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Cancer receives enduring international attention due to its extremely high

morbidity and mortality. Immunotherapy, which is generally expected to

overcome the limits of traditional treatments, serves as a promising direction

for patients with recurrent or metastatic malignancies. Bacteria-based vectors

such as Listeria monocytogenes take advantage of their unique characteristics,

including preferential infection of host antigen presenting cells, intracellular

growth within immune cells, and intercellular dissemination, to further improve

the efficacy and minimize off-target effects of tailed immune treatments. Listeria

monocytogenes can reshape the tumor microenvironment to bolster the anti-

tumor effects both through the enhancement of T cells activity and a decrease in

the frequency and population of immunosuppressive cells. Modified Listeria

monocytogenes has been employed as a tool to elicit immune responses

against different tumor cells. Currently, Listeria monocytogenes vaccine alone

is insufficient to treat all patients effectively, which can be addressed if combined

with other treatments, such as immune checkpoint inhibitors, reactivated

adoptive cell therapy, and radiotherapy. This review summarizes the recent

advances in the molecular mechanisms underlying the involvement of Listeria

monocytogenes vaccine in anti-tumor immunity, and discusses the most

concerned issues for future research.
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1 Introduction

Cancer constitutes a significant factor for the worldwide mortality rate. In 2023, the

United States will experience 1,958,310 new cancer cases and 609,820 deaths (1).

Conventional treatments such as surgery, radiotherapy, and chemotherapy still suffered

from recurrence, metastasis, and drug resistance, leading to an urgent need for novel
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therapeutic strategies (2). Therefore, tumor immunotherapy has

emerged (3), with the aim to destroy tumor cells selectively via

activating or reactivating host cellular immunity mainly mediated

by T cells (4). Immunomodulatory drugs can also work against

cancer cells through increasing the concentration of tumor-specific

antibodies, natural killer (NK) cells, dendritic cells (DCs),

macrophages and cytokines. Recent studies support tumor

immunotherapy as an effective strategy, which can surpass the

constraints of conventional treatments and improve the prognosis

of patients with different malignancies (3).

However, the efficacy of immunotherapy is greatly affected

by the tumor microenvironment (5). Clinically, some patients

show low immune responses and limited benefits. Thus,

immunotherapy based on different vectors is expected to

reshape TME. Bacteria are regarded as suitable carriers due to

their immunogenicity and tropism for hypoxic tissue. Bacteria-

based immunotherapy can colonize TME to effectively activate the

immune system of patients who do not response to conventional

treatments (6).

Listeria monocytogenes (Lm), a Gram-positive bacterium, is

facultatively anaerobic. Lm-infected host exhibits mild to severe

gastroenteritis, bacterial sepsis, and even bacterial meningitis (7).

The virulence of Lm increases in direct proportion to its

colonization and dissemination ability (8). Pore-forming toxin

listeriolysin-O (LLO) facilitates the escape of Lm from the

phagosome of phagocytic and nonphagocytic cells (9). Thus, Lm

can be found both in the cytoplasm and endosomal compartments

(10, 11). Besides, Lm has a unique life cycle and capabilities to

induce a robust cytotoxic immune cell response (12). The Lm

surface proteins, internalin A (inlA) and internalin B (inlB),

interact with surface receptors E-cadherin and C-Met to

facilitate the entrance of Lm into nonphagocytic cells (13, 14).

After internalization, Lm is enclosed in the host phagosome.

Through secreting phospholipases (plcA and plcB) and LLO, Lm

perforates phagosomes and enters the cytoplasm to escape

phagolysosome killing (15, 16). The tumor-associated antigens

(TAAs) secreted by Lm undergo degradation by proteasomes,

subsequently stimulating specific CD8+ T cells via MHC class I

molecules (17). Owing to hypoxia, suppressive TME, and the

ability to grow intracellularly, Lm is easier to escape the immune

surveillance and infiltrate into TME compared to other bacteria.

The apparent synergy between the expansion of effector T cells

and a sharp immunosuppressive cells reduction can enhance

innate immunity and restructure TME to improve the efficacy of

immunotherapies. Many studies have shown significant interest in

Lm and tried to make it a vector to promote tumor

immunotherapy. Nevertheless, using Lm-based therapy alone

still faces the problem of poor therapeutic effects and

complications because of its potential pathogenicity. The

combination of Lm-based therapy with other treatments has

been proposed as a possible candidate to overcome the

limitations. This review will focus on how Lm-based modulates

immune pathways to hold a promising anti-tumor response and

current progresses in Lm-based tumor immunotherapy.
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2 Mechanisms of Lm-
specific immunotherapy

2.1 An antigen vector

Cancer vaccines usually consist of TAAs and paired adjuvants.

Bacteria-delivered TAAs activate specific cytotoxic T lymphocyte

(CTLs) against tumor cells and induce memory T cells to prevent

relapse. Both the pathway of Lm invasion and the ability to survive

in macrophages are critical for delivering target antigens and

stimulating immune responses (18, 19). Taken by oral

administration or intravenous injection, Lm vaccines

preferentially infect host antigen presenting cells (APCs) (7, 20).

Internalized Lm can secrete LLO to enhance the permeability of the

phagosome, leading to the translocation of TAAs to the cytoplasm

(21). TAAs are presented by the MHC-I complex to the cell surface

and activate CD8+ T cells (22). Moreover, Lm replicates and secretes

actin assembly-inducing protein (actA) to polymerize host actin

and facilitate its spread among cells (23, 24). These characteristics

make Lm an attractive candidate as an antigen vector

for immunotherapy.

A number of Lm strains expressing different antigens have been

created. Lm can deliver prostate specific antigen (PSA) to increase

CD8+ T cell number in spleens and tumors and inhibit regulatory T

cell (Treg) allocation (25). Pancreatic ductal adenocarcinoma

(PDAC) associated antigen Annexin A2 (ANXA2)-expressing Lm

could activate CD8+ T cells in TME and improve the survival of the

rodent models of PDAC (26). Additionally, a fusion of Lm antigens

and TAAs enhances anti-tumor responses. Given the ability to

perforate phagosomes and help Lm spread from cell to cell,

modified LLO and actA are mostly employed as fusion partners.

Although the human papillomavirus (HPV) antigen E7-expressing

strain alone has almost no impact on tumor growth, the

combination of Lm-derived E7 and truncated version LLO (tLLO)

results in tumor regression in up to 75% of patients (27). Similar to

tLLO, the fusion of truncated actA with E7 also shows enhanced

anti-tumor effects (28).
2.2 Effects on immune cells in TME

One of the main reasons why many immunotherapies fail to

provide therapeutic benefit is that the immunosuppressive

microenvironment impedes anti-tumor responses. Tregs and

myeloid-derived suppressor cells (MDSCs) in TME are primarily

responsible for T cell inhibition and rapid depletion of tumor-

specific T cells (29–31). The innate immune responses to Lm,

including the effects of NK cells, tumor-associated macrophages

(TAMs), mast cells, and neutrophils, contribute to TME

remodeling (Figure 1).

Recent findings indicate that Lm vaccines promote the

infiltration of IFN-g-producing effector CD8+ T cells and a

remarkable decrease in the frequency of FoxP3+ Tregs,
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transforming the immunosuppressive TME into inflamed and

leading to the inhibition of tumor development (32, 33).

Additionally, interferon-stimulated gene 15 (ISG15) exerts a key

function in innate immunity. Lm- LLO-ISG15 induces the

production of interferon-g, attracting effector T cells to TME (34).

Besides, Lm-based vaccines can also induce tumor-associated

macrophage polarization from M2 to M1 with anti-tumor

phenotype (35). Lm infection activates neutrophils and mast cells,

which, in turn, secret IL-6 and IL-13 to enhance the host immune

response (36, 37).

Moreover, Lm vaccines can increase the number and activity of

NK cells which perform strong anti-tumor action through targeting

and lysing tumor cells (32, 33, 38). Lm vaccine can also reduce the

number of MDSCs through direct infection both in the peripheral

blood and TME (39, 40). Infected MDSCs can transform into

immune-stimulating phenotype and secrete IL-12 to activate the

CD8+ T cells and immune responses (41).

In addition, Lm vaccine can target tumor-associated blood

vessels through the surface antigens of endothelial cells (42).

Endoglin (CD105), a necessary glycoprotein of the TGF-b
receptor complex, has been proposed as an available marker for

tumor-related angiogenesis and neovascularization. Accumulating

evidence supports the high efficacy of CD105-targeted Lm vaccine

in breast cancer models through stimulating anti-angiogenic and

anti-tumor immune responses (43). CD105 is expressed on both

tumor cells and endothelial cells in renal cell carcinoma (RCC) (44,

45). Lm-LLO-CD105A encodes a CD105 antigen fragment that

targets RCC tumor cells as well as tumor-related blood vessels. The

vaccine can reduce the progression of RCC in subcutaneous and
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orthotopic models by increasing the infiltration of polyfunctional

CD8+ and CD4+ T cells (46).

Although the Lm vaccine has shown significant effects on

remodeling TME and increasing the anti-tumor effects of specific

T cells, there are still a series of concerns that need to be addressed

before its clinical practice. Despite the utilization of attenuated

strains, components of Lm still can elicit the body immunity and

stimulate macrophages to phagocytize the bacteria. In addition,

most bacteria-based vaccines are inevitably cleared by the

reticuloendothelial system before landing on the tumor,

ultimately with a lower-than-expected anti-tumor efficacy.
3 Development of attenuated
Lm strains

The pathogenicity of Lm constitutes a significant constraint for

clinical applications. Therefore, the delicate balance between the

safety and immunotherapeutic efficacy of the candidates is a

fundamental aspect of Lm-based strategies.

Selectively deleting virulence genes of wild type Lm, including

inlB , actA , alanine racemase (dal), and D-amino acid

aminotransferase (dat), has been widely used to develop an ideal

vector. InlB directly mediates the infection of nonphagocytic cells in

vitro, while actA promotes a cell-to-cell spread pattern (23, 47). The

actA (DactA) and inlB (DinlB) double-deleted Lm strain cannot be

transmitted between cells and exhibit a reduced potential to infect

hepatocytes directly or indirectly, but the ability to stimulate innate

immunity is intact (48). Meanwhile, the eradication of DactA/DinlB
FIGURE 1

The mechanism of Lm-based vaccine affecting tumor microenvironment. The Lm-based vaccine is phagocytosed by antigen-presenting cells and
escapes the phagosome by releasing the pore-forming toxin listeriolysin-O. MHCI takes up the tumor-associated antigens delivered by Lm-based
vaccine and presents it on the cell surface, which activates the anti-tumor immune response of CD8+ T cells. In addition, the number and activity of
memory T cells and NK cells are increased while decreasing the number and activity of Treg cells and reducing the immunosuppression in tumor
microenvironment. Lm-based vaccine also directly infects MDSCs and spread to the TME with the aid of MDSCs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1278011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2023.1278011
Lm strain from the liver and spleen is much faster than that of a

single mutant strain (49). Moreover, attenuated DactA/DinlB Lm

strain shifts the phenotype of TAMs from an inhibitory (M2) to a

stimulatory state (M1), leading to good prognosis in mouse model

with aggressive ovarian carcinoma (48). D-alanine is an essential

component for the synthesis of the mucopeptide in Lm cell walls,

which is controlled by two important genes, dal and dat (50). After

inactivating both genes, the replication of Lmmust be dependent on

exogenous D-alanine (50). The dual deficient strain acquires dal

and dat genes from Bacillus subtilis to restart the replication within

a limited degree without serious organ damage (33).

Developing killed but metabolically active (KBMA) bacteria

also represent a promising pathway. Brockstedt et al. created a

nucleotide excision repair gene-deleted Lm vaccine (KBMA Lm),

which is highly sensitive to photochemical inactivation induced by

psoralen and long-wave UV (38). The anti-tumor KBMA Lm

stimulates effective CD4+ and CD8+ T cell responses and an

increase in the number of mature DCs in colon cancer model

without significantly side effects (51, 52).

Lm recombinase-induced intracellular death (Lm-RIID) is a

novel vaccine platform. By inducing Cre recombinase in host cell

cytosol to delete essential genes for bacterial viability, Lm-RIID

commits suicide intracellularly. As a result, Lm-RIID can elicit

potent anti-tumor effects without normal tissue injury. Besides, Lm-

RIID exhibits a higher clearance rate than double-deleted Lm

strains. The development of Lm-RIID marks a significant

advancement in the progress of Lm-based vaccine (53).

ISG15 is considered as a new TAA and therapeutic target for

colorectal cancer. Lm-LLO-ISG15 mediates CD4+ T and CD8+ T

cell responses through a greater ratio of effector to regulatory T cells

in TME (54). Moreover, manganese ions (Mn2+) have been found to

promote the activation and infiltration of CD8+ T cells to kill tumor

cells in vivo, while calcium ions (Ca2+) can regulate autophagy to

facilitate the cross-presentation of antigens (55, 56). Calcium-doped

manganese carbonate microspheres and LLO (Ca@MnCO (3)/

LLO) are used to form a manganese-containing multimode

vaccine delivery system, which facilitates antigen cross-

presentation, induces proliferation of CD8+ T cells, and ultimately

yields significant anti-tumor effects (57).

Various methods have been employed to control the virulence

of Lm vaccine and ensure its safety. The levels of biological materials

or drugs bound to the bacterial surface do not increase with the

replication of vaccine, resulting in the dilution of effective

concentration. Further studies could focus on the interactions

between the bacterial vector and therapeutic drugs. In addition,

with regard to the risk of triggering bacteremia in the host, it would

be remarkably cautious to the complications of Lm. In conclusion,

how to ensure the maximum efficacy of Lm vaccines at a safe dose is

still the core issue in current vaccine development.
4 Synergy with other therapies

It has been established that carcinogenesis is largely the result of

mutations in multiple genes with strong individual differences.

Although Lm-based vaccines have shown regulatory effects on
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cancer immunity, not all patients can benefit from a single cancer

vaccine. Thus, Lm-based vaccines are also used in combination with

immune checkpoint inhibitors, reactivated adoptive cell therapy,

and radiotherapy to achieve greater efficacy with lower side effects

(Figure 2) (Table 1).
4.1 Immune checkpoint inhibitors

As one of the most important components of the immune

system, immune checkpoints can prevent healthy cells from

excessive immune responses. Meanwhile, immune checkpoints

can limit the potency of activated T cells through the interactions

between T cells and partner proteins on target cells such as tumor

cells (74). The most studied immune checkpoint molecules include

cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and

programmed cell death protein-1 (PD-1) (75–78). Cancer cells

express PD-L1, the ligand of PD-1, enabling the tumor to evade

assault from effector T cells (79). Immune checkpoint inhibitors

(ICI) refer to the utilization of blocking antibodies targeting the

checkpoint molecules PD-1/PD-L1 and CTLA-4. ICI can restore

the recognition and killing efficacy of immune cells and prevent the

immune evasion of tumor cells (80, 81). However, separate use of

ICI may not be effective for some types of cancer such as PDAC

(26). The combination of blockading checkpoint protein with Lm-

based immunotherapy has shown positive clinical effectiveness in

many types of cancer, including melanoma and hepatocellular

carcinoma (35, 81).

Lm-based vaccines can reinforce immune checkpoint blockade

function to fight against cancer, mainly via ameliorating the

immunosuppressive TME and inducing anti-tumor immune

responses. Lm-LLO-E7 vaccine, formed by HPV16-E7 and

truncated LLO, can enhance the efficacy of anti-PD-1 antibodies

by reducing the number of Tregs and MDSCs in the spleen and

TME (27, 39). ANXA2 favors the metastasis of PDAC and induces

antibody responses (82). Compared with the single treatment, a

combination of Lm-ANXA2 and anti-PD-1 antibody significantly

prolonged survival time in PDAC model. Moreover, when Lm-

ANXA2 is administered prior to the use of anti-PD-1 antibody, cure

rates in implanted PDAC models are increased (26). A Lm-based

hepatocellular carcinoma (HCC) vaccine, DdalDdat Lm-multiple

peptides fusing genes (MPFG), with the ability to secrete HCC-

related TAAs fragments, activates the TAMs through the NF-kB
pathway and shifts the cytokine profiles within TME towards an

antitumor response. This alteration reinstates the T cell reactivity

towards the anti-PD-1 blockade (35, 73). The Lm-GP61 vaccine

developed using the CD4+ T cell epitopes can impede tumor

progression by inducing TH1 and CTL responses, synergizing PD-

L1 blockade to mediate tumor suppression (83). In a mouse

melanoma model, ICI synergized with an Lm-based melanoma

vaccine to induce protective primary and memory T-cell responses

through antigen-specific CD8+ T cells (62).

Nevertheless, the clinical utility of ICI remains restricted due to

unresolved obstacles. Owing to tumor heterogeneity, a part of

patients with responsive forms of cancer even exhibit no response

to current ICI (84). Moreover, in spite of the strong association
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between immune checkpoint molecule expression and tumor

progression, the lack of predictive biomarkers narrows down the

benefit population. And it is controversial to use immune

checkpoint molecule as the only predictive biomarkers for tumor

immunotherapy (85). Hence, in view of this problem, some studies

found other factors such as a T cell inflamed gene-expression profile

(GEP) and tumor mutational burden (TMB) that can now be used

as biomarkers to predict the responsiveness of ICI therapy (86).
4.2 Reenergized adoptive cell therapy

Adoptive cell therapy (ACT) using naturally or engineered

immune cells has unprecedented success in oncotherapy, such as

hematopoietic malignancies and melanoma (87–89). ACT is

dependent on an adequate quantity of anti-tumor T cells with the

requisite capabilities to cause cancer regression (90). Thus, the

immunosuppressive TME may become an obstacle to progress in

enhancing the efficacy of ACT (91). Considering the ability of Lm-

based vaccines to infect and deplete MDSCs in TME, it may be the

viable option that overcomes the limitations and enhances the

efficacy of ACT (92).

Xin et al. developed a new strategy called Reenergized ACT

(ReACT) which combines ACT with Lm-based vaccine, integrating

the advantages of two methods (64). The bacteria/tumor-(dual)

specific T cell is tumor-reactive CD8+ T cell that has been assembled
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in vitro with an extra T-cell receptor against a bacterial antigen. And

the successful eradication of tumors relies on the substantial T cells

within the tumor. The use of Lm-based vaccine leads to a significant

reduction of MDSCs in TME to increase the intensity of specific T

cell action, which makes the dual- specific T cells expand and

migrate to the tumor area (64). The study in rodents demonstrated

that ReACT enhanced the infiltration and function of CD8+ T cells

in tumors, as well as reduced the expression of immune checkpoint

molecules (93). In preclinical cancer models, ReACT has exhibited a

fascinating efficacy in eradicating the primary tumor and reducing

recurrences in the long term (93).

Despite the powerful effects, ReACT still faces some limitations.

Local injection, which is used to ensure access to tumor tissues, may

restrict the clinical application. Meanwhile, ReACT-induced

immune responses may target self-antigens, resulting in normal

cell and tissue injury. These concerns may become an important

area of experimental and clinical investigation in the years to come.
4.3 Radiotherapy

Radiotherapy (RT) was shown to increase susceptibility of

tumor cells to active vaccine therapy. Sublethal irradiation

promoted the recruitment of infiltrating T cells in the treatment

sites. The phenotype of tumor cells can be changed and more

sensitive to Lm-based therapy (94, 95). Given the anti-tumor effects
FIGURE 2

The combination of Lm-based vaccine and other therapies. Lm-based vaccines can be combined with multiple therapies to realize more potent
anti-tumor effects. (A) Combination with immune checkpoint inhibitor therapy: Immune checkpoint inhibitors enhance the anti-tumor response of T
cells by blocking the binding of checkpoint proteins to partner proteins, such as blocking the binding of PD-1 to PD-L1. Lm-based vaccines reduce
immunosuppression by remodeling the tumor microenvironment while activating CD8+ T-cell immune responses to exert synergistic antitumor
effects with ICI. (B) Re-energized Adoptive Cell Therapy: The ability of Lm-based vaccines to reduce the immunosuppressive environment in
combination with the dual-specific T cells are tumor-reactive CD8+ T cells enhances tumor infiltration and function of CD8+ T cells. (C) Combined
application with radiotherapy: Radiotherapy can directly cause tumor cell death and Lm-based vaccine can retard tumor growth. The combination
of the two therapies exerts synergistic anti-tumor effect.
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of radiation and Lm-based vaccine, these two methods can better

control tumor development (63). Different immune responses

elicited by different treatments have a synergistic effect.

Combination of RT and chicken ovalbumin (OVA)-expressing

DactA/DinlB Lm (Lm-OVA) increased the number of activated T

cells in tumor tissues compared with either alone (63). Similarly, the

combined administration of RT and Lm-based prostate cancer

vaccine (ADXS31-142) accelerates tumor regression through
Frontiers in Immunology 06
enhanced specific immune responses in the prostate (68).

Through coupling 188Rhenium and attenuated (at) Lm (Listeriaat),

Quispe-Tintaya et al. created a unique radioactive Listeriaat (RL)

(96). RL delivered a high level of radioactive payload to metastatic

colonies causing malignant cell death without normal tissue

damage, holding great promise for controlling metastases.

However, further clinical trials are still needed to determine

their efficacy.
5 Application of Lm-based vaccine in
solid tumors

Lm-based vaccines have been tested in many preclinical and

clinical trials for different tumors, including cervical cancer,

melanoma, pancreatic cancer, breast cancer, prostate cancer, and

malignant pleural mesothelioma (Tables 1, 2).
5.1 HPV-associated cervical cancer

Chronic infection with HPV, especially type 16, is the main risk

factor for the development of cervical cancer, the fourth most

common cancer in women (100). The efficacy of current

therapeutic interventions still acquires extensive substantiation

(101). Due to the poor prognosis, there remains a lack of

consensus regarding the second-line alternatives (102).

Axalimogen filolisbac (ADXS11-001), a new vaccine based on

living attenuated Lm, is consisted with LLO and HPV-16 E7

antigen. ADXS11-001 can activate special immune responses to

the E7-expressing malignant cells (58). It also increases the number

of tumor infiltrating lymphocyte (TIL) and alleviates the

immunosuppression status of TME (103). The results obtained

from phase I/II/III trials encourage future perspectives for cervical

cancer patients (58).

Accumulating evidence confirms that the combination of two

different recombinant Lm strains exhibits a more satisfactory anti-

tumor potential than using them alone. Treating HPV-infected

mice with LMDactAplcB-E6E7 (LMD-E6E7) and LIDactAplcB-
E6E7 (LID-E6E7) can significantly overcome anti-vector

immunity and accelerate the regression of tumor than the effect

of LID−E6E7 (11). In addition, some studies demonstrated that the

optimization of codon usage contributes to the improvement of

host immunity against TAAs (104, 105). The codon-optimized

LM4Dhly : :E7-1 induced stronger Th1-biased immunity,

lymphocyte proliferation, and specific CTL activity compared

with LM4Dhly::E7. Moreover, LM4Dhly::E7 exhibited a significant

improvement in the efficacy of tumor establishment treatment (59).
5.2 Melanoma

Melanoma has been proposed as the most aggressive type of

skin cancer originating from melanocytes. Attenuated DactA/DinlB
Lm, capable of expressingmelanoma inhibitory activity (MIA), can
TABLE 1 The summary of Lm-based vaccines used in tumors.

Cancer TAAs

Lm
vaccine
strain
(reference)

Combination
therapy
(reference)

HPV-
associated
cervical
cancers

HPV 16 E7

ADXS11-001
(58)

None

Lm-LLO-E7
anti-PD-1 blockade
(27, 39)

E7
LM4Dhly::E7-1
(59)

None

HPV16 E6E7 LMD-E6E7 (11)

Melanoma HMW-MAA

Lm-LLO-
HMW-MAA-C
(60)

Lmat-LLO (61)

Lm-OVA (62)
RT (63)

ReACT (64)

Pancreatic
cancer

TT (856–1313)
Lm-TT (856–
1313) (40)

None

ANXA2
Lm-ANXA2
(26)

anti-PD-1 blockade
(26)

Breast cancer
position 311-660

LM-LLO-
Mage-b/2nd

(65) None

Mage-b LM-Mb (66)

Prostate cancer

tLLO-PSA
ADXS31-142
(67)

RT (68)

prostatic acid
phosphatase,
prostate-specific
membrane
antigen, synovial
sarcoma X
breakpoint 2, and
homeobox protein
NKX3.1

JNJ-809 (69) None

Malignant
pleural
mesothelioma

mesothelin CRS-207 (70)
PD-1 blockade (71,
72)

Hepatocellular
carcinoma

fusion peptide
(HBc, HBx52-60,
HBx140-148,
AFP158-166,
MAGE271-279)

Lm-MPFG
anti-PD-1 blockade
(35, 73)
The table provides a list of Lm-based vaccines for each type of cancer covered in the text, the
tumor-associated antigens they target and the combination therapy with Lm-based vaccines.
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inhibit the growth of melanoma through the downregulation of

blood vessel density (106). The human high molecular weight

melanoma-associated antigen (HMW-MAA)-expressing Lm (Lm-

LLO-HMW-MAA-C) acquires the ability to induce cell-mediated

immune responses against HMW-MAA, targeting both tumor cells

and pericytes in the tumor vascular system (60).

Non-targeting Lm still demonstrates the ability to induce

melanoma cell death without specific target antigen. Lmat-LLO,

which produces ROS and causes a wide range of melanoma cell

apoptosis, significantly reduced the size, volume, and metastatic

burden of melanoma in Braf/Pten genetically engineered mice (61).

The OVA-expressing Lm with the deletion of actA and phospholipase

C stimulated strong CD8+ T cell responses including activation of both

primary and memory T cells, resulting in protection against melanoma

in mouse model transplanted with B16F10 cell line (62). Moreover, in

combination with ICI treatment or RT, Lm vaccine increases the

infiltration of antigen-specific CD8+ T cell and NK cells and shows

better effects on reducing tumor size (62, 63).
5.3 Pancreatic cancer

Despite the recent advances in diagnosis and treatment, PDAC

is still the fourth contributor to deaths from cancer (107).

Gemcitabine (GEM) and erlotinib add up to six months to the

median survival of patients with advanced PDAC (108, 109). It is

difficult for many therapeutics to reach the tumor site due to the

stromal barrier of PDAC (110, 111). With the ability to use MDSC

as a vector, Lm could penetrate the primary tumor, which is

considered to be a more efficient anti-tumor strategy (96).

Lm-expressing mesothelin (CRS-207) is of great clinical

importance for Lm-based PDAC treatment. The administration of

low-dose cyclophosphamides (Cy) prior to GM-CSF-secreting

allogeneic pancreatic tumor cells (GVAX) (Cy/GVAX) followed

by CRS-207 leads to a significant improvement in outcomes in a

randomized multicenter phase II study with manageable toxicity

(98, 99, 112). However, this strategy (Cy/GVAX + CRS-207) failed

to improve the overall survival in a randomized phase IIB study

compared to chemotherapy (113). This apparent paradox might be

explained by the fact that nontargeted immunosuppressive vaccines

are quite difficult to obtain ideal anti-tumor effects. Thus, current

clinical trials focus on the combination of the prime-boost
Frontiers in Immunology 07
vaccination strategy and immune checkpoint inhibitors. Although

these issues are a matter of debate, the current study using PD-1

inhibitor (nivolumab) + Cy/GVAX + CRS-207 yielded valuable

insights into this field (71, 72).

Immunogenic tetanus toxoid protein (TT(856–1313)) can be

delivered directly into PDAC through Lm vaccine and kill infected

tumor cells via reactivating previously existing TT-specific memory T

cells. Through intraperitoneal injection, Lm directly infects MDSCs

which will migrate into TME, leading to the dissemination of Lm.

Moreover, Listeria-TT regulates the number and function of

macrophages and MDSCs, thus enhancing the sensitivity of tumor to

GEM (40). At the same time, it avoids the side effects accompanying

the use of high-dose GEM due to reduced sensitivity (40).

Selvanesan et al. developed an attenuated non-toxic and non-

pathogenic Listeria-32P as a novel delivery platform, which kills

tumor cells by 32P-induced ionizing radiation and Lm-induced ROS

(114). The treatment causes a reduction in the growth of PDAC in

KPC (conditionally express endogenous Kras-G12D, p53-R172H

and pdx1-Cre mutant alleles) mice. Meanwhile, the radioactive Lm

can precisely pinpoint the metastatic lesions in distant organs with

minimal side effects to the adjacent normal tissue (114).

Besides, the combination of Lm-based immunotherapy with

other treatments, such as radiotherapy, shows a promising anti-

tumor effect and has a clinical future to prevent recurrence and

metastasis of pancreatic cancer (96).
5.4 Breast cancer

Breast cancer (BC) is one of the most common malignancies in

women. More than 20% of patients died of metastatic lesions and

intervention resistance (115, 116). First-line strategy for metastatic

cancer so far is surgery followed by chemotherapy or radiation

(117). Despite the recent advances in BC therapy, the elimination of

metastatic or primary tumor cells after initial treatment is often

incomplete (118). More aggressive strategies are required, but few

options are available, resulting in an urgent need for other effective

measures. Immunotherapy has shown a promising perspective and

can be served as an important candidate for BC patients.

The administration of Mage-b cDNA-expressing Lm (LM-LLO-

Mage-b/2nd) before the establishment of tumor shows a more

effective function of eliminating metastases than that of Lm-LLO
TABLE 2 Clinical trials of Lm-based vaccines.

NCT No.
Therapy (Lm vaccine with or
without combination therapy)

cancer Endpoints Reference

NCT02325557 ADXS31142 mCRPC ORR, PFS, OS, and immunogenicity (67)

NCT03371381 JNJ-809 mCRPC RP2D (69)

NCT02592967 JNJ-757 NSCLC immunogenicity, safety, efficacy (97)

NCT01675765 CRS-207 MPM Safety, induction of immune response (70)

NCT02243371 CRS-207+ Cy/GVAX+ nivolumab PDAC OS, ORR, PFS, safety, tumor marker kinetics, immunologic responses (71, 72)

NCT01417000. CRS-207+ Cy/GVAX PDAC OS, PFS, OR (98, 99)
The table summarizes clinical trials of Lm-based vaccines covered in the text.
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in 4T1 BC model (65). The TAA Mage-b-expressing Lm (Lm-

Mage-b) is combined with some immunologic adjuvants to

promote a strong immune response. Lm-Mage-b can synergize

with a-galactosylceramide and contribute to the increase of NK T

cells in the spleen and the elimination of metastatic colonies without

cellular toxicity (66). Triple-negative BC (TNBC) represents an

extremely aggressive subtype that lacks estrogen receptor,

progesterone receptor, and human epidermal growth factor

receptor 2 (HER-2) (119, 120). Curcumin inhibits the production

of MDSCs-derived IL-6 and enhances the effects of Lm-Mage-b

through strong CD8+ T cell responses, resulting in a higher level of

efficacy against metastases (121). Listeriaat can decrease the number

of infected MDSCs in blood and primary tumors. IL-12 is one of the

signals to stimulate clonal expansion of CD8+ T cells (122).
5.5 Prostate cancer

It is estimated that 288,300 new cases of prostate cancer and

34,700 death cases will occur in 2023 (1). Up to 20% of men

diagnosed with prostate cancer in the United States have regional or

metastatic disease (123). Most of these patients who are treated with

1-3 years androgen-deprivation therapy will finally develop

metastatic castration-resistant prostate cancer (124).

PSA can be detected in the majority of prostate cancer cases and

has been identified as the target antigen (25). ADXS31-142, a live

attenuated Lm-based immunotherapy, is bioengineered to secrete a

fusion protein composed of truncated fragments of Lm lysozyme

toxin (tLLO) and PSA, termed tLLO-PSA (67). A study demonstrated

that the combination of ADXS31-142 and pembrolizumab is safe and

well tolerated in patients with metastatic castration-resistant prostate

cancer (67).

JNJ-64041809 (JNJ-809), a newly developed immunotherapy

based on DactA/DinlB Lm, targets four prostate cancer antigens,

including prostatic acid phosphatase (125), prostate-specific

membrane antigen (126), synovial sarcoma X breakpoint 2 (127),

and homeobox protein NKX3.1 (128). After the evaluation, the

safety of JNJ-809 is manageable and the interventions implemented

at an early stage may induce a more intense response. However, the

observable antigen-specific immune response is limited and did not

translate into an objective clinical response (69).
5.6 Malignant pleural mesothelioma

Exposure to asbestos or other small carcinogenic fibers is most

likely responsible for malignant pleural mesothelioma (MPM), a

rare malignancy with a poor prognosis (129). Although the

combination of pemetrexed and cisplatin has been applied as

standard initial treatment for patients with unresectable MPM

(130), the high mortality has been promoting the search of

alternative treatments (70). Accumulating evidence suggests that

immunotherapeutic approaches can be used as promising

treatments for MPM (131–134).

Almost all epithelial MPMs overexpress mesothelin (120, 135–

137). When combined with chemotherapy, CRS-207 increases
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infiltration of dendritic NK cells and T cells, accompanied by a

transition of macrophage from immunosuppressive M2 to

proinflammatory M1 (70). In a phase Ib study in MPM, CRS-207

in combination with pemetrexed/cisplatin increases CD8+ T cell

ratio and the infiltration of DCs and NK cells. The therapy leads to a

notable reduction in tumor size without serious treatment-

associated side effects (70). Besides, cytoreduction surgery could

reduce the immunosuppression to restore the mesothelin-

expressing Lm vaccine efficacy (138).
6 Future perspectives

By overcoming the immunosuppressive microenvironment and

enhancing targeted anti-tumor immune responses, Lm vaccines

have shown promising performance in the treatment of both

primary and metastatic tumors.

However, the side effects of Lm vaccines are similar to other

classical immunotherapies, including potential systemic immune

response, hypertension, and fatigue. As a pathogen, Lm has raised

concerns about its safety risks, even bacteremia. Several studies have

explored the delicate balance between the efficacy and safety of Lm-

based vaccines (69, 97, 99, 139, 140). At the same time, a lack of

technical facilities limits the ability to test whether a sufficient

number of vaccines can reach the tumor site.

Therefore, future research will focus on the development of less

toxic and more potent Lm strains. At present, this target is mainly

achieved by deleting virulence factors or developing KBMA and

Lm-RIID strain. More effective evaluation methods are generally

expected to select the best candidates among developed strains. In

addition, several studies have explored the combined use of Lm-

based vaccines with ICI, ReACT cells, radiotherapy, and other

therapies, achieving remarkable results. The ability of Lm-based

vaccine to reshape TME and enhance the immune response of

CD8+ T cells endows it to exert synergistic anti-tumor effects.

Meanwhile, how the Lm-based vaccine helps other approaches to

regulate the immune status of TME may become an important area

of clinical investigation in years to come.

The differences of immune system between human and

experimental species remain a big obstacle to progress in

developing Lm-based vaccines. Robust CD8+ T cell immunity can

be elicited by Lm-based vaccine to specifically target a tumor

antigen in mouse model. However, this result has not been

confirmed in human so far. Substantial evidence suggests the

possibility that the differences of gd T cells between mouse and

human may contribute to this phenomenon. According to the

expression of gd receptors, T cells can be divided into two

subtypes, including gd T cells (gd+) and ab T cells (gd-) (141).

Vg9Vd2 T cells represent the majority of human gd T cells while

murine gd T cells are largely Vg5Vd1+ (142, 143). Through

upregulation of cholesterol metabolism, Lm-infected human

dendritic cells are able to activate Vg9Vd2 T cells. And in

contrast to mouse, Lm infection in humans induces a distinct

proliferation of Vg9Vd2 T cells (144). Besides, colorectal cancer

antigen guanylyl cyclase C (Lm-GUCY2C)-expressing Lm-based

vaccine can induce strong Lm-specific immunity, rather than anti-
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GUCY2C response. This result indicates that the competition with

immunodominant Lm-derived CD8+ T-cell epitope may be

involved. Some weak antigens, such as GUCY2C, may exhibit

susceptibility to the competition from Lm-derived peptides (145).

Despite recent advances, the underlying mechanisms of Lm-derived

peptides may explain the unresolved problem in the setting of

different species. Further research is significant to explore the

synergy between existed vaccines and other treatments.
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