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Introduction: Adenoid hypertrophy (AH) is a common upper respiratory disorder

in children. Disturbances of gut microbiota have been implicated in AH.

However, the interplay of alteration of gut microbiome and enlarged adenoids

remains elusive.

Methods: 119 AH children and 100 healthy controls were recruited, and

microbiome profiling of fecal samples in participants was performed using 16S

rRNA gene sequencing. Fecal microbiome transplantation (FMT) was conducted

to verify the effects of gut microbiota on immune response in mice.

Results: In AH individuals, only a slight decrease of diversity in bacterial

community was found, while significant changes of microbial composition

were observed between these two groups. Compared with HCs, decreased

abundances of Akkermansia , Osci l lospiraceae and Eubacter ium

coprostanoligenes genera and increased abundances of Bacteroides,

Faecalibacterium, Ruminococcus gnavus genera were revealed in AH patients.

The abundance of Bacteroides remained stable with age in AH children. Notably,

a microbial marker panel of 8 OTUs were identified, which discriminated AH from

HC individuals with an area under the curve (AUC) of 0.9851 in the discovery set,

and verified in the geographically different validation set, achieving an AUC of

0.9782. Furthermore, transfer of mice with fecal microbiota from AH patients
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dramatically reduced the proportion of Treg subsets within peripheral blood and

nasal-associated lymphoid tissue (NALT) and promoted the expansion of Th2

cells in NALT.

Conclusion: These findings highlight the effect of the altered gut microbiota in

the AH pathogenesis.
KEYWORDS

gut microbiota, adenoid hypertrophy, immune response, fecal microbiome
transplantation, children
1 Introduction

The adenoid is a component of Waldeyer’s ring, located at the

back of the pharyngeal vault, and often extends to the upper border of

the posterior pharyngeal wall. The adenoid enlarges physiologically in

early childhood until about the age of six years, and then shrink from

eight-ten years of age (1). Nasal-associated lymphoid tissue (NALT)

in rodents, a paired lymphoid cell aggregate, was considered to be the

equivalent of the Waldeyer’s ring of humans (2). Similar to the

characteristic of adenoid physiological growth, NALT was present at

birth and the overall size diminished during aging (3). Under normal

physiological conditions, enlargement of the adenoid may regress

when the pathological stimuli are discharged. However, the

pathological conditions remain constant in many cases after

treatment (4). The space between adenoid and palatine becomes

narrowed or even closed, which leads to nasal obstruction, acute otitis

media, otitis media effusion, mouth breathing, nocturnal snoring, and

obstructive sleep apnea syndrome (5). If not treated promptly and

effectively, these symptoms can cause serious comorbidities, such as

adenoid face, obesity, cardiovascular disease, and cognitive

impairment (6).

At present, the prevalence of adenoid hypertrophy in children

was estimated to be as high as 34% (7). The most common

diagnostic methods for adenoid hypertrophy are rhinoscopy and

nasopharyngeal endoscopy (8). However, children with adenoid

hypertrophy have a lower acceptability of invasive diagnosis. The

first step of hypertrophy intervention usually focuses on addressing

the underlying causes. Surgical removal of enlarged tissues is usually

required for AH patients with persistent obstruction. Many children

undergo adenoidectomy annually. Although surgery is more

effective than drug therapy (9), the procedure carries a risk of

excessive bleeding and infection (10). Studies of adenotonsillectomy

outcomes have reported that complete postoperative normalization

of the apnea/hypopnea index (AHI) was observed in only 25% of

the patients postoperatively (11). A worsening indication over time

was observed in 68% of the cases (12). Moreover, the adenoids can

regrow following adenotonsillectomy. Thus, patients may undergo

additional revision adenoidectomies at a rate of approximately

13.3% (13)–14.5% (14).

At the present stage, the gut microbiome has been recognized as

the “second genome” or “an organ” of the human body, which
02
communicates and interplays with other organs or systems locally

and distantly in various ways, such as metabolites and immune

response (15). About 70% of the lymphoid immune cells in our

body are distributed in gut associated lymphoid tissue (GALT) (16).

After exposure to the microbe, the dendritic cells within GALT

recognize the antigens. They either induce an inflammatory

response by activating T helper lymphocytes, or an anti-

inflammatory response via regulatory T cells. Therefore, the gut

microbiome plays a crucial role in shaping the immune system

during the first year of life and in the modulation of host immunity

and the progression of immune-mediated diseases later (17). It has

been pointed that dysbiosis of gut microbiota are closely connected

with the immunological dysregulation of the respiratory tract

diseases and their responses to treatment. For example, children

at three months of age, who carry significantly decreased

Lachnospira, Veillonella, Faecalibacterium, and Rothia genera are

at high risk of asthma (18). While children of three months old

carrying an increase in the relative abundance of Streptococcus and

Bacteroides species and decrease in Bifidobacterium species and

Ruminococcus gnavus are prone to develop atopic asthma at age five

years (19). In addition, the low abundance of Bifidobacteria,

Akkermansia, and Faecalibacterium genera are also associated

with atopy and asthma (20). The allergic airway inflammation

influenced by gut microbiota is mediated by short-chain fatty

acids (SCFAs) that induce the expression of FOXP3, and boost

the level of T regulatory cells (Tregs) and the production of IL-10

(21). Previous studies indicated that the progression of allergic

rhinitis (AR), a common inflammation condition at upper

respiratory tract, is also related with gut microbe, such as

Prevotella and Escherichia (22). The diversity of gut microbiota

and the abundance of Firmicutes phylum in patients with allergic

rhinitis is lower, while the relative abundance of Bacteroidetes is

higher. To date, an increasing number of probiotics have shown

beneficial effects in the prevention of allergic airway inflammation

in mouse models (23, 24) and humans (25).

Recent studies have suggested that AH may be due to an

imbalance in the immune status. Children with genetic variants

in Toll-like receptors (TLRs), which are important regulators of the

immune response, have an increased risk for AH (26). The ratio of

peripheral Th17/Treg cells and the expression level of cytokines

such as IL-17, IL-10, and TGF-b in children with adenoid
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hypertrophy are significantly correlated with the increased blockage

degree (27). Moreover, the dysregulation of IL-4 and IL-5

expression and Treg levels are observed in children with adenoid

regrowth after adenotonsillectomy (28). A similar diet plays an

important role in asthma (29) and allergic rhinitis (22), food allergy

is also significantly associated with the onset of adenoid

hypertrophy (30). In patients with AH, milk was the most

prevalent sensitizing allergen (31). Furthermore, the positive rate

of food intolerance is higher in adenoidal hypertrophy cases, with

eggs, milk, and cod as the top three allergens (32). Taken together,

the gut microbiota may be involved in the development of AH.

Currently, studies pay close attention to the effects of local bacteria

on the adenoid in children with adenoid hypertrophy. However,

little is known about the relationship between gut microbiome and

adenoid hypertrophy in pediatric patients.

In this study, we performed 16S ribosomal RNA (rRNA) gene

sequencing of 219 fecal samples from patients with adenoid

hypertrophy and healthy controls to characterize the signatures of

the gut microbiome and their functional potential. Based on the

differences in the gut microbiota abundance, a biomarker panel

discriminating between AH and HC was identified. We further

validated the diagnostic and predictive potential of the panel as a

noninvasive tool for AH using the discovery and validation sets,

respectively. In addition, to investigate the causal effects of gut

microbiota on adenoid hypertrophy, stool samples from pediatric

patients with AH and healthy controls were intragastrically

transplanted into mice to study the immune response in the

peripheral blood and NALT.
2 Materials and methods

2.1 Subject recruitment

All participants provided written informed consent, and fecal

samples were collected from the Department of Clinical Laboratory,

Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao

Tong University. The current gold standard for the diagnosis of AH

is nasendoscopy (NE) (33). Here, all the patients with AH were

undergone NE examination and with an blockage ratio over 75%.

Exclusion criteria for AH patients were as follows: a) development

of other underlying diseases, including cancers, gastrointestinal

diseases, and inflammatory diseases; b) antibiotics, probiotics, or

prebiotics used in the past four weeks; c) surgical treatment

experienced within the past three months; and d) presence of

missing clinical information. The HCs were physically examined

and found to have no rhinitis, snoring, or adenotonsillar

hypertrophy. Healthy controls met the exclusion criteria.
2.2 Fecal sample collection and
DNA extraction

Fresh fecal samples from all participants and mice were

collected from the Department of Clinical Laboratory, Shanghai

Children’s Hospital, School of Medicine, Shanghai Jiao Tong
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University, and stored at -80°C as soon as possible (<30 min).

Genomic DNA was extracted using Quick-DNA Fecal/Soil Microbe

Kits (Zymo Research, USA), according to the manufacturer’s

instructions. DNA concentration was measured by a Qubit 2.0

(Invitrogen, USA). The DNA quality was estimated using a

Bioanalyzer 2100 (Agilent, USA).
2.3 PCR amplification, sequencing, and
sequence process

The extracted DNA samples were amplified using a set of

primers, 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R

(5’-GGACTACHVGGGTWTCTAAT-3’) (34) targeting the high-

variant V3-V4 region of the 16S rRNA gene via PCR. The PCR

products were detected on a 2% w/v agarose gel, and the targeted

bands were extracted and purified using an AxyPrep DNA Gel

Extraction Kit (Axygen, USA). High-throughput paired-end

sequencing was performed on an Illumina MiSeq instrument

according to the manufacturer’s instructions by Shanghai Mobio

Biomedical Technology Co., Ltd., China. Raw data were deposited

in the NCBI Sequence Read Archive database (Accession Number:

PRJNA893900). All paired-end sequenced reads were merged using

FLASH version 1.2.11 (35) with default parameters. Customed

criteria were used to filter and assign overlapped reads into

different samples: a) no ambiguous bases (N) allowed in reads; b)

the maximum mismatch rate in the overlapping region over 0.05

not allowed; and c) no mismatch in library primers allowed.

Chimeric sequences were removed using UCHIME version 4.2.40

(36), and the 16S “golden standard” from the Broad Institute

(version microbiome util-r20110519, http://drive5.com/uchime/

gold.fa) was used as a reference to match the OTUs.
2.4 Bacterial diversity and
taxonomic analysis

Randomly selected reads from all samples were clustered into

OTUs through the UPARSE pipeline (37) with an identity threshold

of 0.97. The sequences were annotated with the RDP classifier

version 2.6 (38) and set the confidence level as 0.5 according to the

developer’s documents (http://rdp.cme.msu.edu/classifier/

class_help.jsp#conf). Based on OTUs profiles analysis, bacterial a-
diversity was determined by the species richness indices (the Chao 1

estimator and the Ace estimator) and species diversity indices (the

Shannon index and the Simpson index), using the R program

package “vegan.” The rarefaction curves and species accumulation

curves were used to determine the saturation of sample numbers

and sequencing depth. The R program package “vegan” (http://

www.R-project.org/) also was used to calculate the microbiome

distance between samples based on the OTUs profile, which was

statistically tested by the PERMANOVA test.

Differences in bacterial taxonomy, including phylum, class,

order, family, and genus, between both groups were analyzed

us ing the Wilcoxon rank-sum test . The assoc ia t ion

between clinical parameters and taxa was estimated using
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Spearman’s correlation coefficient. The LEfSe method (http://

huttenhower.sph.harvard.edu/lefse/) was applied to screen out

communities with significant differences in AHs. Significance was

detected using the Kruskal-Wallis (KW) sum-rank test, and the

effect size of each feature was evaluated using the LDA score.

PICRUSt 2 (http://github.com/picrust/picrust2) was used to

predict the gut microbe-related KEGG module profiles and

pathways (39).
2.5 Microbial markers for AH and random
forest classification models

Random Forest was used to select discriminative OTUs for the

classifier model using OTU profiles of the discovery set with

significant differences. The generalization error was obtained

using five-fold cross validation. The minimum number of OTUs

with the smallest cross-validation error and SD at the

corresponding point was chosen. The POD index was predicted

with the identified marker OTUs. The classification model was

evaluated using the ROC curve (R 3.3.0, pROC package), and the

AUC was used to represent the ROC effect.
2.6 Antibiotic treatment and fecal
microbiota transplantation

Twenty-one female BABL/c mice (three weeks of age) were

purchased from SPF (Beijing) Biotechnology Co., Ltd. Mice were

administered by oral gavage with dissolved antibiotics containing

ampicillin (1 g/mL), neomycin sulfate (1 g/mL), metronidazole (1 g/

mL), and vancomycin (0.5 g/mL) twice daily for seven days (40).

The bacterial suspension was prepared by randomly selecting ten

stool samples from each group of AHs or HCs individuals and

mixed at equal proportions. 48 hours after the last antibiotic

administration, the mice were intragastrically administered with

bacterial suspension samples or phosphate-buffered saline (PBS) as

a control. An aliquot of 0.2 ml suspension was introduced by gavage

into each mouse twice weekly for eight weeks.
2.7 Quantitative real-time PCR

Fecal pellets were collected from mice without antibiotic

treatment (D0), treated with antibiotics for three days (D3), and

for seven days (D7), respectively. Stool samples were weighed and

stored at -80°C until processing. Total bacterial DNA was extracted

using a TIANamp Stool DNA Kit (TIANGEN BIOTECH CO.,

LTD, Beijing, China), according to the manufacturer’s instructions.

Total RNA was extracted from homogenizing NALT tissues using

Direct-zol™ RNA Miniprep (Zymo Research, USA), and then

reverse transcription of cDNA was performed using HiScript III

All-in-one RT SuperMix Perfect (Vazyme Biotech Co., Ltd,

China), according to the manufacturer’s instructions. The

abundance of total bacteria was evaluated using SYBR green

quantitative polymerase chain reaction with primers 515F (5’-
Frontiers in Immunology 04
GTGCCAGCMGCCGCGGTAA - 3 ’ ) a n d 8 0 5R ( 5 ’ -

GACTACCAGGGTATCTAATCC-3’) to target 16S rRNA genes

(41, 42). In addition, RT-qPCR was performed to measure the

mRNA expression of TLR4 using b-actin as an internal control. The

forward primers of TLR4 and b-actin were 5 ’-ATGG

CATGGCTTACACCACC-3 ’ and 5 ’-GTGACGTTGACAT

CCGTAAAGA-3’, respectively. The reverse primers of TLR4 and

b-actin were 5’- GAGGCCAATTTTGTCTCCACA-3’ and 5’-

GCCGGACTCATCGTACTCC-3’, respectively.
2.8 Flow cytometry

Peripheral blood of 30 participants in each group selected

randomly was collected into collection tubes containing Ethylene

Diamine Tetraacetie Acid (EDTA) and immediately centrifuged at

1000 g for 10 min. Plasma was stored at -20°C. The cytokines

including IL-5, IFN-a, IL-2, IL-6, IL-1b, IL-10, IFN-g, IL-8, IL-17,
IL-4, IL-12P70 and TNF-a were captured by antibody-coated beads

and measured by flow cytometry following the manufacturer’s

instructions (Raisecare, China).

Whole blood (50 mL) was incubated with antibodies at room

temperature for 15 min. Subsequently, to eliminate the interference

of RBCs, the lysing solution was incubated in the dark for 15 min.

The cells were then washed three times with PBS, resuspended in

0.5 mL, and analyzed on a flow cytometer (BD FACS Canto II,

Becton, Dickinson and Company, USA). For CD4/CD8 ratio

detection, PerCP anti-mouse CD45 (1:200, 103129, BioLegend,

San Diego, CA, USA), APC anti-mouse CD3 (1:200, 100235,

BioLegend), FITC anti-mouse CD4 (1:200, 100405, BioLegend),

and PE anti-mouse CD8a (1:200, 100707, BioLegend) were used.

PerCP anti-mouse CD45, FITC anti-mouse CD4, APC anti-mouse

CD25 (1:200, 101909, BioLegend), and PE anti-mouse CD127

(1:200,135009, BioLegend) antibodies were used to gate Treg cells.

To analyze Th17 cells, 100 mL whole blood was added to an

equal volume of RPMI 1640 culture medium (GIBCO, Grand

Island, NY, USA). One microliter of Phorbol 12-myristate 13

acetate (PMA)/Ionomycin and one microliter of Brefeldin A

(BFA)/Monensin were added and mixed evenly, followed by

incubating for four hours. After stimulation, 100 mL of the cell

mixture was incubated with PerCP anti-mouse CD45 and FITC

anti-mouse CD4 antibodies for 15 min. After lysing the red blood

cells and washing, the cell pellets were fixed and permeabilized

using the Transcription Factor Staining Buffer Kit (Multi Sciences,

China). An additional PE anti-mouse IL-17A (1:200, 506903,

BioLegend) antibody was added before flow cytometry analysis.
2.9 Histological staining

The NALT samples were fixed in a 4% paraformaldehyde

solution. The fixed tissues were rinsed overnight with running

water, dehydrated in an alcohol gradient, cleared in xylene, and

embedded in paraffin. Sections with a thickness of 4 mm were

stained with hematoxylin and eosin (HE) and sealed with

neutral gum.
frontiersin.org

http://huttenhower.sph.harvard.edu/lefse/
http://huttenhower.sph.harvard.edu/lefse/
http://github.com/picrust/picrust2
https://doi.org/10.3389/fimmu.2023.1277351
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1277351
2.10 Immunohistochemistry staining

Tissue sections were dewaxed and dehydrated successively, and

rinsed with PBS. Heat-mediated antigen retrieval was performed in

Tris-EDTA buffer pH 9.0 for 20 min, followed by rinsing with PBS.

The sections were then treated with 0.3% H2O2 for 10 min to

inactivate endogenous peroxidase. The sections were then

incubated separately with anti-FOXP3 antibody (1:100, ab215206,

Abcam, Cambridge, MA, USA), anti-ROR gamma antibody

(1:1000, ab207082, Abcam), anti-GATA3 antibody (1:500,

ab199428, Abcam), and anti-T-bet/Tbx21 antibody (1:1000,

ab300451, Abcam) at 37°C for one hour and rinsed with PBS.

Next, the sections were incubated with goat anti-rabbit IgG

secondary antibody at 37°C for 20 min, rinsed with PBS, and

stained with DAB. Finally, the sections were counterstained with

hematoxylin and observed under a light microscope.
2.11 Statistical analysis

Means and standard deviations analyzed by Student’s t-test or

Mann-Whitney U test were used to represent continuous variables,

including age, BMI, onset age, duration of disease, and the ratio of

Th17/Treg in mice plasma. Percentages analyzed by the Chi-square

test were used to represent categorical variables, including sex.

Results of mice plasma were analyzed using one-way analysis of

variance (ANOVA) comparing means for AH, HC, and PBS groups,

or the Kruskal-Wallis test for skewed data. All statistical tests were

performed using GraphPad Prism 9.0.0 (GraphPad, La Jolla, CA,

USA). Statistical significance was defined as p < 0.05 (two tailed).
2.12 Ethical statement

This study was performed in accordance with the guidelines of

the Declaration of Helsinki and approved by the Shanghai

Children’s Hospital Ethics Review Committee (2021R124-E01).
3 Results

3.1 Clinical characteristics of the
recruited participants

A total of 219 participants were recruited for this study,

including 119 patients with AH and 100 healthy controls (HCs).

The sex, age, and body mass index (BMI) of AH patients and

healthy controls were matched (Table 1). There were no significant

differences in these indices between the two groups (Supplementary

Table 1). In addition, the serum levels of 12 cytokines including IL-

5, IFN-a, IL-2, IL-6, IL-1b, IL-10, IFN-g, IL-8, IL-17, IL-4, IL-12P70
and TNF-a were detected in the selected participants. Among them,

the levels of IL-17 and IL12P70 were significantly changed, with an

about two-fold increase for IL-17 (Supplementary Figure 1,

Supplementary Table 2).
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3.2 Comparison of gut microbial diversity
between AH and HC

After 16S rRNA sequencing, 21001482 raw reads were obtained

from all fecal samples with an average length of 456 bp. Unrepeated

reads of high quality were clustered into 1781 OTUs with a

similarity of 97% (Supplementary Table 3). The flattening trend

of species accumulation curves suggested that the sample size of

both groups was sufficient for downstream analysis (Supplementary

Figure 2 ). In addition, OTUs richness nearly approached saturation

in both groups as the number of sequencing reads increased, as

indicated by the rarefaction curve (Supplementary Figure 3).

Within-individual diversity of the gut microbiome is often related

to health status. To assess the gut microbial a-diversity, species
richness indices, including Ace and Chao, and species diversity

indices, including Shannon and Simpson indices, were compared

between AH patients and HCs. Only a slight decrease in a-diversity
in AH patients was inferred using Simpson’s index (p < 0.05). There

were no significant differences in the other three indices between the

two groups (Figures 1A–D, Supplementary Table 4).

Principal coordinate analysis (PCoA) based on the systematic

relationship of OTUs distribution was performed to compare the

composition of the microbial communities of distinct samples

between the different groups. The b-diversity composition of the

gut microbiome was significantly different between AH and healthy

controls, as inferred by permutational multivariate analysis of

variance (PERMANOVA) (p < 0.001, Figure 1E). The difference

in b-diversity was also revealed by non-metric multidimensional

scaling analysis (NMDS) (Supplementary Figure 4A). The

consistency between b-diversity and group classification based on

diseases was validated by canonical analysis of principal coordinates

(CAP) (p < 0.001) (Supplementary Figure 4B). Among the total of

1781 OTUs, 1253 OTUs were shared in both groups. Strikingly, 377

OTUs were unique to AH, whereas 151 OTUs were uniquely

assigned to HCs (Figure 1F).
TABLE 1 Clinical and demographic characteristics of recruited
participants (AH, adenoid hypertrophy; BMI, body mass index).

Clinical indices Recruited
participants (n = 219)

P
value

AH
(n = 119)

HC
(n = 100)

Sex (Male/Female) 66/53 57/43 0.8193

Age (year, mean ± SD) 4.59 ± 1.42 4.86 ± 1.59 0.1825

BMI (kg.m-2, mean ± SD) 16.06 ± 2.30 16.61 ± 3.78 0.2091

Onset age (year, mean ± SD) 3.50 ± 1.27 – –

Duration of disease (day, mean ±
SD)

400.30 ±
248.30

– –
fron
Continuous variables were expressed as means ± standard deviation. Categorical variables
were expressed as percentages. Continuous variables were compared using Student t test or
Mann-Whitney U test, and categorical variables were compared using Chi-square test or
Fisher’s exact test.
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3.3 Alternations of gut microbiome
taxonomic composition in AH patients

Next, we compared the gut microbial taxonomic composition

in both AH and HC groups (Figures 2A, B, Supplementary

Tables 5, 6). At the phylum level, Firmicutes, Bacteroidetes,

Proteobacteria, and Actinobacteria were dominant in the gut

microbiome. Bacteroides, Bifidobacterium, Escherichia-Shigella,

Faecalibacterium, and Subdoligranulum were the most abundant

genera. Compared with HCs at the phylum level, Verrucomicrobiota

and Patescibacteria were significantly decreased in the AH group

(Figure 2C, Supplementary Table 7). Additionally, 28 genera were

significantly enriched, whereas 76 genera were significantly decreased

in AH. At the genus level, the relative abundances of Bacteroides,

Faecalibacterium, and Ruminococcus gnavus were higher, while

Streptococcus, Eubacterium coprostanoligenes, Akkermansia, and

Oscillospiraceae were lower than those of HCs. (Figure 2D,

Supplementary Table 8).

We also compared the gut microbial composition between the two

groups at class, order, and family levels. At the class level,Negativicutes

was significantly enriched, while four bacterial communities, including

Bacilli, Coriobacteriia, and Verrucomicroniae, were reduced in AHs

compared to HCs (Supplementary Figure 5A, Supplementary

Table 9). Compared with HCs at the order level, Pseudomonasales

and Burkholderiales were increased, and Lactobacillales,

Coriobacteriales, and Peptostreptococcales-Tissierellales showed a

significant decrease in AH (Supplementary Figure 5B,

Supplementary Table 10). At the family level, seven bacterial

communities, including Veillonellaceae, Acidaminococcaceae, and

Sutterellaceae, were enriched, while 17 bacterial communities, such

as Akkermansiaceae, Streptococcaceae, Erysipelatoclostridiaceae, and
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Coriobacteriaceaewere significantly decreased in AHs (Supplementary

Figure 5C, Supplementary Table 11).
3.4 The key discriminative microbial
feature in AHs

We then used linear discriminant analysis effect size (LEfSe) to

identify the key distinctive features of the gut microbiota in AHs. Based

on linear discriminant analysis (LDA), 23 genera were identified to be

differentially abundant between these two groups at a relatively strict

cutoff (LDA > 3, p < 0.05). Compared with HCs, nine genera, including

Bacteroides, Lachnospiraceae, and Ruminococcus gnavus, were enriched

in AH patients, whereas 14 genera, including Akkermansia and

Eubacterium_coprostanoligenes, were significantly reduced (Figure 3A,

Supplementary Table 12). In addition, a lower abundance of the

Proteobacteria phylum, Bacilli, Coriobacteriia, Verrucomicrobiae

classes, and Christensenellales, Pseudomonadales orders was found in

AH children, while abundances of the Negativicutes class and

Bacteroidaceae family were higher in AHs (Figure 3B). More

information can be found in the supplementary data (Supplementary

Figure 6, Supplementary Table 12). These results indicated that children

with AH have significantly distinct microbial signatures.
3.5 Microbial functions changes
related to AH

Phylogenetic Investigation of Communities by Reconstruction

of Unobserved States 2 (PICRUSt2) and 16S rRNA gene sequences

were used to predict the AH-related gut microbial functions.
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FIGURE 1

Differential characteristics of gut microbial diversity in AH patients (n = 119) and HCs (n = 100). (A–D) The cloudplot of a-diversity indices including the
Ace index, the Chao index, the Shannon index, and the Simpson index showed differences between AH patients and HCs. (E) The PCoA analysis
displayed the significant discrepancies in the gut microbial community between AH and HCs. (*, P < 0.05). (F) A Venn diagram showing the overlaps of
OTUs between groups. AH, adenoid hypertrophy; HCs, healthy controls; OTUs, operational taxonomic units; PCoA, principal co-ordinates analysis.
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Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, 32 modules showed significant differences between AH

and HCs, of which 9 and 23 were enriched in AH patients and

HCs, respectively (p < 0.05, LDA > 3; Figure 3C, Supplementary

Table 13). Compared with HCs, metabolic systems including

ribose transport system, phosphotransferase system (PTS)

system, galactitol/glucitol sorbitol/mannitol specific II

component, lipopolysaccharide (LPS), ATP binding cassette

(ABC) transport system, and uronic acid were dramatically

upregulated, while 5-phospho-D-ribosyl-a-1-diphosphate
(PRPP) biosynthesis and nicotinamide adenine dinucleotide

(NAD) biosynthesis-related modules were downregulated in

AHs. The influenced pathways by the gut microbiota from AHs

included the upregulation of porphyrin and chlorophyll

metabolism and the downregulation of linoleic acid metabolism

(p < 0.05, LDA > 3; Figure 3D, Supplementary Table 13).
3.6 Diagnostic model of AH based on the
gut microbial markers

At present, the diagnosis of AH relies mainly on nasal

endoscopy. The growing patient population demands the
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development of a more efficient and noninvasive technique.

Hence, in this study, we constructed a diagnostic model for AH

based on gut microbial markers. In the discovery cohort, 77

children with AH and 53 healthy controls living in a local region

of East China (Zhejiang Province, Jiangsu Province, and Shanghai

City) were used to construct a random forest classifier model.

Among the 29 differentially abundant OTUs (Supplementary

Figure 7), eight key OTUs were selected by fivefold cross-

validation of the random forest classifier model to assess the

diagnostic potential of gut microbial markers for AH using the

area under the curve (AUC) (Figure 4A, Supplementary Table 14).

The consistency of the results predicted by the decision trees based

on these eight key OTUs and the actual disease condition was

represented by the probability of disease (POD) index. The POD

value of AH significantly increased compared to that of the HCs

(p < 0.001, Figure 4B, Supplementary Table 15). The classification

performance of the model was assessed with the area under the

receiver operating characteristic (ROC) curve (AUC) of the POD

index. In the discovery cohort, this microbial panel efficiently

distinguished AH patients from healthy controls (AUC = 0.9851;

p < 0.0001; Figure 4C), suggesting its potential for diagnosing AH.

To test the discriminative ability of these eight microbial

markers, a validation cohort containing 42 AH patients and 47
A B

D

C

FIGURE 2

Gut microbiome taxonomic composition in AHs (n = 119) and HCs (n = 100). (A) Average compositions and relative abundance of the gut microbial
community in both groups at the phylum level. (B) Average compositions and relative abundance of the gut microbial community in both groups at
the genus level. (C) At the phylum level, the abundances of two phyla were significantly reduced in AHs. (D) Different relative abundance of the gut
microbiota between AHs and HCs. AH, adenoid hypertrophy; HCs, healthy controls. ***, P < 0.001; **, P < 0.01; *, P < 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1277351
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1277351
healthy controls was recruited from other regions of China,

including Gansu province in the Northwest, Tibet in the West

and Guangdong province in the South of China (Supplementary

Table 16). In the validation cohort, the POD value was observably

higher in AHs than that in healthy control samples (p < 0.001;

Figure 4D, Supplementary Table 17), and the AUC value was

0.9782, suggesting high accuracy in differentiating AH from HCs

(p < 0.0001; Figure 4E). These data validated the remarkable

potential of the classifier model based on gut microbial markers

for the diagnosis of AH.
3.7 Associations of gut microbiota with AH
clinical parameters

Next, we assessed the associations between the clinical parameters

and gut microbiota. At the genus level, BMI was negatively correlated

with Oscillospiraceae_UCG-007. Male patients were positively

correlated with a higher level of Anaerofustis. Moreover, the severity

of the blockage was positively correlated with Flavonifractor but
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negatively correlated with Bacilli_unclassified (Figure 5A). Among

the eight OTU markers selected by the classifier model, the onset of

AH was positively correlated with OTU172 (Pseudomonas), whereas

the duration of illness was negatively correlated with OTU958

(Faecalibacterium) (Figure 5B). We then divided the AH children

and healthy controls into three groups according to age (Age1: 2–3

years old; Age2: 4–5 years old; Age3: 6–8 years old). The ratio of

Firmicutes to Bacteroidetes in healthy children gradually increased

with age. In contrast, this ratio remained constant in children with

AH, although no significant differences were detected (Figure 5C).

Interestingly, the abundance of Bacteroides changed with age in the

AH and HC groups (Figure 5D). Significant differences could have

been detected by the age stage of 6-8 years.
3.8 Gut microbiota from AH patients
affects immune homeostasis in mice

To investigate the effect of gut microbiota on adenoid

enlargement, 21 mice were orally administered bacterial
A B

DC

FIGURE 3

LEfSe analysis based on LDA effect size demonstrated differences in taxonomic composition of AH patients (n = 119) compared to HCs (n = 100)
showed by histogram (A) and cladogram (B). |LDA scores| > 3, P < 0.05. The significantly changed KEGG modules (C) and pathways (D) with LDA
score > 3 predicted using PICRUSt2. |LDA scores| > 3, P < 0.05. AH, adenoid hypertrophy; HCs, healthy controls; LEfSe, linear discriminant analysis
effect size; LDA, linear discriminant analysis.
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suspension from the participant stool for eight weeks (Figure 6A).

Before performing FMT, the mice were administered an antibiotic

cocktail for seven days to reduce intestinal bacteria (Figure 6B).

Similar with the results of participants, we found Akkermansia

genera was significantly reduced in the mouse feces of AH group

(Supplementary Figure 8). Flow cytometry analysis showed that,

compared with other groups, the population of Th17 cells among

the peripheral blood CD4+ T cells was significantly increased in the

AH group [p < 0.0001 (HC), p < 0.001 (PBS); Figure 6C]. In

contrast, the proportion of Treg cells in mice transplanted with

microbial samples from AH individuals dramatically decreased

[p < 0.0001 (HC), p < 0.05 (PBS); Figure 6C]. Compared with

mice that received PBS only, the Th17 and Treg subsets in the HC

group increased slightly without a significant difference. In addition,

the Th17/Treg in AH group was significantly higher than HC

group. No difference was found in the CD4/CD8 ratio among the

three groups (Supplementary Figure 9). These results indicated that

the proportion of T lymphocyte subsets in the peripheral blood of

mice receiving FMT from pediatric patients with AH underwent
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pronounced changes, implying that the gut microbiota of AH

patients may induce a systemic immune imbalance.

In the NALT of transplanted mice, we found that the gene

expression level of TLR4 in AH group was significantly higher than

that in HC group (Supplementary Figure 10). Histological

examination showed that lymphocytes in the tissue of the AH

group infiltrated the surrounding epithelial tissue (Figure 6D). We

used ROR-g tomark the Th17 subset in NALT. However, the number

of ROR-g+ Th17 cells increased only slightly. Nevertheless, the

number of GATA3+ Th2 cells was significantly higher in the

NALT of the AH group than that in the HC group (Figure 6E). In

addition, FOXP3+ Treg cells increased more than three times in the

NALT of the AH group compared to the HC group, although this

difference was not statistically significant. Therefore, the ratio of Th2/

Treg was ten-fold higher in the AH group than in the HC group. In

addition, T-bet/Tbx21+ Th1 cells were not identified in the NALT of

either group. These results suggested that dysregulation of the gut

microbiota plays an important role in controlling allergic Th2

inflammation in the homologous organ of the adenoid.
A B
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FIGURE 4

Diagnostic potential of gut microbial markers in AH patients based on random forest classifier model. (A) Identification of gut microbial markers by
random forest classifier model. (B) Compared with HCs (n = 53), the POD value was higher in AH patients (n = 77) in the discovery cohort. (C) The POD
index reached an AUC value of 0.9851 with 95% CI of 0.9654 to 1 between AHs (n = 77) versus HCs (n = 53) in the discovery cohort (P < 0.0001). (D) In
the validation cohort, the POD value was higher in AH patients (n = 42) than in HCs (n = 47). (E) The POD index reached an AUC value of 0.9782 with
95% CI of 0.9476 to 1 between AHs (n =42) versus HCs (n = 47) in the validation cohort (P < 0.0001). AH, adenoid hypertrophy; HCs, healthy controls;
POD, probability of disease; CI, confidence interval; AUC, area under the curve.
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4 Discussion

In recent years, it has been widely considered that disturbed

normal development of the gut microbiome in children causes a

series of chronic diseases, such as obesity (43), hypertension (44),

and atherosclerotic disease (45). Adenoid hypertrophy is the

most common cause of upper airway obstruction in children

and adolescents. The local microecology of adenoid hypertrophy

has been widely studied with sequencing-based methodology.

For instance, Bacteroides and Streptococcus were found in the

crypts of adenoid, Fusobacteria, Pseudomonas and Burkholderia

were observed in adherent bacterial infiltrates and layers, and

Heamophilus influenzae infiltrated in the epithelium of tissue

(46). However, no consensus conclusion has been made so far,

suggesting that other etiological mechanisms may also exist.

Currently, an effective treatment approach for AH is

adenoidectomy, indicated by overnight polysomnography and

fiber nasopharyngoscopy (33). To date, gut microbiome has

emerged as a new medical tool to prevent, diagnose, and treat

various immune-related respiratory tract diseases, including AR
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and asthma. Compared with endoscopic diagnosis with low

cooperation and surgical treatment with infection risk of

antibiotic resistant bacteria, gut bacterial-markers may also be a

novel method to diagnose and treat adenoid hypertrophy. However,

few studies have examined the relationship between AH and the gut

microbiome in children. In this study, we characterized the

composition and function of the gut microbiome in children with

AH compared to those in HCs. We also identified eight gut

microbial markers that presented strong diagnostic potential to

distinguish AHs from HCs. Although these results need to be

validated further, they may also provide novel therapeutics for the

clinical treatment of children with AH.

Our study comprehensively elucidated the effect of gut

microbial profiling on AH in children using 16S rRNA

sequencing. Herein, we found that only a slight decrease in the

diversity could be detected by the Simpson index, which is revealed

by the increase of the index value. Whereas no significant

differences in a-diversity between AH and HCs were detected by

the other three indices. Interestingly, it has been shown that

children who developed asthma showed low diversity of gut
A
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FIGURE 5

The associations of clinical parameters with the gut microbiota. (A) The heat map of Spearman’s rank correlation coefficients between the gut
microbiota and clinical parameters (P < 0.05). *P < 0.05; **P < 0.01; ***P < 0.001. (B) The heat map of Spearman’s rank correlation coefficients
between the eight OTU markers and clinical parameters (P < 0.05). *P < 0.05; **P < 0.01; ***P < 0.001. (C) The Firmicutes/Bacteroidota ratio
changes with age in AH patients and HCs. (D) The abundance pattern of Bacteroides in different age stages in the AH patients and HCs. AH, adenoid
hypertrophy; HCs, healthy controls.
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microbiota (47), and the alteration of bacterial diversity in children

with AR is still debated (22, 48). Thus, the unchanged a-diversity
may be a specific feature for AH that is different from other allergic

airway diseases.

As shown in the results, the gut microbial taxonomic

composition and abundance of diverse bacteria in children with
Frontiers in Immunology 11
AH, were greatly different from HCs at phylum, class, order, family,

and genus level. The abundance of two phyla, Verrucomicrobiota

and Patescibacteria, significantly reduced in AH patients relative to

HCs. Verrucomicrobia is a small phylum involved in nitrogen

fixation. This phylum resides in the mucous lining of the

intestinal tract with high abundance in healthy individuals,
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FIGURE 6

Gut microbiota in AH patients induce alternation of immune status in mouse NALT. (A) The scheme of experimental design for the fecal microbiota
transplantation into mice. (B) The density of bacterial DNA copy number in mice feces during antibiotic treatment. ****, P < 0.0001. (C) The proportion of
Th17 and Treg subsets were analyzed by flow cytometry and compared among AH, HC, and PBS groups. ****, P < 0.0001; ***, P < 0.001; *, P < 0.05. (D)
H&E staining of NALT from mice subjected to FMT (red arrow: lymphocyte; black arrow: epithelial cell). (E) Immunohistochemical analysis of lymphocyte
subtypes in NALT and the statistical comparison. AH, adenoid hypertrophy; HCs, healthy controls; NALT, nasal-associated lymphoid tissue; FMT, fecal
microbiota transplantation; PBS, phosphate buffer saline. **, P < 0.01; ns, no significance.
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suggesting their roles in glucose homeostasis of the human gut (49).

Verrucomicrobia phylum are also positive correlated with the

expression of FOXP3 and can be essential to a healthy gut due to

its anti-inflammatory properties (50). At the genus level, 28 genera

bore remarkable advantages in AHs while 76 genera were

significantly dominant in HCs. It has been reported that children

with a relatively high abundance of Bacteroides genus and low

abundance of Bifidobacteria, Akkermansia and Ruminococcus

gnavus had a greater risk of developing asthma and allergic

rhinitis (51). In consistent with our data showing that Bacteroides

had a marked increase and Akkermansia decreased in the gut of AH

patients. Moreover, as the most predominant genus, the abundance

of Bacteroides in AHs appears constantly elevated with age, in an

opposite trend to that in HCs. However, Ruminococcus gnavus was

significantly higher in the AHs. It was evident that the cell wall of

Ruminococcus gnavus contained glucorhamnan. When the

abundance of Ruminococcus gnavus increased, the polysaccharide

stimulated the secretion of proinflammatory cytokines in a TLR4-

dependent manner in the intestinal epithelial cells (52, 53), thus, it

may play an important role in the immune response. Among the

reduced bacterial genera, Streptococcus is commensal in the human

gut, which can attenuate the mucosal proinflammatory state

induced by LPS (54). Eubacterium hallii is an important butyrate

producer. This lipid has been shown to induce the expression of

FOXP3 by inhibiting histone deacetylation, resulting in systemic

anti-inflammatory properties via the expansion of Tregs (21), which

was reported to be significantly lower in patients with allergic

rhinitis (48). Similar reduction pattern between AH and allergic

rhinitis was also observed for Romboutsia, Collinsella and Dorea.

Oscillospira is an understudied genus of anaerobic bacteria.

Recent evidence has shown that Oscillospira was enriched in lean

subjects for degrading fibers and decreases in abundance in

inflammatory diseases, probably involved in SCFAs production

(55). Akkermansia belongs to Verrucomicrobia phylum, which

inhabits the human gut intestinal tract for mucin degradation.

Numerous studies have indicated that Akkermansia played an

important anti-inflammatory role in the progression of diseases

such as obesity (20, 56). As in the case of AH, reduced Akkermansia

may lose its ability to protect the intestinal barrier, leading to

systemic inflammation.

The effects of the gut microbiota on pathology of the other organs

are mainly mediated by bacterial metabolites, which may influence

immune responses in distal parts of the body (57). Compared to HCs,

the linoleic acid metabolism was disrupted in children with AH.

Linolenic acid can improve the bacterial community, intestinal wall

barrier, and inflammatory environment, and reduce the level of LPS

in mice (58). In contrast, porphyrin and LPS metabolism were

enhanced in AHs. Porphyrins are intermediate metabolites

involved in the biosynthesis of vital molecules, including

cobalamin. Bacterial porphyrins are known to be proinflammatory

(59). LPS can act locally and systemically after crossing the gut barrier

and entering circulation. Elevated concentrations of LPS in peripheral

blood were associated with chronic immunological diseases (60). In

our study, the biological metabolic function of ribose and the

carbohydrate transport system, such as the PTS system and ABC
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transport system, were greatly active in AH, while the metabolism of

PRPP was significantly decreased. A previous study demonstrated

that the polysaccharide-utilization loci (PUL) of Bacteroides was a

symbol of a ribose-utilization system (61). Bacteroides spp. could then

induce the secretion of IL-6, which is a pivotal issue in NF-kB-
induced inflammatory and induction of STAT3 signaling to promote

Th17 responses (62–66). The activation of the PTS system,

extensively distributed in Eubacteria, inhibited aromatic amino acid

biosynthesis, similarly, the reduction of PRPP also suppressed the

biosynthesis of tryptophan (67–70). The reduction of kynurenine and

indole, endogenous and bacterial metabolites of tryptophan,

respectively, activated the production of proinflammatory

chemokines and NF-kB (71–73). These results suggested that the

alterations in gut microbiome function in AHmay be associated with

the production of metabolites.

Notably, our study is the first to show that AH patients can be

distinguished from HCs by their gut microbiota. We selected eight

optimal microbial markers to distinguish between patients with

AH based on the random forest model. The model not only

achieved satisfactory classification efficacy but also had strong

diagnostic potential. More importantly, we also conducted

geographical validation of gut microbial marker-based AH

classifiers. Previous studies have shown that geographical

distance and diet were the predominant influences on gut

microbiome variation (74, 75). We used samples from AH

children who lived in East China, including Zhejiang Province,

Jiangsu Province, and Shanghai City, as the discovery set and

achieved a high accuracy (AUC = 0.9851). Populations living in

these areas appear to be a common culture in the South Yangzi

River and have very similar dietary habits. A validation set

comprising children with AH from other regions achieved an

AUC of 0.9782. These subjects came from areas such as Sichuan

province where chili peppers are preferred food, Guangdong

province where seafood is popular, and Yunnan and Tibet,

where ethnic minorities live. The performance of the AH

classifier model revealed that despite the influence of diet and

genetic background on gut microbial variation, gut microbiome-

targeted biomarkers have the potential to be used as noninvasive

tools for AH in the future. Firmicutes and Bacteroidetes are the

two major bacterial phyla constituting 90% of the total microbial

community. Firmicutes to Bacteroidota (F/B) ratio was shown to

significantly increase throughout the life course (76). Imbalance in

F/B ratio was frequently reported in various chronic diseases (77).

Indeed, this ratio did not increase with age as in healthy children,

but remained at a stable level in AH patients, which may suggest

that the intestinal microbiota of AH children is in a relatively fixed

state without changing over time. Therefore, gut microbiota-

targeted biomarkers can potentially be used to predict the

occurrence of AH. Nevertheless, this model needs to be

validated in a prospective study with a larger cohort.

The mechanisms mediating communication between the gut

and distal organs are still under investigation, but it has been

suggested that the immune system is one of the most critical ways

to stimulate responses at distal sites (78, 79). We found that

consistent with previous reports in children with AH (27, 80),
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Th17 cells significantly increased while Treg cells dramatically

decreased in the peripheral blood of mice subjected to FMT from

AH patients. Thus, the ratio of Th17/Treg subsets significantly

elevated compared with that in mice transplanted with bacteria

from HCs, suggesting that gut microbial dysbiosis in AH patients

may lead to the dysregulation of systemic immunological

processes. However, the number of tissue-resident Th17 cells in

the AH group was slightly higher than that in the HC group.

Instead, tissue-resident Th2 subsets drastically increased in the

NALT of the AH group, while Treg cells reduced, leading to a

disrupted Th2-Treg balance. Interestingly, in children with

adenotonsillar regrowth, more GATA3+ Th2 cells and fewer

FoxP3+ Treg cells were also observed at all ages (28). Although

it is generally assumed that AH is associated with inflammation

caused by recurrent respiratory infections and local pathogen

stimulation, whether tissue can retract after recovery from acute

infection varies between individuals. The recurrence and

persistence of AH imply that Th2-represented allergic reactions

may play a greater role in the development of the disease than the

Th17 inflammatory response that responds to pathogen infection.

Our results indicated that dysbiosis of the intestinal microbiota

can cause changes in the allergic status of adenoids, possibly

driving AH. This may also be closely related to the tendency of

AH patients to accompany allergic rhinitis and develop asthma

(81), in which Th2 cells hold a central position in the pathogenesis

(82). The expansion of the Th2 subset may be due to the drastic

reduction of Treg cells systemically and locally. Previous

studies found that SCFAs produced by gut microbiota are

important immunomodulators that increase the expression of

the transcription factor FOXP3 via inhibition of histone

deacetylation to induce the differentiation of Treg cells (83–85).

Eubacterium hallii, Oscillospira and Akkermansia in the gut are

involved in the production of SCFAs, primarily acetate,

propionate, and butyrate. Therefore, the decreased abundance of

these bacteria in the gut microbiota of children with AH may

enhance susceptibility to inflammation by suppressing Treg cells,

leading to long-lasting pathological symptoms. After eight weeks

of FMT, we found that the colonization of Akkermansia genera

dramatically decreased in mice transferred with microbiota

suspension from patients with AH, which is accompanied by the

increased gene expression of TLR4 in the NALT tissue of mice.

Numerous studies have indicated that Akkermansia is involved in

the regulation of various chronic diseases (86–88). Akkermansia

protects the intestinal mucus layer and maintains intestinal

homeostasis, reducing the entry of LPS into the bloodstream

(89). Vesicles secreted by Akkermansia are also able to reduce

the expression of TLR4, thereby regulating the NF-kB pathway

(90). Therefore, insufficient Akkermansia genera might disrupt

the balance of Th17/Treg through activating TLR4 signaling

pathway. Details of the Akkermansia-specific regulatory

mechanisms for AH will be intensively investigated in our

future studies.

There were still several limitations worth to be discussed. First,

we examined the changes of NALT of mice after eight weeks of fecal

microbiota transplantation, when the mice were 12-week-old.
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According to Dutta et al’s estimation (91) and the guideline of

the Jackson lab (https://www.jax.org/research-and-faculty/

research-labs/the-harrison-lab/gerontology/life-span-as-a-

biomarker), the transplanted mice at the experimental endpoint are

approximately equivalent to the 20-year-old adolescents. Since AH

in human usually occurs in children under six years old, we did not

prolong our observation to the adult in mice, although longer

transplantation may induce more drastic response. Whether this

time point is suitable should be proved by time series experiments.

Second, due to the limitation of the dietary information of children

in this study, we cannot exclude the influence of diet habits. That

means the uniqueness of patients’ interests on diet might play the

driving role for AH. The microbiome differences in AH may only

reflect their dietary preferences as argued for the potentials of the

gut microbiome to autism spectrum disorder (92). Nevertheless, the

distinct immunological changes that FMT mice displayed under the

same growing conditions still suggest the contributions derived

from the gut microbiome to the regulation of AH.

In this study, we characterized the different gut microbial

compositions and functions of AH compared to those of HCs. In

addition, we provided a gut microbial marker-based noninvasive

diagnostic tool for distinguishing between AH and HC subjects

and validated its efficiency cross-regionally. The predictive

potential of this tool for AH occurrence and postoperative

recurrence is implied in our data and requires further follow-

up. Furthermore, the causal effect of intestinal dysbiosis on the

balance of adenoid immunity was preliminarily demonstrated.

Our study provides new insights into AH pathogenesis and

provides novel directions for the treatment of adenoid

hypertrophy in children.
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