulting from abnormal blood

vessels upregulates the expression of chemokines that recruit

regulatory T cells (Tregs) into the tumor (129, 130). The hypoxic

TME also induces the polarization of tumor-associated

macrophages (TAMs) toward an M2-like phenotype, which

further supports tumor growth and immune evasion (131).

Additionally, Fas ligand expressed by tumor endothelial barriers

selectively kills cytotoxic CD8+ T cells, while sparing Tregs due to

increased cellular FLICE-inhibitory protein on Tregs (132).
Frontiers in Immunology 05
Angiogenesis exerts a multifaceted influence on tumor growth

and immune evasion. Abnormal angiogenesis hampers TIL

infiltration and function while promoting the recruitment and

activity of pro-tumor lymphocytes.
3.2 The effects of anti-angiogenesis
therapy on the TME

Anti-angiogenesis therapy aims to inhibit tumor angiogenesis and

disrupt the abnormal tumor vasculature. Initially, these agents were

developed to starve tumors by interfering with neo-vascularization

(133). However, monotherapy with anti-angiogenic agents did not

yield satisfactory results, as tumors developed mechanisms to tolerate

hypoxia, leading to invasiveness and metastasis (134, 135).

Nevertheless, anti-angiogenesis therapy has shown promise as a

sensitizer when combined with other therapies. The concept of vessel

normalization, describes the transient state of tumor vessels undergoing

anti-angiogenesis treatment (133). In this state, tumor vessels undergo

structural and functional changes, including enhanced perfusion,

improved pericyte coverage, and relieved hypoxia. The duration and

extent of vessel normalization depend on the treatment schedule and

dose (136). Anti-angiogenesis therapy has also been shown to

reprogram the TME from an immunoinhibitory to an

immunosupportive state (137). Normalized tumor vasculature

alleviates hypoxia, which can promote the polarization of TAM to an

M1-like phenotype (136). Additionally, vessel normalization reduces

the recruitment of Treg and myeloid-derived suppressor cells (MDSC)

(138). Improved perfusion resulting from vessel normalization also

downregulates hypoxia-mediated immunoinhibitory molecules, such

as PD-L1 (139).

Preclinical studies have demonstrated the potential synergistic

effect of combining ICB with anti-angiogenesis therapy (140–142).

The crosstalk between the TME and angiogenesis suggests that anti-

angiogenesis therapy may enhance the therapeutic effects of ICB.

Various mechanisms have been proposed to explain this synergy.

For example, anti-VEGF treatment can abrogate VEGF-induced

immune checkpoint expression on intratumoral T cells (143).

Furthermore, the induction of high endothelial venule (HEV)

formation through combination therapy has been shown to promote

T cell infiltration into tumors (39). Combining anti-angiogenesis

therapy with ICI has shown promising results in preclinical studies,

suggesting a potential strategy for improving the efficacy of

immunotherapy. Further investigations are warranted to fully

understand the mechanisms underlying the synergistic effects and to

optimize the combination therapy approach.
4 Anti-angiogenesis combined
with ICB therapy for ovarian
cancer patients

In the phase 1 dose-escalation study NCT02298959, anti-

angiogenesis agent ziv-aflibercept (recombinant fusion protein

containing VEGF-binding domains developed based on VEGFR1/
frontiersin.org
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2) combined with anti-PD-1 antibody pembrolizumab exhibited

potent antitumor activity in solid tumors (including ovarian cancer,

renal cell carcinoma, colorectal cancer, and melanoma) with

manageable safety profile (144). The median overall survival

reached 12.5 months (90% CI 3.8 to 13.6) in the ovarian cancer

subgroup (144). Besides, in the phase 1b trial NCT04236362, 34

platinum-resistant or refractory ovarian cancer patients were

enrolled (145). In this clinical study, anti-angiogenesis agent

anlotinib combined with anti-PD-1 antibody TQB2450 also

showed encouraging antitumor activity (median PFS: 7.8 months;

disease control rate: 97.1%; and objective response rate:

47.1%) (145).

Besides, in the phase 1b study NCT01633970, patients with

platinum-resistant ovarian cancer benefited from atezolizumab and

bevacizumab treatment (146). This combination therapy achieved a

response rate of 15%, and all three patients with partial response

had a long duration (11.3-18.9 months) (146). Furthermore, in the

single-arm phase 2 study NCT02873962, nivolumab combined with

bevacizumab showed promising antitumor potential for relapsed

ovarian cancer (overall response rate: 28.9%; 95%CI 15.4%-45.9%),

especially for platinum-sensitive patients (overall response rate:

40.0%, 95%CI 19.1%-64.0%) (147). Howbeit, combination

treatment might predispose patients to cumulative adverse effects.

Therefore, optimizing sequencing of administration of ICB and

anti-angiogenesis agents is of importance. Intriguingly, due to the

specific mechanism that anti-angiogenesis normalizes the tumor

vasculature, a lower dosage of ICB can achieve the same efficacy as

before (148). Generally, anti-angiogenesis combined with ICB

therapy is a promising strategy for ovarian cancer, and more

clinical studies are ongoing to further confirm the efficacy of this

combination therapy.
5 Perspective

Angiogenesis, the formation of new blood vessels, plays a

crucial role in tumor growth and metastasis. The VEGF/VEGFR

and ANGPT/TIE systems are key players in the regulation of

angiogenesis. Anti-angiogenesis therapy aims to disrupt tumor

angiogenesis by targeting specific factors or receptors involved in

this process. Bevacizumab, cediranib, pazopanib, and nintedanib

are among the agents that have been investigated in the context of

ovarian cancer treatment. While these agents have shown clinical

efficacy, challenges remain in terms of optimizing therapeutic

responses, managing side effects, and identifying predictive

biomarkers. The combination of anti-angiogenesis therapy with

ICB has shown promising synergistic effects in preclinical and

clinical studies. This combination therapy has demonstrated the

ability to increase the ratio of anti-tumor to pro-tumor immune

cells, downregulate the expression of multiple immune checkpoints,

and reshape the TME. The TME plays a critical role in response to

ICB therapy, and angiogenesis has been found to have a significant

impact on the status of TILs and the efficacy of ICB. Abnormal

angiogenesis creates an immunosuppressive TME, hindering TIL

infiltration and function while promoting the abundance of pro-
Frontiers in Immunology 06
tumor lymphocytes. Anti-angiogenesis therapy can normalize

tumor vasculature, alleviate hypoxia, and reprogram the TME to

an immunosupportive state.

Clinical trials investigating the combination of ICB and anti-

angiogenesis therapy in ovarian cancer have shown encouraging

outcomes. The combination has demonstrated improved PFS and

overall survival compared to monotherapy. However, challenges

remain in terms of patient selection, optimizing treatment

regimens, and managing potential side effects. Further research is

needed to identify predictive biomarkers that can guide treatment

decisions and enhance therapeutic responses. Additionally,

efforts should be made to develop more potent and specific

anti-angiogenesis agents and explore novel targets in the

angiogenesis pathway.
6 Conclusion

Ovarian cancer remains a significant health concern for women

worldwide, and novel treatment strategies are urgently needed to

improve patient outcomes. The combination of immune checkpoint

blockade and anti-angiogenesis therapy has emerged as a promising

approach for the treatment of ovarian cancer. Anti-angiogenesis

therapy disrupts tumor angiogenesis and reshapes the tumor

microenvironment, leading to improved infiltration and function

of tumor-infiltrating lymphocytes. The combination therapy has

demonstrated promising results in preclinical and clinical studies,

with improved PFS and overall survival. Further research and

clinical investigations are needed to address these challenges and

unlock the full potential of the combination of ICB and anti-

angiogenesis therapy in ovarian cancer. Efforts should be made to

develop more potent and specific anti-angiogenesis agents and

explore novel targets in the angiogenesis pathways. With

continued advancements in understanding the complex interplay

between angiogenesis and the immune response, this combination

therapy holds promise in revolutionizing the treatment landscape

for ovarian cancer.
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et al. Different tumor microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer Res (2010) 70:5728–39.
doi: 10.1158/0008-5472.Can-09-4672

132. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al.
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance
in tumors. Nat Med (2014) 20:607–15. doi: 10.1038/nm.3541

133. Jain RK. Normalization of tumor vasculature: an emerging concept in
antiangiogenic therapy. Science (2005) 307:58–62. doi: 10.1126/science.1104819

134. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS.
Accelerated metastasis after short-term treatment with a potent inhibitor of tumor
angiogenesis. Cancer Cell (2009) 15:232–9. doi: 10.1016/j.ccr.2009.01.021

135. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, et al.
Antiangiogenic therapy elicits Malignant progression of tumors to increased local
invasion and distant metastasis.Cancer Cell (2009) 15:220–31. doi: 10.1016/j.ccr.2009.01.027

136. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al.
Vascular normalizing doses of antiangiogenic treatment reprogram the
immunosuppressive tumor microenvironment and enhance immunotherapy. Proc
Natl Acad Sci U.S.A. (2012) 109:17561–6. doi: 10.1073/pnas.1215397109

137. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer
immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin
Oncol (2018) 15:325–40. doi: 10.1038/nrclinonc.2018.29

138. Du Four S, Maenhout SK, Niclou SP, Thielemans K, Neyns B, Aerts JL.
Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function
of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. Am
J Cancer Res (2016) 6:2514–31.

139. Noman MZ, Desantis G, Janji B, HasmimM, Karray S, Dessen P, et al. PD-L1 is
a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-
mediated T cell activation. J Exp Med (2014) 211:781–90. doi: 10.1084/jem.20131916

140. Wang Q, Gao J, Di W, Wu X. Anti-angiogenesis therapy overcomes the innate
resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models.
Cancer Immunol Immunother (2020) 69:1781–99. doi: 10.1007/s00262-020-02576-x

141. Chen JL, Pan CK, Huang YS, Tsai CY, Wang CW, Lin YL, et al. Evaluation of
antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1,
and anti-angiogenic therapy in murine lung tumors. Cancer Immunol Immunother
(2021) 70:391–404. doi: 10.1007/s00262-020-02690-w
frontiersin.org

https://doi.org/10.1016/j.ygyno.2022.05.020
https://doi.org/10.1016/j.ygyno.2022.05.020
https://doi.org/10.1016/s1470-2045(17)30279-6
https://doi.org/10.1001/jamanetworkopen.2023.26834
https://doi.org/10.1001/jamanetworkopen.2023.26834
https://doi.org/10.1038/bjc.2016.194
https://doi.org/10.1200/jco.19.01009
https://doi.org/10.1080/14656566.2017.1383384
https://doi.org/10.1080/14656566.2017.1383384
https://doi.org/10.1186/s13045-021-01196-x
https://doi.org/10.1186/s13045-021-01196-x
https://doi.org/10.1016/j.esmoop.2022.100417
https://doi.org/10.1158/1535-7163.Mct-21-0689
https://doi.org/10.1093/jjco/hyy053
https://doi.org/10.1517/14656560903436493
https://doi.org/10.1016/s1470-2045(15)70115-4
https://doi.org/10.1200/jco.2014.55.7348
https://doi.org/10.1016/j.ygyno.2014.11.074
https://doi.org/10.1007/s40265-021-01487-0
https://doi.org/10.1080/13543784.2017.1353599
https://doi.org/10.3390/jcm5090078
https://doi.org/10.1016/s1470-2045(15)00366-6
https://doi.org/10.1002/ijc.32606
https://doi.org/10.1016/j.ygyno.2023.01.008
https://doi.org/10.1517/13543784.2013.793306
https://doi.org/10.1016/s1470-2045(14)70244-x
https://doi.org/10.5483/BMBRep.2020.53.6.060
https://doi.org/10.1186/s13045-021-01045-x
https://doi.org/10.1186/s13045-021-01045-x
https://doi.org/10.1186/s13045-021-01155-6
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1186/s13045-022-01363-8
https://doi.org/10.1186/s13045-022-01363-8
https://doi.org/10.1136/jitc-2022-005543
https://doi.org/10.1136/jitc-2022-005543
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.coi.2015.01.011
https://doi.org/10.1158/1078-0432.Ccr-18-1543
https://doi.org/10.1158/1078-0432.Ccr-18-1543
https://doi.org/10.1002/jcp.25726
https://doi.org/10.1158/0008-5472.Can-15-0255
https://doi.org/10.1038/nm1096-1096
https://doi.org/10.1182/blood-2007-01-065714
https://doi.org/10.1038/nm1093
https://doi.org/10.1038/nature10169
https://doi.org/10.1158/0008-5472.Can-09-4672
https://doi.org/10.1038/nm.3541
https://doi.org/10.1126/science.1104819
https://doi.org/10.1016/j.ccr.2009.01.021
https://doi.org/10.1016/j.ccr.2009.01.027
https://doi.org/10.1073/pnas.1215397109
https://doi.org/10.1038/nrclinonc.2018.29
https://doi.org/10.1084/jem.20131916
https://doi.org/10.1007/s00262-020-02576-x
https://doi.org/10.1007/s00262-020-02690-w
https://doi.org/10.3389/fimmu.2023.1276694
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1276694
142. Qi X, Yang M, Ma L, Sauer M, Avella D, Kaifi JT, et al. Synergizing sunitinib
and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor
immune response. J Immunother Cancer (2020) 8(2):e001038. doi: 10.1136/jitc-2020-
001038

143. Meder L, Schuldt P, Thelen M, Schmitt A, Dietlein F, Klein S, et al. Combined
VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous
mouse model of small cell lung cancer. Cancer Res (2018) 78:4270–81. doi: 10.1158/
0008-5472.Can-17-2176

144. Rahma OE, Tyan K, Giobbie-Hurder A, Brohl AS, Bedard PL, Renouf DJ, et al.
Phase IB study of ziv-aflibercept plus pembrolizumab in patients with advanced solid
tumors. J Immunother Cancer (2022) 10(3):e003569. doi: 10.1136/jitc-2021-003569

145. Lan CY, Zhao J, Yang F, Xiong Y, Li R, Huang Y, et al. Anlotinib combined with
TQB2450 in patients with platinum-resistant or -refractory ovarian cancer: A multi-
Frontiers in Immunology 10
center, single-arm, phase 1b trial. Cell Rep Med (2022) 3:100689. doi: 10.1016/
j.xcrm.2022.100689

146. Moroney JW, Powderly J, Lieu CH, Bendell JC, Eckhardt SG, Chang CW, et al.
Safety and clinical activity of atezolizumab plus bevacizumab in patients with ovarian
cancer: A phase ib study. Clin Cancer Res (2020) 26:5631–7. doi: 10.1158/1078-
0432.Ccr-20-0477

147. Liu JF, Herold C, Gray KP, Penson RT, Horowitz N, Konstantinopoulos PA,
et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer:
A phase 2 clinical trial . JAMA Oncol (2019) 5:1731–8. doi: 10.1001/
jamaoncol.2019.3343

148. Li SJ, Chen JX, Sun ZJ. Improving antitumor immunity using antiangiogenic
agents: Mechanistic insights, current progress, and clinical challenges. Cancer Commun
(Lond) (2021) 41:830–50. doi: 10.1002/cac2.12183
frontiersin.org

https://doi.org/10.1136/jitc-2020-001038
https://doi.org/10.1136/jitc-2020-001038
https://doi.org/10.1158/0008-5472.Can-17-2176
https://doi.org/10.1158/0008-5472.Can-17-2176
https://doi.org/10.1136/jitc-2021-003569
https://doi.org/10.1016/j.xcrm.2022.100689
https://doi.org/10.1016/j.xcrm.2022.100689
https://doi.org/10.1158/1078-0432.Ccr-20-0477
https://doi.org/10.1158/1078-0432.Ccr-20-0477
https://doi.org/10.1001/jamaoncol.2019.3343
https://doi.org/10.1001/jamaoncol.2019.3343
https://doi.org/10.1002/cac2.12183
https://doi.org/10.3389/fimmu.2023.1276694
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer
	1 Background
	2 Anti-angiogenesis therapy for ovarian cancer
	2.1 Tumor angiogenesis
	2.2 Anti-angiogenesis therapy for ovarian cancer

	3 Anti-angiogenesis therapy reshapes the TME and enhances ICB efficacy
	3.1 Angiogenesis and anti-tumor immunity
	3.2 The effects of anti-angiogenesis therapy on the TME

	4 Anti-angiogenesis combined with ICB therapy for ovarian cancer patients
	5 Perspective
	6 Conclusion
	Author contributions
	Funding
	References


