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Making “cold” tumors “hot”-
radiotherapy remodels
the tumor immune
microenvironment of
pancreatic cancer to benefit
from immunotherapy:
a case report
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Weiwei Kong1* and Juan Du1,2*

1Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing, China, 2The Comprehensive Cancer Center of Drum Tower Hospital,
Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese
Medicine, Nanjing, China, 3National Institute of Healthcare Data Science, Nanjing University,
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Immune checkpoint inhibitors have limited efficacy in metastatic pancreatic

cancer due to the complex tumor immunemicroenvironment (TIME). Studies

have shown that radiotherapy can cause cell lesions to release tumor

antigens and then take part in the remodeling of the tumor environment

and the induction of ectopic effects via regional and systemic

immunoregulation. Here, we reported a case of advanced metastatic

pancreatic cancer treated with immunotherapy combined with

chemotherapy and radiotherapy and a sharp shift of the TIME from T3 to

T2 was also observed. One hepatic metastasis within the planning target

volume (PTV) was evaluated complete response (CR), the other one was

evaluated partial response (PR) and 2 hepatic metastases outside the PTV

were surprisingly considered PR. In the study, we found that immunotherapy

combined with chemotherapy and radiotherapy achieved significant

therapeutic benefits, which may provide a new strategy for the treatment

of advanced pancreatic cancer.
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1 Introduction

Pancreatic cancer has very poor prognosis with a 5-year survival

rate of only 8% (1). About 50% of patients with pancreatic cancer

are diagnosed at an advanced stage (2) and there is no clear

consensus on the second-line treatment when first-line treatment

based on gemcitabine fails.

In recent years, immune checkpoint inhibitors (ICIs) have

achieved decisive breakthroughs in many solid tumors (3–5), but

the efficacy of ICIs in pancreatic cancer is still confronted with

challenges. The complex TIME of pancreatic cancer limits the

effectiveness of ICIs (6), but more and more clinical studies and

experiments have proved that radiotherapy combined with

immunotherapy can regulate the TIME, so as to strengthen the

control of tumor (7, 8).

Here, we presented an advanced pancreatic cancer case with

robust survival benefit from immunotherapy combined with

chemotherapy and radiotherapy, while obvious TIME remodeling

and an ectopic effect were also observed. Briefly, this comprehensive

treatment mode remodulated pancreatic cancer from “cold” tumors

to “hot” tumors in our case.
2 Case presentation

We presented a case of a 59-year-old male who was hospitalized

with intermittent upper abdominal pain in October 2021. Contrast-

enhanced computed tomography (CT) scan showed a 2.2cm x 2cm

mass at the neck of the pancreas with distal pancreatic duct

dilatation (Figure 1A). The mass was closely related to the splenic

vein. But after discussion, the Multiple Disciplinary Team (MDT)

believed that the patient was also accompanied by superior

mesenteric artery (SMA) invasion less than 180° (Figure 1B). But

no distant metastasis was detected at that time. In addition, the

baseline value of carbohydrate antigen 19-9 (CA19-9) was 12.99 U/

ml. Endoscopic ultrasound-guided fine-needle aspiration (EUS-

FNA) was performed and subsequently cancer cells were verified

pathologically (Figure 1C). The patient was definitely diagnosed

with borderline resectable pancreatic cancer based on pathology

and imaging. But the patient refused to consider the possibility of

follow-up operation firmly at the very start.

From November 2021 to March 2022, the patient received 5

cycles (21 days for one complete cycle) of gemcitabine 1000 mg/m2

and nab-paclitaxel 125 mg/m2 on day 1 and day 8 and the patient

stayed a stable disease. After 5 cycles of the treatment, CA19-9

increased to 76.7U/ml. In addition, CT scan revealed that the size of

pancreatic primary tumor had increased remarkably and four new
Abbreviations: TIME, tumor immune microenvironment; CR, complete

response; PR, partial response; ICIs, immune checkpoint inhibitors; CT,

contrast-enhanced computed tomography; EUS-FNA, endoscopic ultrasound-

guided fine-needle aspiration biopsy; PD, progressive disease; TEN, toxic

epidermal necrolysis; MDT, multiple Disciplinary Team; irAE, immune-related

adverse event; RECIST, Response Evaluation Criteria in Solid Tumors; mIHC,

multiplexed immunofluorescence histochemical.
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hepatic masses appeared (Figure 1G-T1). Pathology for Ultrasound

guided biopsy of the hepatic mass was concordant with liver

metastasis of pancreatic ductal adenocarcinoma (Figure 1D). The

patient was assessed progressive disease (PD).

Subsequently , S-1 plus oxal iplat in combined with

immunotherapy and radiotherapy were used in second-line

treatment. In detail, the patient received 3 cycles of S-1 80mg/day

on day1-14 plus oxaliplatin 130mg/m2 on day 1 and Sintilimab

200mg on day 1 (21 days for a complete cycle) while 8Gy*3

fractions radiotherapy of liver metastases within PTV was

conducted before Cycle2 started (Figure 2A).

After finishing 3 cycles of this treatment, the patient developed

toxic epidermal necrolysis (TEN) and after the Multiple

Disciplinary Team (MDT) discussion, the experts unanimously

assessed TEN as immune-related adverse event (irAE). After

methylprednisolone, anti-infection, fluid infusion treatment, his

symptoms quickly relieved (Figure 2B) and tumor marker CA19-

9 decreased to 19.2 U/ml by the TIME. CT scan revealed that the

primary pancreatic tumor and hepatic metastases had both shrunk

remarkably (Figure 1G-T2). Surprisingly, a hepatic metastasis

within the scope of radiotherapy had disappeared in CT scan.

Obvious inflammatory cell infiltration was confirmed by

pathology and no cancer cells was found in the biopsy tissues

(Figure 1E). One hepatic metastasis within the scope of

radiotherapy was assessed CR, the other one was evaluated PR,

and other two hepatic metastases outside the scope of radiotherapy

were also considered PR according to the Response Evaluation

Criteria in Solid Tumors (RECIST1.1) criteria.

We conducted the SOX regimen for another 3 cycles when

symptoms related to TEN were greatly relieved. At the time, CA19-

9 decreased to 6.94U/ml and all tumors continued to shrink as CT

indicated (Figure 1G-T3). Tumor diameter changes were

demonstrated in Figure 1F. The concomitant changes of CA199

and timeline of events were demonstrated in Figure 3 in details.

To comprehensively assess the alteration of TIME before and

after treatment, we performed multiplexed immunofluorescence

histochemical (mIHC) analysis at the protein level and gene

expression analysis at the RNA level on M2 hepatic metastasis

prior and post treatment, respectively. The spatial immune

microenvironments of tumor tissues prior (Figure 4A) and post

treatment (Figure 4B) were shown by mIHC assay. The relative

values of CD8+, CD68+, CD163+, Foxp3+, and PD-L1+ were 7.74,

3.9, 1.91, 2.84, and 0.69 respectively, showing a high infiltration of

immune cells and low expression of PD-L1 (subtype TIME-3,

immune escape type). After 3 cycles of immunotherapy combined

chemoradiotherapy, the relative values of CD8+, CD68+, CD163+,

Foxp3+, and PD-L1+ were 19.02, 6.06, 30.44, 8.11, and 21.76

respectively, showing a high infiltration of immune cells and high

expression of PD-L1 (subtype TIME-2, immune response type). The

RNA-level expression assay of TIME was detected by 289 immune-

related genes (NanoString Technologies, Seattle, USA) at Jiangsu

Simcere Diagnostics Co., Ltd, and the selection of immune-related

genes is shown in Supplementary Materials. The abundance of

immune cells related with the tumor microenvironment was shown

in Figure 4C, and the abundances of all immune cells were elevated to

different degrees, and other immune signatures in Figure 4D.
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For example, the CD8+ T cell score increased from 4.13 to 7.48, and

the Macrophage gene score improved from 6.05 to 8.07, and the Treg

gene score improved from 3.32 to 5.36. In addition, the mIHC

results also revealed an increase in Treg cells and M2 macrophages,

consistent with previous study that the effect of radiotherapy on

the tumor microenvironment may be dual, inducing both an

immunostimulatory effect (recruitment of T cells) and an

immunosuppressive effect (expansion of Treg cells) (9). Therefore,

we hypothesized that this coexistence of immunostimulatory and

immunosuppressive effect in radiotherapy leads to stabilization of

the patient’s disease and may provide opportunities for
Frontiers in Immunology 03
immunomodulation (10). Scores of other signatures or markers also

increased, such as the scores of IFNg from 5.29 to 8.51, cytotoxic T

lymphocyte from4.43 to7.64. Interestingly, the change in the scores for

B7-H3 showed a decreasing trend in contrast to the other scores, and

previous studies have also shown a negative correlation between its

high expression and treatment response. Additional immune scores

were shown in Supplementary Table 1. Both mIHC, as well as TIME

assays at the RNA level, reveal that immunotherapy combined with

chemoradiotherapy enhances immune cell infiltration, which may be

responsible for promoting the immune response and benefiting

patient’s clinical response.
BA

FIGURE 2

Occurrence of TEN after SOXPR. (A) Planning target volume of hepatic metastases radiotherapy. (B) Skin changes during treatment of TEN.
B
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FIGURE 1

Pathological and imaging evaluations during the first-line (AG) and second-line (SOXPR) treatment. (A, B) A 2.2cm × 2cm mass at the neck of the
pancreas was detected with superior mesenteric artery (SMA) invasion less than 180° on abdominal CT at baseline. (C) Cancer cells were observed in
pancreas biopsy (×200) at T0. (D) Ultrasound guided biopsy of the hepatic mass (M2) was concordant with liver metastasis of pancreatic ductal
adenocarcinoma (×200) at T1. (E) Pathology of M2 showed inflammatory cells and no residual tumor cells (×200) at T2. (F, G) Abdominal CT during
second-line (SOXPR) treatment and the tumor diameter variation. T0, The baseline prior to first-line therapy; T1, The baseline prior to second-line
therapy; T2, Obvious relief of TEN symptoms; T3,: Three additional cycles of SOX to end; M1-M4, 4 hepatic metastases; P, primary pancreatic
cancer locus.
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FIGURE 4

Immunofluorescence and RNA immune-related panel sequencing prior and post second-line treatment. (A) The representative immunofluorescent
images of CD8, CD68, CD163, FoxP3 and PD-L1 of tumor tissues prior second-line treatment. (B) The representative immunofluorescent images of
CD8, CD68, CD163, FoxP3 and PD-L1 of tumor tissues post second-line treatment. (C) Immune cell-related gene expression prior and after second-
line treatment. Black indicates pre-treatment, gray indicates post-treatment; blue indicates decreased expression, red indicates increased expression.
(D) Immune signature-related gene expression prior and after second-line treatment. Black indicates pre-treatment, gray indicates post-treatment;
blue indicates decreased expression, red indicates increased expression.
FIGURE 3

Systemic illustrations of clinical therapy flow chart. Broken Line indicates CA19-9 levels of this patient during the treatment.
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3 Discussion

At present, chemotherapy is still the main treatment for

advanced pancreatic cancer. With the deepening understanding of

the pathogenesis of pancreatic cancer, immunotherapy based on

remodeling TIME has become a hot topic of pancreatic cancer

treatment (11). However, the specific and complex TIME of

pancreatic cancer limits the effectiveness of immune checkpoint

inhibitors therapy (12–15). Studies have shown that nearly 50% of

the stroma cellular component of pancreatic cancer tissue is

immune-related cells, but only a few are anti-tumor-related

effector cells (16). Single-agent immunotherapy rarely works in

second-line therapy in advanced pancreatic cancer, but we made

breakthroughs and achieved unexpected clinical efficacy by a

cocktail therapy consisted of immunotherapy combined with

chemotherapy and radiotherapy in our case.

To better predict the response of immunotherapy in solid

tumors, researchers divided the TIME into 4 subtypes based on

PDL1 expression and the presence of tumor-infiltrating

lymphocytes (TILs): T1 (PDL1−, TIL−), T2 (PDL1+, TIL+), T3

(PDL1−, TIL+), and T4 (PDL1+, TIL−) (17). T2 are considered to

be the type to better predict the immune response. Radiation

upregulated the expression of PD-L1 (8, 18, 19)and increased the

infiltration of CD8+ T cells (20, 21), which changed the TIME from

type 3 to type 2 in our case. Hot tumors were remodeled in this way

to achieve enhanced clinical efficacy.

On one hand, radiation accelerates tumor cell lesions and death

to promote the exposure and presentation of tumor associated

antigens. On the other hand, high infiltration of CD8+ T cell is

influenced by chemokines such as CXCL9 and CXCL10 (22, 23).

Radiotherapy induces the production of these chemokines, and

promote the recruitment of T cells to tumor tissues (24–26).T cells

infiltration and antigens exposure activate T cell response to release

IFN- g and IFN- g stimulates the upregulation of PD-L1 (27, 28).

Besides, radiotherapy can also up-regulate PDL1 by activating

cGAS-STING (cyclic guanosine monophosphate-adenosine

monophosphate synthase-stimulator of interferon gene) pathway

to lay basis for use of ICIs (29, 30). In addition, radiotherapy has

been reported to induce normalization of blood vessels to achieve T

cell infiltration, but the exact mechanism has not been fully

elucidated (31).

In addition, the mIHC results showed an increase in Foxp3+

regulatory T cells (Foxp3+ Treg), which was consistent with

previous studies. In bladder and liver cancer, increased

accumulation of Treg cells was observed in tumor tissues after

radiotherapy, which was shown to be related to radiation-induced

Akt pathway activation (32, 33); In prostate cancer, radiotherapy

provides a growth and survival advantage for Tregs by inducing

TGF-b (34). However, our study hasn’t explored the mechanism by

which radiation therapy increases Foxp3+ Treg cells yet, which need

to be explained deeply.

In previous studies, some researchers have paid attention to the

ectopic effect of radiotherapy, and the specific mechanism of ectopic

effect of radiotherapy is attributed to immune effect (35–37).

Radiotherapy can induce immune cells to infiltrate into tumor
Frontiers in Immunology 05
tissue, produce a large number of reactive oxygen species,

activate cytotoxic T lymphocytes (CTLs), and lead to apoptosis of

tumor cells (38), this was also confirmed by our results of multiple

immunofluorescence histochemistry and tumor microenvironment

detection. Therefore, we conclude that the synergistic effect of

ectopic radiotherapy and immunotherapy enhances the immune

response and provides a new therapeutic strategy for advanced

pancreatic cancer.

However, not all patients can benefit from radiotherapy

combined with immunotherapy. It is well-known that the timing

of radiotherapy and the dose of radiotherapy will affect the effect of

immunotherapy. There is no consensus of the best time for

radiotherapy, but existing studies have found that simultaneous

administration of radiotherapy and immunotherapy or timely

immunotherapy after radiotherapy is beneficial to the clinical

outcome (39, 40). Taking two factors into consideration, we chose

to introduce radiotherapy in the middle course of ICIs usage. One

point, immunotherapy enhances the tumor’s sensitivity to

radiotherapy by cellular pathways. The other point, radiotherapy

upregulated PD-L1 to better response to subsequent ICIs. Up to the

optimal dose for radiotherapy, studies have shown that both low-

dose and high-dose radiotherapy can affect the efficacy of

immunotherapy by inflaming tumors, but the reason is not clear

(39, 41). Whether it is related to the type of cancer needs to be

further explored. Therefore, our patient benefited from

synchronous radiotherapy and chemotherapy combined with

immunotherapy, and benefited from high-dose radiotherapy

((8Gy*3f). Our patient also benefited from the sensitizing effect of

radiotherapy on chemotherapeutic drugs. Clinical studies have

shown that S-1 and oxaliplatin can be used as radiosensitizers in

the treatment of solid tumors (42–44). S-1 can inhibit the repair of

radiation-induced DNA damage and oxaliplatin can inhibit DNA

replication and transcription.

More and more studies have shown that immune-related

adverse events(irAEs) are related to better therapeutic effects (45,

46). Researchers believe that severity of irAEs are bystander effect

from activated T cells (47). Thus, patients who experience more

severe irAEs may acquire better clinical outcomes, but this

conclusion needs to be supported by more clinical data. Our

patient developed TEN after treatment with PD1, and CT scan

showed a good tumor regression after remission of symptoms.

In conclusion, we provide a potential treatment strategy for the

use of immunotherapy combined with chemotherapy and

radiotherapy in patients with advanced pancreatic cancer. We

consider that this is a typical case that comprehensive treatment

mode can convert pancreatic cancer from “cold” tumors to “hot”

tumors. More randomized clinical trials are needed to verify the

safety and efficacy.
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