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During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix

proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to

the loss of hepatocyte function, portal hypertension, variceal bleeding, and

increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic

and reversible process, however, from the cirrhotic stage, there is significant

progression to hepatocellular carcinoma. Both liver-resident macrophages

(Kupffer cells) and monocyte-derived macrophages are important drivers of

fibrosis progression, but can also induce its regression once triggers of chronic

inflammation are eliminated. In liver cancer, they are attracted to the tumor site

to become tumor-associated macrophages (TAMs) polarized towards a M2-

anti-inflammatory/tumor-promoting phenotype. Besides their role in

thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor

development by secreting profibrogenic factors and regulating the innate

immune response, e.g., by interacting with monocytes and macrophages.

Here, we review recent literature on the role of macrophages and platelets

and their interplay in liver fibrosis and hepatocellular carcinoma.
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Liver physiology in health and disease

The liver is a highly diversified organ and as such is involved in numerous key

metabolic processes e.g., of lipids, proteins, complex carbohydrates, glucose and

xenobiotics (1–4). Moreover, the liver plays an important role in immune regulation (5)

and hemostasis. Apart from most coagulation factors (6), hepatocytes synthesize

thrombopoietin (TPO), the master regulator in platelet production and maintenance (7).

While chronic liver diseases leading to advanced fibrosis and cirrhosis are associated with

bleeding disorders and thrombocytopenia due to splenomegaly and hepatocyte synthetic
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failure, hypercoagulability and thrombosis add to the picture, which

illustrates the impact that disbalances within the liver can have on

the tightly controlled effector cascades in hemostasis (8, 9).

The liver receives blood from the portal vein as well as from the

hepatic artery and comes into close contact with nutrients,

microbial metabolites, and antigens, which originate from the

intestine (10). By default, the liver’s immune milieu has been

primed for tolerance during early childhood, usually suppressing

immune reactions against gut-derived antigens that are sensed as

harmless or beneficial to the body (11–13). Exogenous stimuli can

overcome the tolerance promoting role of liver (innate) immune

and sinusoidal endothelial cells, leading to chronic liver diseases

(CLDs). These CLDs, when left untreated, can progress to fibrosis,

cirrhosis and hepatocellular carcinoma (HCC) which account for

two million deaths per year and a much higher morbidity (14).

Triggers that can drive CLDs are persistent viral hepatitis B and

C, alcohol abuse leading to alcohol-associated liver disease (ALD),

autoimmune hepatitis including (autoimmune) biliary diseases,

genetic liver diseases or drug-induced liver injury. Moreover,

today the most common CLD is metabolic dysfunction-associated

steatotic liver disease (MASLD), formerly known as nonalcoholic

fatty liver disease, with a global prevalence of about 20-40% (15, 16).

The definition was recently amended to include at least one of four

cardiometabolic risk factors associated with steatohepatitis, namely

obesity, type 2 diabetes, hypertension and dyslipidemia

(triglycerides/cholesterol) (17). Furthermore, additional ‘second

hits’ determine the severity of MASLD, including an association

with increased alcohol consumption, now defined as MetALD (16).

MASLD can be further differentiated into metabolic dysfunction-

associated steatohepatitis (MASH), formerly non-alcoholic

steatohepatitis, characterized by chronic inflammation, including

hepatocyte damage (lipoapoptosis and ballooning), that promote

progressive liver fibrosis (18). MASH is found in up to 20% of

MASLD patients and incurs a high risk of cirrhosis development,

where 9-25% of the patients show a cirrhotic liver within 5-10 years

(19). Importantly, in CLD with underlying cirrhosis vs. its absence,

the risk for developing HCC is increased up to 200-fold, with an

incidence of 1-6% once cirrhosis has developed (20). Here, we will

give a short overview about the pathomechanisms of liver fibrosis as

they relate to the role of macrophages and platelets, and especially

their interactions in liver fibrosis. While this research has just

begun, it promises to not only yield novel insights into the

pathogenesis of fibrosis progression but also reveal new drivers of

HCC development that may lead to advanced antifibrotic or HCC-

directed therapies.
Pathophysiology of liver fibrosis

Fibrosis defines a pathological wound healing response, and

fibrosis progression results from ‘wounds that do not heal’ (18, 21–

24). Here, activated (myo)fibroblasts express and deposit excessive

amounts of extracellular matrix (ECM) proteins, most prominently

interstitial collagens type I, III and VI, and basement membrane

collagen type IV, but also hundreds of other collagenous and non-

collagenous proteins, glycosaminoglycans and proteoglycans. This
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excess ECM finally replaces healthy, functionally important cells

and changes the tissue’s vascular architecture, in the body’s attempt

to maintain organ integrity at the expense of function (25–27). In

the liver, this leads to progressive loss of hepatocyte function,

prehepatic (portal) hypertension with complications like

esophageal variceal bleeding, ascites, susceptibility to infection

and hepatic encephalopathy due to loss of detoxification of

general and intestinal (microbial) metabolites (28, 29). The ECM

composition is altered in active fibrosis and the process itself is

highly dynamic, showing both upregulated formation (fibrogenesis)

and degradation (fibrolysis) of ECM components, usually in favor

of fibrogenesis (30). In general, the ECM is a scaffold to which cells

bind to and interact with each other. It also directs cellular

signaling, polarization and differentiation by engaging specific

ECM receptors and by binding cytokines or hormones that are

released from these ECM stores into the circulation upon ECM

remodeling, leading to the concept of defining the ECM as an

‘endocrine organ’ (31).

Interestingly, activated (myo)fibroblasts, the major cellular

producers of excessive ECM and thus scar tissue, are induced in

the liver and other organs during inflammation, and expand when

inflammation becomes chronic (Figure 1) (32). The dominant

source of (myo)fibroblasts varies, dependent on the etiology and

pathophysiology of fibrosis and, e.g., murine models employed.

While for the murine model induced by the hepatotoxin CCl4,

activated hepatic stellate cells (HSC), which serve as sinusoidal

pericytes residing in the hepatic parenchyma, become the main

ECM-producing cells, portal fibroblasts are the dominant ECM

producer in cholestatic fibrosis models (33–35). In both fibrosis

scenarios, these two cell types are the source of >90% of all

(myo)fibroblasts, while there is only a minor contribution of

fibrocytes, cells likely originating from circulating monocytes that

are recruited to injured organs (36). These findings are relevant

when developing antifibrotic therapies since the cellular origin of

the activated (myo)fibroblasts can have an impact on the treatment

response. As an example, pharmacological stimulation of soluble

guanylate cyclase or inhibition of fibroblast activation protein is

effective in CCl4-induced liver fibrosis dominated by activated

HSCs, but ineffective in the bile duct ligation model, dominated

by activated portal (myo)fibroblasts (33, 37), while the opposite was

observed when liver fibrotic mice were treated with an antagonist to

the endothelin A receptor, an integrin avb6 antagonist, or a TGFb2
inhibiting antisense oligonucleotide (38–40).

Irrespective of the prominent fibrogenic cell type, inflammation

is usually necessary for fibrosis initiation. An example is lipotoxicity

in hepatocytes, a hallmark of MASH. Lipid overloading and

especially the inability of the hepatocytes to handle the excess

lipids by safe storing in lipid droplets or to safely degrade the

excess lipid via, e.g., the mitochondria or peroxysomes, enhances

mitochondrial and hepatocellular oxidative stress and dysfunction

(41) which is linked to endoplasmatic reticulum (ER) stress induced

via the unfolded protein response (42). Impaired autophagy,

increased mitophagy and accumulation of toxic oxidized lipids,

including epoxides, glycerophospholipids and sphingolipids further

promote hepatocyte injury and apoptosis (43–46). The thus injured

and necroapoptotic hepatocytes secrete danger signals like damage-
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associated molecular patterns (DAMPS) as high mobility group

protein 1 (HMBG1) (47), mitochondrial remnants (48), or

exosomes that contain immune regulatory micro RNAs and

chemokines like CCL2 and CXCL1 (46). These metabolites and

signaling molecules can directly activate HSCs or portal fibroblasts,

but also activate and attract immune cells, especially macrophages/

Kupffer cells (49) that further increase local inflammation and

shape the fibrotic response. During steady state, liver sinusoidal

endothelial cells (LSECs) are highly fenestrated and endocytotically

active. They control and induce quiescence of the adjacent HSCs

that serve as sinusoidal pericytes (50, 51). With a disrupted

intestinal barrier, LSECs encounter an increased amount of gut-

derived pathogen-associated molecular patterns (PAMPS), which

leads to their transformation, involving, e.g., heat shock protein

(Hsp) 90 acetylation and subsequent reduction of homeostatic

nitric oxide production (52). When this occurs, LSECs promote

sinusoidal capillarization, express inflammatory cytokines like

TNF-a, CCL2, and CCL5, thereby recruiting inflammatory

immune cells, further stimulating (myo)fibroblast transactivation,

thus losing their usual ability to control HSC activation (51, 53).

These select examples show how chronic inflammation in the

liver, triggered by viral, metabolic, toxic and intestine-derived

stimuli can initiate a vicious cycle creating a continuing

wounding response, therefore tilting the tight balance of pro-and

antifibrotic mechanisms that occur in acute wound healing towards

a constant activation of (myo)fibroblasts, with excess ECM

deposition and finally liver cirrhosis and failure (18, 28, 54).
Frontiers in Immunology 03
Pathophysiology of liver cancer

Globally, primary liver cancer (hepatocellular carcinoma, HCC,

75-85%; cholangiocarcinoma, CCC, 10-15%, some rare entities like

fibrolamellar carcinoma) is the third leading cause of cancer-related

death and the sixth most commonly diagnosed cancer (55). 70-90%

of all primary liver cancers develop in the context of CLD and

cirrhosis (56). Most CLD patients show no or few clinical symptoms

or anomalies in the pre-cirrhotic stage, resulting in late-stage

diagnosis and poor prognosis, exemplified in a population-based

cohort study, where 75% of the patients had no or minor

complications of cirrhosis at entry (57). In this context, several

population-based studies assessed a prevalence of significant

fibrosis, i.e., stage 2-4 as determined by biopsy, in 1.8-12.6% of

the general population, the range being explained mainly by the

prevalence of viral hepatitis, the exposure to aflatoxin, MASH or

alcohol abuse (55, 58), and as being related to the quality of the

health care system (59–62). This illustrates the need for earlier

diagnosis and effective therapies to prevent progression to cirrhosis

and HCC. Since advanced fibrosis is the major risk factor for HCC

development, the risk factors that promote fibrosis are also

important cofactors for HCC development.

In MASH, the hypercaloric diet promotes hepatocyte oxidative

stress. The resulting H2O2 and ROS production can directly activate

HSCs, transform latent ECM-bound TGFb1 into its biologically

active form, thereby driving their transformation into fibrogenic

(myo)fibroblasts (63–66). H2O2 also acts as proinflammatory
FIGURE 1

Mechanism of liver fibrosis. Under normal conditions, HSCs and portal or perivascular fibroblasts, the primary effector cells, are in a quiescent state
and support steady-state ECM production. Various triggers can act as primary causes inducing chronic liver damage, e.g., exposure to toxins,
chronic hepatitis B- or C infection, or metabolic and oxidative stress in MASH. These triggers induce hepatocyte damage that starts a pro-
inflammatory response, usually initiated by monocytes and macrophages, but also T cells. Besides these primary hits triggering inflammation,
secondary hits like unhealthy nutrition, microbiota, or genetic predispositions can contribute to, enhance, and prolong the fibrogenic response.
During inflammation, TGFb, secreted by, e.g., macrophages and damaged hepatocytes, induces HSC and (portal) fibroblast activation, leading to
increased proliferation, migration, and subsequent excessive ECM production and deposition, resulting in fibrosis and (vascular) architectural
remodeling. Fibrogenesis is usually accompanied by suppressed fibrolysis, exemplified by an increased expression of TIMP-1 and -2 that inhibit ECM
removal by blocking MMP function. Several primary and secondary hits that are driving chronic liver inflammation can be addressed causally, for
example via potent antiviral therapy for hepatitis B or C, lifestyle intervention for MASH, or abstinence for alcohol-associated liver disease. However,
once these diseases have progressed to cirrhosis, direct antifibrotic therapies are needed to induce fibrosis regression. ECM, extracellular matrix;
HSC, hepatic stellate cell; MF, (myo)fibroblast; MMP, matrix metalloproteinases; MASH, metabolic dysfunction-associated steatohepatitis ROS,
reactive oxygen species; TGFb, transforming growth factor beta; TIMP, tissue inhibitor of metalloproteinases; TLR4, toll-like receptor 4.
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molecule leading to Kupffer cell activation, inducing an

inflammatory response that further drives fibrosis, which can

result in a closed loop of chronic inflammation, hepatocyte necro-

apoptosis (lipo-apoptosis), further enhancing ROS-production and

fibrogenesis (49, 63, 64).

Moreover, apart from chronic inflammation that links fibrosis and

HCC, the altered ECM in advanced fibrosis itself can facilitate further

fibrosis progression, HCC/CCC evolution, and metastasis. The ECM

determines the immune environment in cancer to serve as substrate to

which immune cells, especially dendritic cells, macrophages and T cells

bind and by which they are functionally modulated through, e.g.,

sensing ECM stiffness via integrin-receptor mediated ECM signals (67–

71). Also, HCC shows cancer-specific ECM remodeling with distinct

disease-related ECM signatures that exhibit prognostic value (72, 73).

Moreover, increased ECM stiffness can induce exosome secretion by

tumor cells that was shown to promote cancer growth via paracrine

Notch signaling, remodeling of the tumor microenvironment (74) as

well as the activation of Yes-associated protein (YAP) and the YAP/

TEA domain transcription factor 4 (TEAD4) complex in cancer cells

(75, 76).
The role of mesenchymal cells in the
HCC/CCC microenvironment

Detailed mechanisms and drivers of HCC and CCC in the non-

fibrotic and especially in the fibrotic liver are major current research

areas, with a clear view towards clinical translation (77, 78). As in

other cancers, the malignant transformation of hepatocytes, bile

duct epithelia and hepatic progenitor cells is a multifactorial and

multistep process, driven by complex and deregulated signaling

pathways and cell-cell interactions, involving the tumor

microenvironment (TME). The TME includes LSECs, cancer

associated fibroblasts (CAFs) that are related to activated HSCs

and (myo)fibroblasts (68, 79), and especially immune cells, mainly

myeloid and T cell subsets (80). Recent examples highlighting the

important role of non-immune cells in modulating HCC/CCC

growth and dedifferentiation are findings that e.g., quiescent

HSC-derived hepatocyte growth factor promotes epithelial cancer

growth (81), or that Musashi RNA binding protein 2 (MSI2)

downstream signaling in (myo)fibroblasts leads to IL-6 and IL-11

secretion, cytokines that stimulate cancer cell proliferation (82). In

addition, activated HSCs secrete extracellular vesicles containing

hexokinase 1 that are engulfed by neighboring HCC cells, leading to

accelerated glycolysis and the promotion of HCC progression (83).

In LSECs, simvastatin-loaded nanoparticles alleviated sinusoidal

capillarization, restored quiescence of activated HSCs by

stimulation of Krüppel-like factor 2/NO signaling in LSECs, and

upregulated CXCL16 expression resulting in the recruitment of

natural killer T cells (NKT), which suppressed HCC progression

(84). These few examples illustrate how a disrupted tissue

homeostasis induces a tumor-promoting TME not only by

directly modifying the immune cell environment, but also by

altering the non-immune cell TME, mainly represented by CAFs

(HSCs/(myo)fibroblasts) and LSECs.
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Macrophage subsets in the liver

Macrophages are innate immune cells, present in every organ of

the body (85) and are the most abundant immune cell population in

the liver (86). They ensure tissue integrity by phagocytosis of

cellular debris, waste products and apoptotic cells (87–89), and

act as first line defense against pathogens. Macrophages express

various pattern recognition receptors (PRRs) like Toll-like receptors

(TLRs) or NOD-like receptors (NLRs). Their activation by PAMPs

leads to activations of nuclear factor-kB (NF-kB), interferon

regulatory factors (IRFs) and mitogen-activated protein kinase

(MAPKs) and the expression of downstream effector cytokines

and chemokines, orchestrating an inflammatory response (90, 91).

Within the liver, two different macrophage subsets of different

origin can be distinguished. First, Kupffer cells are tissue resident

macrophages with self-renewing capacity, originating from the yolk

sack (92). They sense gut-derived antigens, which the liver is

constantly exposed to, and play a major role in maintaining tissue

homeostasis by inducing tolerance to the many (harmless) nutrient-

or microbial-derived antigens that pass through the liver

immediately after intestinal digestion and resorption, for example

via secretion of IL-10 and by favoring the expansion of tolerogenic

T regulatory cells (Treg) (93). Second, during infection or in

situations when the natural default tolerance of the liver is

overrun, monocyte-derived macrophages (MoM) are recruited to

the site of inflammation, where they trigger an initially protective

inflammatory response, followed by their differentiation into pro-

inflammatory macrophages.

In general, MoM (and to a lesser degree Kupffer cells) show high

plasticity. Mills et al. coined the term ‘M1 vs. M2 macrophage

polarization’ based on their findings that macrophages of C57BL/6

mice (Th1 T cell predominant, classically activated, pro-

inflammatory M1-type macrophages) were more easily stimulated

to produce NO in comparison to Th2 T cell predominant mouse

strains (BALB/c, alternatively activated M2-type macrophages)

(94). In vitro, the M1 phenotype is induced via LPS and IFN-g
resulting in pro-inflammatory activity including pathogen clearing.

In vitro, the M2 phenotype is induced by IL-4 and IL-13 and was

initially characterized as anti-inflammatory, playing a prominent

role in tissue repair (95) (Figure 2). However, the picture is more

complex, with e.g., at least four M2-subtypes, some of them with

pro-inflammatory characteristics (96, 97). Newer techniques,

especially single-cell RNA sequencing, identified even more

different Kupffer cell and MoM populations in mice and humans

(98–100). A distinct subpopulation defined as scar-associated

TREM2+ CD9+ macrophages was described, originating from

MoM, that acts pro-fibrotic by promoting HSC collagen

production and proliferation (101). Others described TREM2+

macrophages as lipid-associated macrophages (102, 103) that

were shown to be less responsive to TLR4 signaling then Kupffer

cells (104). Fabre and colleagues went one step further in

characterizing the scar-associated macrophages in pulmonary and

hepatic fibrosis of both mice and men using single-cell RNA

datasets to identify a subpopulation of macrophages that, in

addition to TREM2 and CD9, expressed osteopontin (SPP1),
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osteoactivin (GPNMB), fatty acid binding protein 5 (FABP5) and

CD63. Interestingly, this subpopulation was found to be enriched at

scarring sites (105). Therefore, major efforts are currently directed

to better define profibrotic vs. fibrolytic (pro-resolution) liver

macrophages and specific subpopulations to identify novel

therapeutic targets and strategies for antifibrotic treatment (24,

49, 106–109).
The role of macrophages in fibrosis
initiation, progression, and resolution

Pleiotropic effects of macrophages in fibrosis initiation,

progression or resolution have been described. Macrophage

depletion in the CCl4 model of progressive parenchymal liver

fibrosis led to a decrease of activated (myo)fibroblasts and

attenuated collagen accumulation, while depletion after

discontinuation of CCl4 prevented the otherwise spontaneous

fibrosis resolution (110). Later ‘pro-resolution’ macrophages with

an expression profile of both M1- and M2-type macrophages were

implicated in fibrosis regression (111) (Figure 2). Finally, the study

of several knockout mice for M2-type macrophage and Th2 cell

signaling as well as the use of therapeutic IL-4Ra antisense

oligonucleotides confirmed that even M2-type macrophage

signaling can be pro-fibrotic during active liver inflammation,

whereas it can promote fibrolysis during spontaneous fibrosis

regression after cessation of the inflammatory stimulus (106).
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During acute inflammation, activated Kupffer cells and MoM

express pro-inflammatory cytokines like IL-1b, TNFa, and IL-6,

but also chemokines like CCL2, CXCL1-3 (112–114), leading to

further recruitment of MoM and neutrophils, which enhances the

initial inflammatory response. Activated macrophages, especially in

later stages of inflammation, as well as activated platelets secrete

(active) TGFb1 in response to injury (115), which is a key fibrogenic
cytokine driving fibrogenic HSC and (myo)fibroblast activation

(116, 117) via the Smad2-4 transcription factor to enhance ECM

production (118). In addition, platelet-derived growth factor

(PDGF-BB), which is mainly if not exclusively secreted by

platelets, strongly stimulates HSC and (myo)fibroblast

proliferation, further promoting the fibrogenic response (119,

120). The importance of recruitment of MoM, orchestrated by

CCL2 but also other chemokines, partly derived from neutrophils

and other myeloid cells or even activated HSCs, to pave the way for

progressive fibrotic disease was recently shown, since early anti-

CCR2 siRNA treatment ameliorated parenchymal, CCl4-induced

liver fibrosis (121).

Many different endogenous and exogenous stimuli can trigger

the proinflammatory M1 phenotype. For example, complement

factor C5a stimulates pro-inflammatory pathways via C5aR1 on

macrophages, and C5aR1ko knockout mice showed a M1- to M2-

type macrophage transition and reduced fibrosis in a MASH mouse

model (122). HMBG1 secretion from injured hepatocytes induced

NLRP3 inflammasome activation in macrophages (123), and

fibrinogen-like protein 2 (Fgl2), which was upregulated in liver
FIGURE 2

Triggers of macrophage polarization and the resulting phenotypes: Tissue-infiltrating monocytes as well as tissue-resident Kupffer cells are the
sources of liver macrophages. In vitro, monocytes/macrophages can be polarized towards a M1-type (classically activated macrophages) via IFN-g,
LPS, or IL-12, or towards M2-type via IL-4 and IL-13 (alternatively activated macrophages). The M1-type is rather associated with high(er)
phagocytotic activity and the production of pro-inflammatory cytokines that can induce ECM breakdown and a prominent anti-cancer response,
This M1 phenotype can switch to a low or anti-inflammatory M2-type that suppresses inflammation but at the same time promotes fibrogenesis,
e.g., by release of TGFb1, and cancer growth by generating a tolerogenic cancer microenvironment. While the major in vitro phenotypes only
exemplify the extremes of macrophage polarization, in vivo macrophages show high plasticity and therefore can exhibit both M1-type and M2-type
characteristics at the same time. Thus, in liver fibrosis of different etiologies both M1-and M2-type macrophages can induce and shape liver
inflammation, while a subset that is defined as “pro-resolution macrophages” shows both M1- and M2-type characteristics, acting both anti-
inflammatory and fibrolytic, as also shown by their transcriptomic profiles. One therapeutic strategy, already showing promise in preclinical studies is
the targeted modulation of macrophage functional phenotypes to overcome liver fibrosis and/or cancer. Examples of possible phenotype ‘switches’
are CSFR1, macrophage colony- stimulating factor receptor 1; GLP-1, glucagon-like peptide 1; IFN-g, interferon-g; IL-4RA, interleukin-4 receptor a;
IL-13RA, interleukin-13 receptor a; LPS, lipopolysaccharide; LY6C, lymphocyte antigen 6C; STAT6, signal transducer and activator of transcription 6.
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tissues of cirrhotic patients with underlying hepatitis C infection,

promoted M1 polarization (124). Furthermore, autophagy triggered

a M2-type, whereas LPS stimulation favored a M1-type macrophage

polarization and blocked autophagy (125). Painting the same

picture, deficient chaperone-mediated autophagy in macrophages

was shown to intensify inflammation in MASH (126). Notably,

while the shift from the classical proinflammatory M1-type to M2-

type macrophages in chronic inflammation attenuated

inflammation, it promoted the fibrotic response in MASH (127).

In MASH as in other CLDs, the fluctuating course of periods of

acute inflammation followed by a M2-type reparative response may

underly fibrosis progression in ‘wounds that do not heal’ (18, 128).

Major effectors of both fibrogenesis and fibrolysis are

macrophage-derived matrix metalloproteinases like MMP-9,

MMP-12 (111) and MMP-13 (129) that lead to collagen

degradation that can either pave the way for architectural tissue

remodeling towards fibrosis (130), or lead to collagen degradation

and the induction of (myo)fibroblast apoptosis (131). Fibrosis

resolution is often induced if the underlying major trigger of

chronic (M2-type) inflammation is removed but is usually slow

or inefficient in advanced human fibrosis and cirrhosis. Moreover, if

the underlying trigger continues, the ongoing remodeling of the

ECM, induced by secreted MMPs (132) or proteases like cathepsin S

(133), can lead to an excessive secondary accumulation and altered

composition of the ECM (134). This contributes not only to fibrosis

progression but also to cancer initiation, progression and

metastasis, including integrin-mediated stress signaling (15, 21,

67, 128, 135–137).
The role of tumor-associated
macrophages in HCC

Tumor-associated macrophages (TAMs) are major cell types

infiltrating most TMEs, accounting for 20-40% of immune cells in

HCC (138). They act as important drivers of cancer initiation and

progression (139). In the liver, tissue-resident Kupffer cells as well as

MoM can differentiate to TAMs (140–142), and especially MoM are

chemoattracted to the tumor site via the CCR2-CCL2 axis (143).

Within the TME, TAMs are turned to a M2 anti-inflammatory and

tumor-promoting phenotype by cancer cells in various ways. For

example, HCC cells secrete exosomes that contain miRNA-21-5p,

which induces M2-type polarization (144), or they overexpress the

transferrin receptor, necessary for ferrous iron uptake, and the

resulting lower iron concentration in TAMs favors their M2-type

polarization (145). Furthermore, metabolic byproducts of cancer

cells like lactic acid or succinate drive the TAM phenotype via

induction of hypoxia-inducible factor 1a (HIF1a) signaling, that

increases TAM expression of e.g., vascular endothelial growth factor

(VEGF), arginase 1, found in inflammatory zone (Fizz1) and

macrophage galactose-type lectin-1 (Gal-1) (146, 147).

The expression profile and mediator secretion of TAMs is

highly immunosuppressive and strongly supports the outgrowth

of pre-neoplastic lesions, tumor development and metastasis,
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mainly by inhibition of cytotoxic CD8+ T cell responses directed

to the cancer cells (148, 149).

Thus, TAMs secrete cytokines like IL-8 or IL-10 that stimulate

tumor proliferation (150–152), Gal-1 that activates the pro-

cancerous mTor-Akt pathway and induces limited autophagy in

cancer cells that both promote HCC growth (153). TAMs and the

cancer cells are the major producers of VEGF that triggers neo-

angiogenesis, supporting the tumor’s nutrient supply (154) and

facilitating metastasis. TAMs upregulate carbonic anhydrase XII

expression, which secures their survival in the acidic

microenvironment but also triggers production of CCL8, VEGFA

and MMP9, further supporting neo-angiogenesis, epithelial-

mesenchymal transition and metastasis of cancer cells (155, 156).

Of interest, TAMs also interact with cancer-associated

fibroblasts (CAFs). CAFs are characterized as activated (myo)

fibroblasts, another often abundant, heterogeneous class of cells in

the TME. Single-cell RNA techniques could unravel that the

interaction of TAMs and CAFs leads to ECM remodeling and the

generation of a desmoplastic shell, which hinders lymphocytes to

infiltrate the tumor cores (157). The interaction was also found in

single-cell RNA datasets in HCC patients, where osteopontin,

produced by TAMs, bound to latent TGFb1 produced by CAFs,

illustrating the close interaction of both cell types that potentially

can lead to TME remodeling (158). TAM-secreted osteopontin can

also directly impede CD8+ cytotoxic T cell function via CD44

signaling on T cells, promoting T cell exhaustion phenotypes (159).

A recent study could show that osteopontin (encoded by the SPP1

gene) expression of TAMs indeed holds prognostic value. The

authors analyzed human cancer single-cell RNA datasets,

revealing that the ratio of CXCL9:SPP1 mirrors the properties of

immune cell infiltration and an anti-tumor immune response in

many solid cancer types. Of note, the CXCL9:SPP1 ratio was

not overlapping with classical M1- and M2-type markers (160).

Finally, programmed death ligand 1 (PD-L1) was found to be

mostly expressed on TAMs in the TME, suppressing T cell

activity (161, 162) and indoleamine 2, 3-dioxygenase (IDO)

expressing TAMs suppressed T cell expansion, while supporting

Treg proliferation (163).

One highly interesting example of TAM modulation that

already entered clinical trials targets Clever-1 (common lymphatic

endothelial and vascular endothelial receptor-1), which is

prominently expressed on monocytes and macrophages.

Preclinical studies showed that human monocytes expressing high

levels of Clever-1 impaired Th1 T cell activation, which was

reversed via siRNA knockdown or a blocking antibody (164) and

that targeting Clever-1 in TAMs via macrophage-specific genetic

knockout or via antibody blockade retarded the growth of LLC1

Lewis lung carcinoma cells in vivo, by inducing a robust CD8 T cell

response (165). A phase II clinical trial testing Clever-1 inhibition

using a humanized anti-Clever-1 antibody in 10 distinct, advanced

solid tumor types (e.g., melanoma, pancreatic, liver cancer) already

showed promising results (166, 167). Finally, Clever-1 on TAMs

was recently shown to be responsible for epidermal growth factor

(EGF) clearance, a highly relevant tumor promoter (168).
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Physiologic role of platelets

Platelets are small anucleate cell fragments (2-4 µm diameter in

humans) that, together with red blood cells, represent the most

abundant cells in circulation. The role of platelets was described for

the first time in the 19th century by Bizzozero, who observed that

platelets were the component of the blood to adhere to damaged blood

vessel walls in vivo and in vitro (169, 170). Platelets have an average life

span of 8-10 days in humans and approximately 5 days in mice (171,

172). Thus, platelet turnover is high and their production

(thrombopoiesis) by bone marrow megakaryocytes (MKs) is a

strictly regulated process (173). Megakaryocytes differentiate from

hematopoietic stem cells, and once mature, extend dynamic

protrusions, called proplatelets, into bone marrow sinusoids which

are then further fragmented to platelets by the shear forces present in

vessels (174, 175).

Once released into the bloodstream, platelets primarily function as

regulators of hemostasis, circulating and continuously scanning the

vascular environment. Platelet activation and thrombus formation

occur at sites of vessel injury in a coordinated process that involves

tethering, rolling, activation, and firm adhesion. Following endothelial

damage, thrombogenic subendothelial ECM proteins like collagen and

vonWillebrand factor (VWF) get exposed to the blood. VWF binds to

collagen fibers and captures platelets from the circulation through the

platelet receptor complex glycoprotein (GP) Ib/IX/V (176). This

interaction with immobilized VWF enables platelets to bind to the

exposed collagen via the GPVI receptor (177). GPVI is associated with

the Fc receptor (FcR) g-chain, which bears an immunoreceptor

tyrosine-based activation motif (ITAM) for signal transduction

enabling platelet activation (178). These first steps of platelet

activation trigger downstream signaling pathways which lead to

increased cytosolic Ca2+ levels, cytoskeletal rearrangements,

degranulation, and integrin activation. Three types of granules can be

distinguished within platelets: a-granules, dense or d- granules, and
lysosomes (179, 180). The release of a- and dense granule content

enriches the local environment with a multitude of bioactive molecules.

Dense granules contain mainly non-protein compounds including

calcium, ATP, ADP, serotonin (5-HT), and epinephrine, which can

activate platelets in an autocrine way through surface receptors to

further strengthen platelet activation (181). On the other hand, a-
granules contain more than 300 different proteins involved in

coagulation, platelet adhesion, inflammation, wound healing, and

angiogenesis (182). Finally, platelet activation shifts several b1 and b3
integrins to their high-affinity, ligand-binding state, among them

integrin aIIbb3 (GPIIb/IIIa). Activated aIIbb3 binds to fibrinogen,

supporting platelet-platelet aggregation and adhesion to

subendothelial ECM proteins (183), but also enables binding to other

soluble plasma proteins, including VWF and fibronectin, thereby

facilitating stable platelet aggregation and thrombus formation (184).

The role of platelets
beyond hemostasis

In the previous paragraph, we introduced the role of platelets in

hemostasis, however, these small anucleate cells are also involved in
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other pathophysiological processes. Platelets have been observed to

play a role in angiogenesis, inflammation, bacterial and viral

infection, cancer, tissue regeneration, and fibrosis (185). Platelets

can interact with and stimulate cells of the innate and adaptive

immune system, mainly monocytes/macrophages, neutrophils, and

lymphocytes, thus shaping the immune response.
Platelet-monocyte/
macrophage interaction

Monocytes and macrophages are key regulators of innate and

adaptive immunity. During homeostasis and especially inflammation,

monocytes can enter tissues and differentiate into macrophages that,

depending on signals from the respective microenvironment, acquire

different functional phenotypes. Monocytes and macrophages act as

sentinel cells that maintain tissue integrity and eliminate damaged cells

and pathogens to restore homeostasis (87–89). In prolonged

inflammation or infection, they also promote adaptive immune

responses aimed at resolution, but may switch towards an anti-

inflammatory, but profibrotic and/or cancer promoting phenotype,

as described in a previous chapter (95–97). Activated platelets can

recruit and interact with monocytes and macrophages, stimulating

mutual activation and the release of cytokines. The major direct

interaction between platelets and monocytes/macrophages is

achieved through P-selectin (CD62P), which is exposed on the

platelet surface following the fusion of the a-granule membrane with

the platelet surface membrane upon platelet activation. The interaction

of P-selectin with monocyte P-selectin ligand 1 (PSGL-1, CD162) is the

first step in platelet–monocyte aggregation (186, 187). This interaction

is further strengthened by monocyte membrane-activated complex 1

(Mac-1, integrin aMb2, CD11b/CD18) which can bind to P-selectin

(188), GPIba (189), and other platelet receptors, including junctional

adhesion molecule 3 (JAM-3) (190) and intercellular adhesion

molecule 2 (ICAM-2) (191), or bridging proteins such as fibrinogen

(bound to the integrin aIIbb3) (192). Mac-1 interaction with the platelet

receptor GPIb occurs through its I domain which is homologous to the

VWF A1 domain. During this adhesive process, receptor engagement

of PSGL-1 and Mac-1 together with platelet-derived inflammatory

compounds induces monocyte activation (193, 194). Platelets can also

use their surface receptors CD40L and TREM-like transcript 1 protein

(TLT-1) to interact with CD40 (195) and monocyte triggering receptor

expressed on myeloid cell 1 (TREM-1) on monocytes (196, 197).

Monocytes can also be recruited indirectly by platelets: Monocyte

chemotactic protein-1 (MCP-1, CC chemokine ligand 2 [CCL2]) is one

of the major chemotactic molecules generated within the vessel wall,

interacting with CC chemokine receptor 2 (CCR2) on monocytes and

macrophages (198, 199) (Figure 3). Activated platelets can also

modulate MCP-1 and ICAM-1 expression on endothelial cells via an

NF-kB–dependent mechanism (200).

Moreover, platelets release CXC motif chemokine ligand 1

(CXCL1), platelet factor 4 (PF4, CXCL4) and CC-chemokine

ligand 5 (CCL5, RANTES) (182, 201). RANTES can increase PF4

binding to the monocyte surface, where it enhances monocyte arrest

on endothelial cells (202), predominantly mediated by CCR1, a
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monocyte receptor for RANTES (203). RANTES can form

heterodimers with neutrophil HNP1 (human neutrophil peptide

1, alpha-defensin), stimulating monocyte adhesion through CCR5

(204). Disruption of the HNP1–RANTES interaction attenuated

monocyte and macrophage recruitment in a mouse model of

myocardial infarction (204). PF4 released from activated platelets

induces monocyte phagocytosis and triggers respiratory bursts

(205) through phosphoinositol-3-kinase PI3K, spleen tyrosine

kinase Syk, and p38 mitogen activated (MAP) kinase activation

(206). PF4 also induces extracellular signal kinase 1 and 2 (ERK1/2)

phosphorylation, which mediates monocyte survival and

differentiation as well as Janus kinase (JNK) signaling, which

leads to the production and release of cytokines and chemokines,

such as CC-motif ligand 3 and 4 (CCL3 and CCL4) in vitro (206).

Overall, the outcome of platelet-monocyte/macrophage interactions

is highly complex and not yet completely understood, especially

since platelets are known to induce opposing effects in macrophages

depending on the underlying pathophysiological context and

experimental model employed (185, 207) (Figure 3).
Platelets in liver disease

Platelet function is tightly connected with the liver (208): the

liver is important for the production of thrombopoietin (TPO)
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(209), the main growth factor controlling thrombopoiesis and

coagulation factors, which are involved in hemostasis (6). The

liver also clears aged platelets and liver Kupffer cells have recently

been identified as major effector cells in this context (210). Patients

with acute or chronic liver diseases frequently present with complex

alterations in the hemostatic system (211) including reduced levels

of coagulation factors and changes in platelet count (212, 213).

Thrombocytopenia correlates with the severity of liver dysfunction,

fibrosis, portal hypertension, and splenomegaly (214–216). Some

patients with liver disease also display platelet functional defects

(217). For this reason, the role of platelets in the progression of liver

disease is being analyzed more systematically, and depending on the

(patho)physiological context, platelets seem to exert either

beneficial or detrimental functions.
Platelets in liver fibrosis

As previously discussed, in the context of fibrosis, the liver

shows a qualitatively abnormal and excessive deposition of scar

tissue, dominated by the prominent fibril forming type I and type

III collagens but also numerous other ECM molecules, through

activated hepatic stellate cells (HSCs) and portal fibroblasts, which

progressively impairs the normal liver architecture and

functionality (18, 24, 25, 27–29). Notably, platelets can play
FIGURE 3

Interactions between platelets and macrophages. Interactions occur via direct contact between platelet cell surface receptors GPIb, P-Selectin,
integrin aIIbb3, CD40L, and TLT-1 with macrophage receptors like Mac-1 or TREM-1 or through soluble mediators like CCL2 (MCP-1), CXCL4 (PF4),
CCL5 (RANTES) and sCD40L. These interactions can result in the activation of the platelet, macrophage, or both. P-sel – P-selectin, sP-sel – soluble
P-selectin, PSGL-1 – P-selectin glycoprotein ligand, GPIb – glycoprotein Ib, Mac-1 – integrin aMb2, aIIbb3, – Integrin aIIbb3, TREM-1 – Triggering
receptor expressed on myeloid cells 1, TLT-1 - TREM-like transcript 1, CCL2 – CC-chemokine ligand 2, CXCL4 – (CXC motif) ligand 4, CCL5 – CC-
chemokine ligand 5, sCD40L – soluble CD40 ligand. Created with BioRender.com.
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opposing roles in liver fibrosis as they have both pro- and anti-

fibrotic effects.
The antifibrotic and regenerative role
of platelets

Clinical evidence showed that a higher platelet count is

associated with less fibrosis and that platelet transfusion can

ameliorate liver functionality in chronic liver diseases (218–220).

Thrombocytopenic mice developed more severe fibrosis when

subjected to liver injury by bile duct ligation (221). ATP and

hepatocyte growth factor (HGF) from platelet granules may have

antifibrotic effects (221, 222). Experiments in vitro revealed that a

HSCs-platelet co-culture resulted in platelet activation and HGF

release, with subsequent downregulation of type I collagen

transcript levels in HSC (221). A beneficial effect of platelets was

shown in the carbon tetrachloride (CCl4) mouse model of liver

fibrosis, where treatment with platelet-rich plasma resulted in an

attenuation of liver fibrosis (223, 224). Reduced liver fibrosis and

increased liver regeneration were also seen upon administration of a

TPO receptor agonist in a mouse model of CCl4-induced liver

fibrosis (225). Platelet-mediated hepatic regeneration depends on

the interaction with sinusoidal endothelial cells, Kupffer cells and

hepatocytes (226). In vitro studies show that platelets promote

endothelial production of interleukin-6 (IL-6) and VEGF, inhibiting

apoptosis and stimulating hepatocyte proliferation (226–228).

Platelet accumulation in the liver is mainly mediated by direct

interaction with Kupffer cells (224, 229). Following this interaction,

Kupffer cells produce tumor necrosis factor-a (TNF-a) and IL-6,

cytokines critical to liver regeneration (230, 231). Platelets also

become activated and move through the sinusoidal endothelium

and enter the space of Disse where they directly influence

hepatocytes (229). Platelets release hepatocyte growth factor

(HGF), VEGF, and insulin-like growth factor-1 stimulating

hepatocyte survival and differentiation (231).
The profibrotic role of platelets

On the other hand, there is evidence for a profibrotic role of

activated platelets. Liver fibrosis results in platelet activation and

aggregation in the liver tissue, close to the fibrotic areas of patients

with progressive HCV and MASH-associated fibrosis (120, 232).

After activation, platelets release different mediators which are

known key drivers of fibrogenesis. These include platelet-derived

growth factors, especially PDGF-AB and –BB, and transforming

growth factor b1 (TGFb1) (120, 233). PDGF-B is a potent mitogen

and chemotactic factor for activated HSC and (myo)fibroblast.

Yoshida et al. observed that mitogenic PDGF-B, in liver fibrosis,

was exclusively produced by activated platelets, and a monoclonal

blocking antibody against PDGF-B as well as anti-platelet therapy

with low-dose aspirin reduced circulating PDGF-B levels and

significantly ameliorated liver fibrosis in two mouse models of

advanced biliary fibrosis (120). Accordingly, platelet-specific
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depletion of TGFb1 decreased CCl4-induced liver fibrosis by

reducing profibrotic signaling and collagen synthesis in HSCs

(234). Profibrotic effects of platelets were also attributed to VWF

(235), serotonin (5-HT), and platelet-derived Sphingosine-1-

phosphate (S1P), which activates HSCs to increase collagen

secretion and transform into (myo)fibroblasts (236, 237). PF4

could also be involved in the modulation of liver fibrosis, since its

genetic deletion in CCl4-induced murine liver fibrosis, reduced

histological liver damage and fibrosis-related transcript levels, and

resulted in the reduction of immune cell infiltration in the liver

(232). Additionally, it was reported that PF4, released from

platelets, drives the differentiation of a profibrotic macrophage

population marked by the expression of Spp1, Fn1 and Arg1. Loss

of PF4 in mice abolished profibrotic Spp1-mediated macrophage

differentiation and ameliorated fibrosis after both heart and kidney

injury (238). Positive results from the use of antiplatelet therapies

were confirmed in two epidemiological studies of liver fibrosis

patients with or without aspirin therapy (239, 240). Using

different mouse models of MASH, an extensive study showed that

antiplatelet therapy (aspirin/clopidogrel, ticagrelor) reduced

inflammation and liver fibrosis. The authors demonstrated that

liver resident macrophages (Kupffer cells) are important for platelet

accumulation in the liver, and that platelet GPIba appears to be

primarily involved in the interaction of platelets with Kupffer cells

and the maintenance of MASH. Moreover, Kupffer cell depletion

via clodronate liposomes resulted in a significant decrease in

intrahepatic platelet numbers, confirming that Kupffer cells

recruit platelets to the liver in the setting of MASH (241). Taken

together, the role of platelets in liver fibrosis is still not fully

understood, since it appears to be dependent on disease etiology

and stage, which requires further investigation. The use of different

animal models, timing, and conditions could help solve the Janus-

faced behavior of platelets observed and help to shed light on their

role in fibrosis progression or regression.
Platelets in cancer and HCC

A relevant role for platelets in cancer was suggested more than

100 years ago when occult carcinomas were identified by the

patients’ excessive blood clotting leading to venous thrombosis

and embolism (242). Further clinical evidence supported platelets

as active players in all steps of tumorigenesis including tumor

growth, extravasation, and metastasis (243). Cancer-associated

thrombosis is a leading cause of death in cancer patients (244).

Accordingly, cancer patients often display elevated platelet counts

and/or altered platelet function (245), and thrombocytosis has been

associated with an unfavorable prognosis at the time of cancer

diagnosis (246, 247). In HCC, thrombocytosis positively correlates

with large tumor size, recurrence, and poor response to

chemotherapy (248, 249). Increased platelet size (mean platelet

volume, MPV), has also been associated with HCC progression

(250). Postoperative high platelet-to-lymphocyte ratio (PLR) can

predict HCC recurrence and decrease overall survival after surgical

liver resection (251). Notably, an elevated platelet count is related to
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an increased risk of developing extrahepatic metastasis (249),

possibly because of platelet-induced tumor cell growth and

migration (252). However, for HCC, the relationship between

platelet count and tumor development is more complicated, as

both thrombocytosis and thrombocytopenia have been described as

risk factors for HCC development and poor prognosis (248, 250).

This is likely due to the high prevalence of cirrhosis, a key cofactor

of HCC evolution that causes splenomegaly and resultant

thrombocytopenia (28, 253). Still, in patients with cirrhosis

caused by fatty liver disease, a low platelet count was recently

included as a reliable marker to predict HCC development (254). In

general, thrombocytopenia is used to identify patients with more

advanced (cirrhotic) liver disease at risk of developing HCC (255,

256) and to predict mortality of patients with cirrhosis or HCC

(257), while thrombocytosis may predict more rapid cancer

progression in patients with noncirrhotic HCC (28, 250–253).
Platelet interaction with cancer cells
and the TME

Platelets and tumor cells interact directly or indirectly through

the release of soluble mediators. These interactions can result in the

alteration of platelet physiology that further supports tumor growth

(258). Tumor cells can recruit platelets into hepatic tumor tissue

through the release of tumor cell-derived chemokine (CX3C motif)

ligand 1 (CX3CL1) (259) and cancer cells can express molecules

such as podoplanin and thrombin, which interact with platelet C-

type lectin-like receptor 2 (CLEC-2) and protease-activated
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receptors (PARs) to activate and aggregate platelets (260–263).

Cancer cell-derived IgGs activate platelets by binding to platelet

FcgRIIa (264). Additionally, soluble factors such as ADP, released

by tumor cells, can also activate platelets, probably via P2Y12/P2Y1

(265). Cancer-induced platelet activation is thought to be one of the

reasons why increased thrombosis is observed in cancer patients

(244). Activated platelets contribute to cancer growth and

metastasis (266).

In human HCC biopsies, activated platelets are found close to

tumor cells (259, 267, 268) and adhere via their activated aIIbb3,
GPIb-IX-V, and, P-selectin receptors (268, 269). Through these

interactions, platelets become activated and secrete factors such as

platelet-derived PDGF-BB, TGFb1, serotonin, and VEGF that

support tumor progression and angiogenesis (270–272)

(Figure 4). Here, platelet TGFb1 is a general driver of cancer cell

epithelial-to-mesenchymal transition (EMT) via activation of the

Smad2/3 and NF-kB pathways (273, 274), and of HCC growth both

in vitro and in vivo, where it also suppresses cancer cell Krueppel-

like factor 6 (KLF6) expression (275). An in vitro study also showed

that platelet-derived serotonin could induce the proliferation of

three different HCC cell lines (Huh7, HepG2, and Hep3B) (276). In

this line, another study reported that intra-platelet serotonin

content was correlated to early disease recurrence after liver

resection of HCC (277). Besides interacting with cancer cells,

platelets recruit leukocytes and interact with LSECs and HSCs

(120, 278, 279) affecting the TME. Platelets induce the release of

IL-6 from LSECs which enhances hepatocyte proliferation (227).

Further, VEGF, which is stored in platelet a-granules increases

LSEC fenestration (280). Platelets can also contribute to the
FIGURE 4

Role of platelets in HCC. Platelets are recruited to the tumor site by interacting with liver resident macrophages (Kupffer cells) and by cancer cells
through the release of CX3CL1 and IgG, resulting in platelet activation. Activated platelets release soluble mediators: TGFb, PDGF-BB, VEGF, and
serotonin (5-HT) which contribute to HSC activation, macrophage M2-type polarization into immune suppressive tumor-associated macrophages
(TAMs) and thus tumor growth. Platelets can also mediate anti-tumor responses by activating CD8+ T cells through releasing CD40L. Created with
BioRender.com.
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formation of an immune suppressive milieu in the TME (243) by

secreting chemokines that recruit M2-type macrophages into the

TME. As mentioned before, platelets can recruit monocytes into the

tissue, for example via CCL2 and its receptor CCR2 on monocytes

(198, 199). In vitro, human platelet-derived serotonin inhibited

TNFa production in stimulated monocytes and macrophages

primed for anti-inflammatory signaling (281, 282), and platelets

downregulated TNFa production, abrogating the capacity of

macrophages to kill tumor cells (283). Platelet-derived

microparticles (extracellular vesicles, EVs) also change

macrophage polarization. Microparticles generated from platelets

contain RANTES, macrophage migration inhibitory factor (MIF),

CXCL-12, and IFN-g that promote the differentiation of monocytes

into a M1 macrophage phenotype (284). In contrast, Vasina and

colleagues showed that platelet-derived microparticles promoted a

macrophage M2-type anti-inflammatory/pro-tumoral phenotype,

associated with increased expression of chemokine receptors CCR5

and CXCR4 but not CCR2 (285). Another study showed that

platelet EV internalization by primary human macrophages

changed the macrophage transcriptome, reduced mRNAs

encoding for TNFa, CCL4, and CSF1 while upregulating IL-10,

consistent with a M2 phenotype (286). Exosomes originating from

platelets can also promote the M2 phenotype by inhibiting the

activation of the NLRP3 inflammasome (287). The anti-platelet

drug clopidogrel enhanced an anti-tumoral hepatic M1macrophage

phenotype (271, 288). CD40L, TGFb, and programmed death

ligand 1 (PD-L1) are important immune mediators secreted by

platelets that interfere with immune cell activation, modulate

macrophage polarization, and enable cancer cells to escape from

immune destruction (288, 289). These findings suggest that platelets

play an important role in mediating the macrophage´s immune

response, contributing to their polarization into TAMs in HCC and

other solid cancers. However, further research is necessary to fully

understand the mechanisms underlying the crosstalk between

platelets and TAMs (Figure 4).
Use of antiplatelet therapies to
treat HCC

Recently, the use of antiplatelet therapies to treat HCC has

gained interest. The administration of aspirin and clopidogrel

attenuated development and increased overall survival in a

transgenic mouse model of chronic, noncirrhotic, hepatitis B

virus (HBV) induced HCC (290). Somewhat paradoxically, this

was associated with a reduced intrahepatic accumulation of HBV-

specific cytotoxic CD8+ T cells, but explained by attenuated

hepatocyte damage by these CD8+ T cells (291). Consistent with

the observed antiplatelet effect, clinical studies suggested an

association between the use of aspirin and a reduced HCC risk in

patients with viral hepatitis (292–294). Platelets are also involved in

the promotion of MASH, both in the above-discussed mouse model

and correlative human data (241). Additional human studies
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supported the positive effect of anti-platelet therapy, particularly

aspirin, on HCC development in both patients with chronic liver

disease and in the general population (292, 295–297). In contrast, a

recent study found that platelets inhibited the growth of HCC and

liver tumor metastasis in MASLD through the purinergic receptor

P2Y12-dependent release of platelet CD40L, which was in part

directed through cysteinyl leukotrienes (298) (Figure 4). Indeed,

blocking the production of cysteinyl leukotrienes using zileuton,

partially inhibited the upregulation of plasma CD40L. CD40L leads

to CD8+ T cell activation via the CD40 receptor, establishing an

anti-tumor response. The authors argued that in their study HCC

and MASH were already established, in contrast to other studies

that focused on HBV or MASH progression and HCC induction

(241, 290, 291, 298). In conclusion, these studies suggest that

platelets can contribute to cancer growth and progression in

multiple ways, depending, e.g., on their spatiotemporal activation

during inflammation, fibrogenesis, and HCC evolution,

highlighting the complex roles that platelets can play. Future well-

designed studies are needed to further investigate the mechanisms

involved in platelet–cancer cell–macrophage interactions.
Conclusion and outlook

Over the past decades, chronic liver diseases have risen to one of

the leading causes of morbidity and mortality worldwide. Recent

research has generated increasing evidence that hepatic

macrophages and platelets play a key role in liver homeostasis

and that their dysregulation promotes chronic liver diseases, by

modulating inflammation and driving fibrosis or cancer

progression. Novel approaches are being developed to target

hepatic macrophages, most of them focusing on four different

strategies: 1) reducing the activation of MoMs and Kupffer cells,

2) preventing the influx of MoMs into the liver, 3) reprogramming

the macrophage phenotype towards an antifibrotic/pro-resolution

phenotype, and 4) inducing a pro-inflammatory and anti-tumoral

M1-type macrophage. Recent studies unraveled a profound

heterogeneity in the hepatic macrophage population, with distinct

gene signatures and functions in liver fibrosis and liver cancer (299).

Further research will help to gain a better understanding of the

different hepatic macrophage subtypes in mice and humans, and a

better definition of their disease-promoting phenotype and the key

disease-related ‘macrophage switches’ will allow the development of

new macrophage-targeted therapies.

Like macrophages, platelets can also have opposing functions in

patients with chronic liver disease since both low and high platelet

counts have been related to a poor prognosis in patients with HCC

(300). Several studies using rodent models of chronic liver diseases

and HCC demonstrated that antiplatelet therapy, e.g., aspirin and

clopidogrel, can ameliorate liver injury and disease outcomes.

However, future research will be important to better clarify the

functional role of platelets in liver disease in relation to disease

stage, such as early vs late stages, and acute vs chronic disease. Until
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now, there is no recommendation for the use of antiplatelet therapy

in patients with liver disease since its use requires careful

monitoring due to possible bleeding complications, especially in

patients with cirrhosis. Here, further studies with more specific

antiplatelet agents, like GPVI, PAR4, or PI3K inhibitors may reduce

possible bleeding complications (301). Platelets can influence

macrophage differentiation and polarization through direct cell-

cell interaction and the release of growth factors, cytokines,

chemokines, and other mediators, affecting their pro-

inflammatory, anti-tumor, and profibrotic phenotype, offering

platelet-targeted treatment approaches (288). Finally, platelets

may also be used as a therapeutic delivery system, supporting

optimized tumor therapy (302). Such platelet-targeted strategy,

especially when combined with a macrophage-targeted approach,

could reduce adverse effects and enhance therapeutic efficacy in

liver fibrosis and cancer (303). In conclusion, shedding light on the

interplay between macrophages and platelets, and possibly other

immune cells involved, may open new avenues to develop effective

therapies for liver fibrosis and HCC.
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