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Porta-Pardo E, Torres A and
Fernández-Barat L (2023) Brewpitopes:
a pipeline to refine B-cell epitope
predictions during public
health emergencies.
Front. Immunol. 14:1278534.
doi: 10.3389/fimmu.2023.1278534

COPYRIGHT

© 2023 Farriol-Duran, López-Aladid,
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Brewpitopes: a pipeline to refine
B-cell epitope predictions during
public health emergencies
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1Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2CELLEX Research Laboratories, CibeRes
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The application of B-cell epitope identification to develop therapeutic antibodies

and vaccine candidates is well established. However, the validation of epitopes is

time-consuming and resource-intensive. To alleviate this, in recent years,

mult ip le computat ional predictors have been developed in the

immunoinformatics community. Brewpitopes is a pipeline that curates

bioinformatic B-cell epitope predictions obtained by integrating different

state-of-the-art tools. We used additional computational predictors to

account for subcellular location, glycosylation status, and surface accessibility

of the predicted epitopes. The implementation of these sets of rational filters

optimizes in vivo antibody recognition properties of the candidate epitopes. To

validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2

with a particular focus on S protein and its variants of concern. In the S protein,

we obtained a fivefold enrichment in terms of predicted neutralization versus the

epitopes identified by individual tools. We analyzed epitope landscape changes

caused by mutations in the S protein of new viral variants that were linked to

observed immune escape evidence in specific strains. In addition, we identified a

set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB,

R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved

targets for viral neutralization studies. In summary, Brewpitopes is a powerful

pipeline that refines B-cell epitope bioinformatic predictions during public health

emergencies in a high-throughput capacity to facilitate the optimization of

experimental validation of therapeutic antibodies and candidate vaccines.

KEYWORDS

bioinformatics and computational biology, immunology and infectious diseases,
vaccine development, antibody therapeutics, epitope prediction and antigenicity

prediction
Abbreviations: S protein, Spike protein of SARS-CoV-2; VOCs, Variants of Concern from SARS-CoV-2;

RSA, Relative Solvent Accessibility; IEDB, Immune Epitope Database.
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Introduction

Neutralizing antibodies play a major role in the adaptive immune

response against pathogens (1). Hence, the prediction of the protein

regions driving pathogen neutralization is key to guide the

understanding of their mechanism of action (1). These protein

regions, termed neutralizing B-cell epitopes, have the potential to

spread through the entire proteome of the target pathogen. Such a

wide distribution requires high-throughput techniques to unravel the

full epitope landscape. In this context, the bioinformatic prediction of B-

cell epitopes has become a necessary exploration to prioritize which

candidates should be selected for experimental validation (Table 1). For

instance, in the race against the SARS-CoV-2 pandemic, accurate

bioinformatic B-cell epitope predictors significantly contributed to the

success of COVID-19 preventive and therapeutic strategies (22)

(Table 1). For this reason, many groups dedicated their efforts to the

identification of SARS-CoV-2 antibody binding regions using different

bioinformatic approaches as a first step to later characterize neutralizing

antibodies or to design immunogens for vaccines (Table 1) (22, 23).

B-cell epitope predictors recommended by the Immune Epitope

Database (IEDB) (24) such as Bepipred (2), or Discotope (8), and other

existing SOTA methods (Table 1) (5, 7, 9–13) are tools able to identify

candidate continuous and discontinuous B-cell epitopes in a minute

scale. However, even state-of-the-art B-cell epitope prediction tools

frequently output lists of predicted epitopes that are excessively large to

validate experimentally (25). Moreover, many of the predicted epitopes

will not necessarily function in vivo (25). Hence, the development of

new predictive tools that will refine the available computational B-cell

epitope predictions is a priority. Such tools will provide a rapid and

accurate reaction in case of emergency situations such as the COVID-

19 pandemic or the appearance of new variants of concern (VOCs) that

escape the immune response of vaccinated subjects (3, 26).

To this end, we have designed Brewpitopes, a new predictive

pipeline that integrates additional important features of known

epitopes, such as glycosylation or structural accessibility using

specific computational methods. To curate B-cell epitope predictions

for neutralizing antibody recognition, Brewpitopes outputs curated lists

of refined epitopes with an increased likelihood to be functional in vivo.

To validate Brewpitopes, the pipeline was implemented to predict B-

cell epitopes in antibody binding regions on the entire the proteome of

SARS-CoV-2, with a special focus on the S protein and its VOCs.
Materials and methods

All three-dimensional protein figures have been generated with

PyMol 2.5 and Chimera X. All statistical analyses have been

performed using R statistical software (R version 3.6.3). All data

and software can be obtained from public sources for academic use.
Dataset curation

The SARS-CoV-2 proteome in UniprotKB consists of 16

reviewed proteins (27). We used the corresponding FASTA
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sequences as starting data for linear epitope predictions. To perform

structural epitope predictions, when available, we obtained the PDB

structures from the Protein Data Bank database selecting the

structures with the best resolution and more protein sequence

coverage (28). For those proteins with no available structure in

PDB, we used Alphafold2.0 (29) or Modeller (30) to model their

3D structure.
Linear epitope predictions

To predict linear epitopes on protein sequences, we used

ABCpred (31) and Bepipred 2.0 (2). We used ABCpred (31), an

artificial neural network trained on B-cell epitopes from the Bcipep

database (32), to predict linear epitopes given a FASTA sequence.

The identification threshold was set to 0.5 as indicated by default

(accuracy 65.9%) and all the window lengths were used for

prediction (10–20mers). Additionally, we kept the overlapping

filter on. To further augment the specificity of the predictions, we

increased the ABCpred score to 0.8.

In addition, we used Bepipred 2.0 (2), a random forest

algorithm trained on epitopes annotated from antibody–antigen

complexes, as a second source to predict linear epitopes. The

epitope identification threshold was set to ≥0.55 leading to a

specificity of 0.81 and a sensitivity of 0.29 (32).
Structural epitope predictions

We used PDBrenum (33) to map the PDB residue numbers to

their original positions at the UniprotKB FASTA sequence. The

reason behind this step was that factors such as the inclusion of

mutations to stabilize the crystal may lead to discordances between

the residue numbers in the PDB and FASTA sequence from the

same protein.

In order to model those SARS-CoV-2 proteins with missing

structures in PDB, we used Alphafold 2.0 (29). We then refined the

models by restraining our analysis to those regions with a pDLLT

threshold of 0.7 to only assess highly confident regions. The

proteins that required Alphafold modeling were M, NS6, ORF9C,

ORF3D, ORF3C, NS7B, and ORF3B.

To predict conformational or structural B-cell epitopes, we used

Discotope 2.0, a method based on surface accessibility and a novel

epitope propensity score (8). The epitope identification threshold

was set to −3.7, as specified by default, which determined a

sensitivity of 0.47 and a specificity of 0.75.
Epitope extraction and integration

Bepipred 2.0 (2), ABCpred (31), and Discotope 2.0 (8)

predictions resulted in different tabular outputs. To extract and

curate the predicted epitopes, we created a suite of computational

tools in R statistical programming language and Python, available at

https://github.com/rocfd/brewpitopes.
Frontiers in Immunology 04
Subcellular location predictions

When publicly available, the protein topology information was

retrieved from the subcellular location section in UniprotKB (27).

For those proteins with unavailable topology, we predicted their

extracellular regions using Constrained Consensus TOPology

prediction (CCTOP) (6), a consensus method based on the

integration of HMMTOP (34), Membrain (35), Memsat-SVM

(36), Octopus (37), Philius (38), Phobius (39), Pro and Prodiv

(40), Scampi (41), and TMHMM (42). The.xml output of CCTOP

was parsed using an in-house R script (xml_parser.R) and then the

extracted topology served as reference to select epitopes located in

extracellular regions using the script Epitopology.R.
Glycosylation predictions

To investigate in silico which residues would be glycosylated, we

used NetNGlyc 1.0 (43) for N-glycosylation and Net-O-Glyc 4.0 (44)

for O-glycosylations. NetNglyc uses an artificial neural network to

examine the sequences of human proteins in the context of Asn-Xaa-

Ser/Thr sequons. NetOglyc produces neural network predictions of

mucin type GalNAc O-glycosylation sites in mammalian proteins. We

parsed the corresponding outputs using tailored R scripts and then we

extracted the glycosylated positions to filter out those epitopes

containing glycosylated residues using Epiglycan.py.
Accessibility predictions

To predict the accessibility of epitopes within their parental

protein structure, we computed the relative solvent accessibility

(RSA) values using ICM browser fromMolsoft (45). We used an in-

house IEC browser script (Compute_ASA.icm) to compute RSA

and we considered buried those residues with RSA threshold less

than 0.20. Then, the ICM-browser output was parsed to extract the

buried positions, which then served as a filter to discard epitopes

containing inaccessible or buried residues using Episurf.py.
Variants of concern analysis

The mutations accumulated by the VOCs Alpha, Beta, Delta,

Gamma, and Omicron in the S protein were obtained from the

CoVariants webpage (4), which is empowered by GISAID data (46).

A fasta sequence embedding each variant’s mutations was generated

using fasta_mutator.R.
Results

Brewpitopes, a pipeline to curate B-cell
epitope predictions based on determinant
features for in vivo antibody recognition

While there are some tools available to predict the presence of

B-cell epitopes in a protein sequence or structure, these tools are
frontiersin.org
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mainly based on machine learning methods trained with

experimentally validated epitopes (Table 1). However, these

methods sometimes do not account for other factors that might

affect the antigenicity or the potential of a protein region to be

recognized specifically by antibodies.

Brewpitopes was designed as a streamlined pipeline that

generates a consensus between linear and conformational epitope

predictions and curates them following the in vivo antibody

recognition constraints (Figure 1). To this end, a suite of

computational tools was created to integrate the output of

different SOTA B-cell epitope predictor and to filter the

candidates using predictions of the aforementioned biophysical

features (Figures 1, 2).

In Brewpitopes, we included predictions of linear epitopes,

which are continual stretches of residues located at the surface of

proteins, and predictions of conformational epitopes, which are

discontinuous residues recognized by antibodies due to their

structural disposition. For both cases, state-of-the-art predictors

exist (Table 1). To start with, in Brewpitopes, we have predicted

linear epitopes using Bepipred2.0 (2) and ABCpred (31) and we

have searched for conformational epitopes using Discotope2.0 (8).

Once predicted, we have extracted the epitopes using tailored R

scripts named Epixtractor and then integrated the results

using Epimerger.

Once the predictions are integrated, we propose a set of serial

biophysical filters organized in a pipeline. First, since neutralizing

antibodies only inspect the external surface of cells or viral particles,

we propose that those epitopes predicted in intracellular and

transmembrane regions of viral proteins cannot be targets for

antibody neutralization (Figure 1). Hence, the subcellular location

of an epitope is a recognition constraint (47), which our pipeline

uses to prioritize epitopes located on extracellular protein regions

while discarding those located in intracellular and transmembrane

regions. To predict the subcellular location of a protein region, we

used protein topology information. For some proteins, the topology
Frontiers in Immunology 05
is already available at UniProtKB (27); however, for some others,

topology is not described. In such cases, the alternative is to predict

the topology of the target protein. In Brewpitopes, there is a

module to upload experimentally described protein topologies.

Complementarily, for undescribed proteins, we used CCTOP to

predict their transmembrane, intracellular, and extracellular regions

(6). Once we had obtained or predicted the extracellular regions, we

labeled the epitopes using Epitopology.

Glycan coverage can limit the surface accessibility of predicted

B-cell epitopes that contain glycosylated residues, thus reducing

their in vivo antibody recognition potential (Figure 1) (48). For this

reason, our pipeline uses in silico tools to predict glycosylated sites

on protein sequences. Concretely, we have used NetNglyc1.0 (43)

and NetOglyc4.0 (44), for the prediction of N-glycosylations and O-

glycosylations, respectively. These methods are based on artificial

neural networks trained on glycosylation patterns by which they

can predict glycosylation sites ab initio given a protein sequence.

With this information, Brewpitopes discards all the epitopes that

include glycosylated residues using Epiglycan.

As the third filter, we include the accessibility of the epitope

within the antigenic protein structure as another antibody

recognition constraint (49) (Figure 1). Accordingly, our pipeline

calculates the relative solvent accessibility (RSA) values of all the

residues in the target protein and filters out those epitopes

containing at least one buried residue (RSA < 0.2). To compute

the RSA values based on crystal structures, we have used Molsoft

(45) and the in-house script compute_asa.icm.

The last step of the Brewpitopes pipeline is Epifilter, which uses

the annotations of the previous steps to filter out those epitopes

predicted as intracellular, glycosylated, or buried. Additionally, a

length filter was used to discard epitopes SHORTER than five

amino acids in length, which were considered unspecific.

Therefore, the final candidates refined using Brewpitopes are

extracellular, non-glycosylated, and accessible, properties that

enhance the antibody recognition in vivo.
B CA

FIGURE 1

Biophysical constraints for in vivo antibody recognition. (A) Recognition of extracellular or extra-viral protein regions. Neutralizing antibodies only
inspect the external surface of viral particles. Therefore, predicted epitopes located in intracellular or transmembrane epitopes will not be
recognized. In Brewpitopes, we used protein topology-annotated information and topology predictors to assess the subcellular location of the
target protein regions with predicted epitopes. Exclusively, candidates located on extracellular protein regions were selected. (B) Glycosylation
coverage prevents in vivo antibody recognition of neutralizing epitopes. Predicted epitopes that contain glycosylation motifs are likely covered by
glycans supporting the selection of predicted epitopes without glycosylated residues. In Brewpitopes, we predicted the glycosylation profiles of
target proteins using Net-N-glyc and Net-O-glyc for N- and O-glycosylations, respectively. Only predicted epitopes without glycosylated residues
pass this filter. (C) Epitope accessibility on parental protein surface. Predicted epitopes that contain buried residues will be less accessible for in vivo
antibody recognition. Left: structure of S protein of SARS-CoV-2 highlighting a fully accessible predicted epitope. Right: structure of the S protein
displaying a highly buried predicted epitope. In Brewpitopes, to assess epitope accessibility, we calculated the Residue Solvent Accessibility (RSA) of
the predicted epitope sequences using crystal or structural models. Once predicted, fully accessible epitopes (all residues RSA ≥ 0.2) were selected
and buried candidates were discarded (at least one residue RSA < 0.2).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1278534
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Farriol-Duran et al. 10.3389/fimmu.2023.1278534
The final list of curated epitopes derives from the different tools

integrated at the initial step of Brewpitopes. Thus, frequently

epitopes with overlapping positions will be encountered. To

prevent the prioritization of different but redundant candidates,

Brewpitopes merges overlapping epitopes into epitope regions with

the aim to generate a consensus between B-cell epitope predictors.

Complementarily, the selection of a short sequence length threshold

was useful to integrate epitopes predicted by different tools into

larger epitope regions. To this end, we designed Epiconsensus, a

tool that not only merges overlapping epitopes but also enables the

scoring of the merged epitope regions, setting a prioritized order of

the initial B-cell epitope predictor scores.
Bioinformatic validation of Brewpitopes in
the proteome of SARS-CoV-2

Brewpitopes can be implemented to any target protein or

organism, but due to the pandemic context and the interest in B-

cell epitopes and neutralizing antibodies against SARS-CoV-2, to

validate the pipeline, we analyzed the proteome of this virus. Within

SARS-CoV-2, we specially focused on the S protein due to its

importance in vaccine and therapeutic antibody design plus the

known role of Spike for immune evasion (50). Our results confirm

the neutralizing potential of the S protein but additionally identify

other SARS-CoV-2 proteins containing epitopes of interest.

Focusing on the S protein, linear epitope predictions resulted in

213 epitopes and structural predictions in 6. Once integrated, 10

epitopes were discarded due to their intraviral location. Next, since
Frontiers in Immunology 06
it had been established that S protein is heavily glycosylated (26), 52

epitopes were filtered out due to their likelihood to include

glycosylated residues. Lastly, 143 epitopes were discarded because

they contained at least one residue buried within the 3D structure of

the S protein. As a result, 14 epitopes derived from S were curated

for optimized antibody recognition (Figure 3). Compared to the

initial state-of-the-art epitope predictions, our results show that

only a 5.5% of the predicted epitopes for the S protein will have high

antibody recognition in vivo potential due to the recognition

constraints analyzed with Brewpitopes (Figure 4). Furthermore, to

generate a consensus between linear and conformational

predictions from different tools, the overlapping epitopes were

merged into epitope regions. In the case of S protein, the 14

candidates were merged into seven epitope regions (Figure 3).

As an external control, the epitope regions identified in the S

protein were cross-validated with the epitopes reported at the IEDB

database (51). Notably, the regions identified in our pipeline were

all encountered among IEDB annotated epitopes, which confirms

the validity of our predictions. However, our epitope regions

represented less than 1% of the epitopes for the S protein listed in

the IEDB. Compared to the initial output from the computational

tools, the final list of prioritized epitopes from our pipeline was

enriched fivefold in validated epitopes from IEDB (p < 2e-4). This

confirms the power of Brewpitopes to refine B-cell epitope

computational predictions to a reduced set of epitopes with

greater probability for in vivo antibody recognition (Figure 3).

To extend our proteome-wide analysis of SARS-CoV-2, we used

Brewpitopes to search for other epitopes and antigenic viral

proteins with antibody recognition potential. Overall, 4/15 of the
FIGURE 2

Brewpitopes pipeline. Linear and conformational epitope predictions are performed using Bepipred2.0, ABCpred, and Discotope2.0. Epitope
extraction is customized in each tool’s output using Epixtractor. Extracted epitopes are standardized using Epimerger. Subsequently, Brewpitopes
implements three in silico predictors of biophysical constraints for in vivo antibody recognition: subcellular location, glycosylation coverage, and
surface accessibility. Protein topology information to determine subcellular location can be uploaded into Brewpitopes using annotated data or via
CCTOP predictions (.xml output) using Epitopology. Predicted epitopes located in extracellular regions are selected. Intracellular and transmembrane
epitopes are discarded. Glycosylation patterns of target proteins are predicted with Net-N-Glyc and Net-O-Glyc and the output is used by Epiglycan
to label all predicted epitopes containing one glycosylated residue as “glycosylated” and candidates not containing glycosylated positions as “non-
glycosylated”. Epitope accessibility on the 3D surface of the parental protein structure is computed via compute_asa.icm (Molsoft - ICM Browser)
and a PDB file obtained from a crystal structure or a computational model. Predicted RSA values are used by Epiaccess to label fully accessible
epitopes as “accessible” (all residues RSA ≥ 0.2) and candidates containing at least one buried residue as “buried” (RSA < 0.2). The filtering of the
candidate epitopes according to the predicted biophysical constraints (labeled as “extracellular”, “non-glycosylated”, and “accessible”) is performed
by Epifilter. Curated candidates predicted by different tools will result in overlapping epitopes that are merged into epitope regions
using Epiconsensus.
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remaining proteins contained candidate epitopes for neutralizing

antibodies (R1AB, R1A, AP3A, and ORF9C) (Table 2). The

remaining proteins (11/15) did not contain epitopes due to their

major intraviral location (NS7A, NS7B, ORF3D, ORF3C, ORF9B,

ORF3B, NS8, NS6, M, E, and N) and the absence of predicted

epitopes in their short extracellular regions.

Within the proteins that contained curated epitopes, R1AB and

R1A stood out, including 479 and 348 epitopes, respectively. The

large numbers of epitopes predicted in these proteins is mainly

explained by their long sequences, 7,096 and 4,405 amino acids,

respectively. Remarkably, R1A corresponds to the N-terminal

region of R1AB explaining the high degree of shared predictions.

R1AB is a complex polyprotein cleaved into 15 chains. In this

analysis, all the chains were analyzed together using the standard

R1AB UniProt sequence. On the other hand, we could also identify
Frontiers in Immunology 07
epitopes located in shorter proteins as ORF9C and AP3A.

Accordingly, these presented a lower number of predicted

candidates. In terms of epitope regions, R1AB contains 62

regions; R1A, 46 regions; ORF9C, 2 regions; and AP3A, 1 region.

Altogether, these results corroborate that four SARS-CoV-2

proteins other than S have at least one candidate epitope region

with in vivo antibody recognition potential.
Analysis of epitope conservation in the S
protein of variants of concern

We studied the effect of mutations accumulated in the S protein

of the VOCs (Alpha, Beta, Delta, Gamma, and Omicron) of SARS-

CoV-2 in the development of immune escape mechanisms
FIGURE 3

Epitope refinement for SARS-CoV-2 Wuhan S protein. The x-axis represents the filtering steps of the pipeline. The y-axis displays the number of
epitopes refined by each filtering step of Brewpitopes.
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implementing Brewpitopes on the S protein sequences of the

different variants (Table S1; Figure 5). We generated tailored

FASTA files including the mutations of each variant and we

retrieved the structures from PDB when available. For the

Omicron variant, we modeled its structure using Modeller (30).

Once we had run Brewpitopes, we compared the final number of

epitopes with neutralizing potential identified in each variant with

the epitopes generated by our analysis of the Wuhan S protein,
Frontiers in Immunology 08
considered the wild type. Concretely, we aimed at identifying

epitope losses due to the presence of mutations, the appearance of

new glycosylation sites and structures changed, leading to new

buried positions. Additionally, we accounted for newly predicted

epitopes generated by unique mutations of each variant. To

compare epitope regions in WT versus those of the VOCs, the

length of these epitope regions was added and divided by the total

length of the S protein to obtain a protein-wide epitope coverage
FIGURE 4

Visualization of predicted epitope location on the 3D structure of SARS-CoV-2 S protein to compare the initially predicted epitopes versus the
epitopes refined by Brewpitopes. This representation depicts the shrinkage of the region to be explored and experimentally validated since unrefined
predictions represent a much larger surface than the epitopes refined by Brewpitopes. Left: Front view of the S protein 3D structure. Right: Top view.
All the epitopes were only labeled on the chain A of the S protein for visualization purposes (blue). The epitope regions 6 and 7 were not displayed
because they escaped the limits of the represented structure. Owing to the large number candidates predicted by ABCpred, only the best scored
candidates of this software were included in the 3D representation.
TABLE 2 Epitope refinement on SARS-CoV-2 proteome.

Protein UniProt ID Predicted Epitopes Curated Epitopes Epitope Refinement (%) Epitopic Regions

Spike P0DTC2 219 12 5.5 7

E-protein P0DTC4 10 0 0 0

N-protein P0DTC9 115 0 0 0

M-protein P0DTC5 22 0 0 0

R1AB P0DTD1 1,111 479 43.1 62

R1A P0DTC1 668 348 52.1 46

AP3A P0DTC3 17 2 11.8 1

NS6 P0DTC6 13 0 0 0

NS7A P0DTC7 15 0 0 0

NS7B P0DTD8 2 0 0 0

NS8 P0DTC8 14 0 0 0

ORF3B P0DTF1 0 0 0 0

ORF3C P0DTG1 1 0 0 0

ORF3D P0DTG0 12 0 0 0

ORF9B P0DTD2 12 0 0 0

ORF9C P0DTD3 9 4 44.44 2
Predicted epitopes correspond to the number of epitopes obtained using individual linear and structural predictors. Curated epitopes refer to refined epitopes obtained using Brewpitopes. Epitope
refinement is the percentage of curated epitopes over the initial number of predicted epitopes obtained using individual state-of-the-art tools. Epitope regions result from the integration of
overlapping predictions by different tools.
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metric. In other words, this metric is the fraction of the protein

sequence that is covered by predicted epitopes. This analysis

predicted an epitope coverage of 9.43% for the WT S variant.

To visualize the accumulation of mutations in the VOC’s S

protein, we calculated the intersections of shared mutations

between variants (Table S1; Figure S1). Accordingly, the UpSet

plot shows how the Omicron variant accumulates the largest

number of mutations (4), of which 28 are exclusive. Gamma

accumulates eight unique mutations; Delta, seven mutations; Beta,

six mutations; and Alpha, four mutations. Also, the degree of shared

mutations between variants is low, with Alpha and Omicron being

the variants that share more mutations, with four. The other VOC’s

pairs share a single mutation while the intersection of all variants

also points to a single foundational mutation. This high diversity in
Frontiers in Immunology 09
the mutations accumulated in S protein across variants points

towards separate evolutionary paths. This phenomenon can

derive into variant-specific immune evasion mechanisms such as

decreased antibody recognition. The fact that Omicron accumulates

more than three times more mutations at S than the remaining

VOCs indicates a greater potential for epitope disruption.

The accumulation of more variant-specific mutations in the S

protein than shared mutations (Figure S1; Table S1) implies a

potential development of specific epitope landscape in each

variant (Tables 3, 4). Additionally, these variant landscapes are

likely to differ from the patterns observed in the WT Wuhan

variant. Considering epitope region conservation against the wild-

type virus, the Alpha variant loses ER7; the Beta variant loses ER4

and ER7 but gains an epitope region at 828–845; the Gamma
FIGURE 5

Epitope refinement for the S protein of the Omicron variant. The x-axis represents the steps of the Brewpitopes pipeline and the y-axis denotes the
number of epitopes selected by each filtering step of Brewpitopes (Figure 2). Omicron’s epitope yield obtained with Brewpitopes (six epitope
regions) is lower than Wuhan WT’s yield (seven epitope regions).
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variant loses ER2, ER3, and ER4; the Delta variant loses ER3,

ER4, and ER6 but gains ER1, ER5, and ER8; and the Omicron

variant loses ER2, ER3, and ER4 partially and ER7 entirely

(Table 4; Figure 5).

In terms of epitope coverage, the major loss is prediction on

Gamma (4%) and Omicron (2%) variants while Alpha and Beta loss

is less than 1.5%. Differently, Delta gains 0.5% in epitope coverage

in respect to WT due to the prediction of a large epitope. The

differences in variant epitope landscape can be attributed to partial

losses in antibody recognition. However, using Brewpitopes, a core

of epitope regions conserved across variants could be

identified (Table 5).
Discussion

In vivo antibody recognition is constrained by molecular

features not frequently integrated in state-of-the-art B-cell

epitope predictors. These include extracellular location of the

epitope, absence of glycosylation coverage, and surface

acce s s ib i l i t y on the paren ta l pro te in (Tab le 1) . In

Brewpitopes, we have implemented these features as filters to

refine bioinformatic B-cell epitope predictions. Thus,

Brewpitopes optimizes in vivo antibody recognition properties

of predicted epitopes. The proteome-wide SARS-CoV-2

analysis demonstrates the obtainment of a refined set of

epitopes with neutralizing potential in S protein and its

conservation in VOCs (Alpha, Beta, Delta, Gamma, and

Omicron). Additionally, we identified four proteins with

candidate epitope regions for neutralization studies. As

exemplified in this study, Brewpitopes is a ready-to-use tool

to enhance the accuracy and response rates of bioinformatic B-

cell epitope predictions for future public health emergencies

such as the appearance of vaccine-resistant SARS-CoV-2

variants and other pathogenic threads.

Profiling of the B-cell epitope landscape in SARS-CoV-2 has

been a research-intensive topic since the start of the COVID-19

pandemic for its implications in vaccine and therapeutic
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antibody development (Table 1) (14–22, 52, 53). However,

none of the proposed strategies jointly integrates the

prediction of subcellular location, glycosylation status, or 3D

accessibility of the epitope as factors influencing antibody

recognition. For this reason, Brewpitopes is a first-in-class

pipeline thanks to a streamlined implementation of in silico

predictors of biophysical constraints. Furthermore, the

available methods can only predict linear or conformational

epitopes separately, whereas with Brewpitopes, we propose an

integration of both types of predictions into linear epitope

regions using the Epiconsensus tool.

The filters implemented in Brewpitopes are based on

computational predictions, such as CCTOP for subcellular

location of protein regions or Net-N-glyc and Net-O-glyc for

glycosylations. The usage of bioinformatic tools expands the

applicability of Brewpitopes enabling ab initio predictions on the

proteome of understudied organisms or new pathogens. These tools

preclude the requirement of previous protein topology,

glycosylation, and accessibility of experimental determinations.

Thus, Brewpitopes can be implemented rapidly and without large

resource requirements. However, relying on bioinformatic

predictions inevitably implies at least a minimal degree of

false positives and false negatives among the curated and

discarded candidates.

In the case of glycosylation predictions, the dynamics of

this type of PTM or its effects on neighboring epitopes cannot

be assessed in silico using a sequence-based approach as

Brewpitopes. In terms of structural accessibility, many

candidates predicted by individual tools used in this study

contained buried residues. This can limit the recognition of

the candidates as compared to fully accessible epitopes (47). To

minimize this effect, in Brewpitopes, we discard all epitopes

containing a single buried residue (RSA <0.2). This criterion is

the most stringent filter of the pipeline. In the case of S protein,

it downsized the number of candidates from 137 to 14 (Figure 3;

Table 2). As expected, after the implementation of this stringent

filter, a proportion of epitopes discarded may still have

antigenic activity. Still, since the objective of the pipeline is to
TABLE 3 Epitope refinement on S protein in Wuhan and Alpha, Beta, Delta, Gamma, and Omicron variants.

Variant ID
Predicted
Epitopes

Curated
Epitopes

Epitopic
Regions

Epitope Refine-
ment (%)

Epitope
Conservation
(%)

Epitopic
Region
Conservation
(%)

Wuhan-2 WT 219 12 7 5.5 100 100

Alpha B.1.1.7 206 13 6 6.3 108.3 85.7

Beta B.1.351 225 11 6 4.9 91.7 85.7

Delta P.1 213 15 7 7 125 100

Gamma B.1.617.2 214 6 5 2.8 50 71.4

Omicron B.1.1.529 230 11 6 4.8 91.7 85.7
Predicted epitopes correspond to the number of epitopes obtained using individual linear and structural predictors. Curated epitopes refer to refined epitopes obtained using Brewpitopes. Epitope
refinement is the percentage of curated epitopes over the initial number of predicted epitopes obtained using individual state-of-the-art tools. Epitope regions result from the integration of
overlapping predictions by different tools.
Epitope conservation refers to the percentage of refined epitopes shared between each variant and theWT S protein. Epitope region conservation refers to the percentage of epitope regions shared
between each variant and the WT S protein.
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TABLE 4 Epitope regions identified in the WT S protein using Brewpitopes compared to the epitope regions of the variants of concern.

Mutations Glycosilations Buried

NA NA NA

NA NA NA

NA NA NA

NA NA 472, 475, 487, 488, 491

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

Mutations Glycosilation Buried

NA NA

NA NA 168

NA NA 241*

E484K NA 472, 475, 480, 487, 488, 491

NA NA NA

NA NA NA

NA NA 806*

NA NA NA

NA NA NA

NA NA NA

Mutations Glycosilations Buried

L18F, T20N 17 NA
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Variant Wuhan_2 Alpha

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 164-TFEYVSQPFLMDLEGKQGNFK-184

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 248-PGDSSSGWT-256

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 620-AIHADQLTPTWRVYSTGSNVFQT-642

Epitope Region 7 809-PSKPS-813 NA

Epitope Region 8 NA 828-AGFIKQYGDCLGDIAARD-845

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1152-YFKNHTSPDVDLGDISGINASVVNIQKE-1179

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1192-ESLIDLQELGKYEQYI-1207

Variant Wuhan_2 Beta

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 176-LMDLEGKQGNFK-187

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 249-GDSSSGW-255

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 620-AIHADQLTPTWRVYSTGSNVFQT-642

Epitope Region 7 809-PSKPS-813 NA

Epitope Region 8 NA 828-AGFIKQYGDCLGDIAARD-845

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1152-YFKNHTSPDVDLGDISGINASVVNIQKE-1179

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1192-ESLIDLQELGKYEQYI-1207

Variant Wuhan_2 Gamma

Epitope Region 1 NA NA
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TABLE 4 Continued

Mutations Glycosilations Buried

NA NA 168

NA NA 244, 246, 258

E484K NA
473, 475, 476, 487, 488,

489, 491

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

NA NA NA

utations Glycosilations Buried

T19R NA NA

NA NA 173

NA NA NA

T478K NA 478

NA NA NA

NA NA 631

NA NA NA

NA NA NA

NA NA NA

NA NA NA

Muts Glycosilations Buried

NA N17 NA

NA NA 172
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Variant Wuhan_2 Gamma

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 NA

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 NA

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA NA

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 621-PVAIHADQLTPTWRVYSTGS-640

Epitope Region 7 809-PSKPS-813 809-PSKPS-813

Epitope Region 8 NA NA

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176 1141-LQPELD-1146//1155-YFKNHTSPDVDLGDISGINASF-1176

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1195-ESLIDLQELGKYEQYI-1210

Variant Wuhan_2 Delta M

Epitope Region 1 NA 14-QCVNLRTRTQ-23

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 NA

Epitope Region 3 244-LHRSYLTPGDSSSGWTA-260 243-HRSYLTPGDSSSGWTA-258

Epitope Region 4
470-

TEIYQAGSTPCNGVEGFNCYFP-491 NA

Epitope Region 5 NA 496-QPTNG-500

Epitope Region 6 621-PVAIHADQLTPTWRVYSTGS-640 NA

Epitope Region 7 809-PSKPS-813 807-PSKPS-811

Epitope Region 8 NA 827-ADAGFIKQYGDCLGDIAA-844

Epitope Region 9
1155-

YFKNHTSPDVDLGDISGINASV-1176
1136-

YDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKN-1190

Epitope
Region 10 1195-ESLIDLQELGKYEQYI-1210 1193-ESLIDLQELGKYEQYIKWPW-1212

Variant Wuhan_2 Omicron

Epitope Region 1 NA NA

Epitope Region 2 168-FEYVSQPFLMDLEGKQGN-185 178-QGNFK-182
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obtain the greatest immunogenicity enrichment in the refined

candidates; we consider that this filter strongly serves this

purpose. Complementarily, accessibility predictions depend

on optimal structural resolution, which is difficult to obtain

for highly flexible protein regions. To circumvent this, we

labeled these regions as unmodeled, but due to their high

flexibility, these were included as exposed regions and

epitopes predicted within these passed the accessibility filter.

In terms of software flexibility, Brewpitopes is built upon

Discotope2.0, and Bepipred2.0, which, during the pipeline

development and SARS-CoV-2 analysis, were considered state of

the art by the IEDB analysis resource tool (51). ABCpred was also

included in the analysis, but it can no longer be considered a

cutting-edge method. Accordingly, Brewpitopes succeeds in

discarding a major quantity of candidates predicted by this tool.

In addition, Brewpitopes ’ design flexibil i ty enables a

straightforward integration of new state-of-the-art methods and

can be easily maintained to keep up with the fast evolution pace of

the field.

While Brewpitopes can be applied to any protein or organism,

given the wealth of SARS-CoV-2 data and biomedical interest, we

focused on the analysis of this virus. We performed a proteome-

wide analysis of the epitope landscape in SARS-CoV-2 to obtain a

curated list of epitopes with neutralizing potential. To study the

immune evasion mechanisms by SARS-CoV-2, we predicted the

epitope profiles of WT S protein and we assessed how these were

affected by variant-specific mutations. This comparison led to the

discovery of six epitope regions conserved across variants, which

could explain the conserved protection of vaccinated patients

against new variants (54). In this line, the restrictive nature of

Brewpitopes’ filtering criteria led to a significant reduction of

predicted epitopes on the S protein to be validated. This study

serves as an example of the value of the pipeline in terms of

experimental resource optimization.

The identification of potentially neutralizing epitopes in

R1AB, R1A, AP3A, and ORF9C highlights the importance of

studying proteome regions with low variability. Despite the fact

that these proteins are not considered key for viral survival and

cellular entry, the presence of extracellular regions accessible for

antibody recognition supports their neutralizing potential. The
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TABLE 5 Epitope coverage of the WT S protein versus variants
of concern.

Variant Epitope Coverage (%)

Wuhan_2 9.43

Alpha 9.03

Beta 8.17

Delta 10.13

Gamma 5.42

Omicron 7.62
Epitope coverage is the percentage of the total protein sequence (the S protein) that is covered
by curated epitope regions predicted using Brewpitopes. It estimates the antigenicity potential
of a protein. The loss of epitope coverage in variants of concern is a proxy to estimate their
immune escape potential due to the loss of in vivo antibody neutralization.
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restricted viral evolution of these proteins can limit the

advantage of variants in terms of antigen drift and immune

escape while leading to greater vaccine protection rates.

Despite losses in epitope coverage observed in S protein

variants, Brewpitopes could identify several epitope regions

shared across variants. This finding has beneficial implications

for vaccine efficacy versus new VOCs. Brewpitopes reported a

lower epitope coverage loss for Omicron than for the Gamma

variant. The epitope coverage loss predicted in Omicron versus

Wuhan could partially explain the large loss of neutralization

against this variant reported by previous studies (55).

Discordances between neutralization studies (55) and the

results of Brewpitopes can be explained by relevant differences

between in vitro and in silico methods. As aforementioned,

Brewpitopes’ stringency could discard a proportion of truly

antigenic epitopes and thus underrepresent the neutralization

loss observed in Omicron.

Brewpitopes is a pipeline that refines bioinformatic B-cell

epitope predictions straightforwardly for use against any target

protein or organism’s proteome. The integration of multiple

state-of-the-art B-cell epitope algorithms coupled with the

addition of ab initio predictions of important features for in vivo

antibody recognition is a relevant advantage over existing pipelines

and individual predictors. Furthermore, implementing Brewpitopes

to the proteome of SARS-CoV-2 Wuhan WT variant versus VOCs,

we have identified an epitope core in S protein conserved across

variants and new antigenic regions in four SARS-CoV-2 proteins

less prone to immune escape due to lower immune pressure and

antigenic drift rates.

In conclusion, Brewpitopes is a streamlined pipeline that

assesses biophysical properties not accounted for in state-of-the-

art B-cell epitope predictors. The usage of in silico predictors of

subcellular location, glycosylation status, and surface accessibility

has been demonstrated as crucial to enrich the neutralization

potential of predicted epitopes in SARS-CoV-2.
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stands out accumulating the 3 times more mutations than other variants.
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