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Editorial on the Research Topic

Translation of genetically engineered T cells in cancer immunotherapy
Genetically engineered T cells have made tremendous contributions to cancer

immunotherapy. Chimeric antigen receptor (CAR)-modified T cells have demonstrated

remarkable efficacy in hematological malignancies (1–5), however, clinical responses have not

been convincing in solid tumors. T cell receptor (TCR)-engineered T cells showed promising

results in some solid cancers (6–8), yet many hurdles remain to translate current genetically

engineered T cells intomore effective therapeutics, to achieve higher and durable clinical responses.

In this Research Topic, we compile recent advances in T cell immunotherapy, including the

identification of new promising antigens, the optimisation of genetically modified TCR- and CAR-

T cells to improve their persistence and reduce their toxicity.We also discuss strategies to overcome

the suppressive tumor microenvironment (TME) and perspectives in T cell manufacturing.
1 Identification and validation of novel antigens for
cancer immunotherapy

In recent years, tumor-specific mutated antigens, also called neoantigens (neoAgs) have

emerged as a promising class of immunogenic antigens for immunotherapy (9). These

antigens are exclusively expressed and presented on tumor cells, and represent an attractive

therapeutic tool for solid tumors, in particular for TCR-engineered T cells (10).

In this Research Topic, Immisch et al. identified a neoepitope comprising Rac1P29S amino

acid mutation, which is the third most common hotspot mutation in melanoma. They have not

only isolated and characterised TCRs that can recognise this HLA-A*02:01-binding neoepitope,

but also demonstrated TCR-T induced cytotoxicity against Rac1P29S expressing cancer cells in

vitro and in vivo after adoptive T cell therapy.
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Although neoAgs are considered as truly tumor-specific antigens

(11), Amerongen et al. pursue the concept of identifying highly

expressed tumor-associated antigens in ovarian cancer from pooled

mRNAseq data bases, and a reverse immunology approach for the

most prevalent HLA restriction elements. The candidate antigens

comprising PRAME, CTCFL and CLDN6 exhibited a 20-fold higher

expression in tumors compared to normal cells. High-avidity TCRs

were isolated, cloned and characterised in vitro to exclude potential on/

off-target-reactivities, and demonstrated potent antitumor activities,

making these TCRs especially useful for adoptive therapy in ovarian

cancers, generally considered as ‘cold tumors’with less T-cell infiltrates.
2 Strategies to enhance
expression, specificity, affinity,
and (signaling) functions of the
engineered molecules

Barden et al. addressed the issue of cross-activation of a CAR with

the endogenous TCR in CAR-T cells. They found out that the antigen-

dependent activation of T-cells by the triggered immunoreceptor (IR)

exclusively results in phosphorylation of the CAR/CD3z or TCR/

CD3z, respectively, thus excluding reciprocal cross-activation. This is

in line with elaborate microscopy analyses elucidating their mutual

spatial exclusion upon either IR activation. However, TCRs and CARs

can co-operate by means of antigen recognition by the endogenous

TCR and costimulation by CD28 incorporated in CD28/z CARs.

Collectively, the authors claim that TCR/CD28 CAR-signaling may

be exploited for Boolean logic “AND” gating (12), stressing the

importance of endogenous TCRs for providing a non-TME tonic

signaling for CAR-T persistence in patients.

TCR-based bispecific T cell engagers (TCE) are emerging

therapeutics as recently reported by positive phase III clinical

results of a gp100/HLA-A2-TCR/anti-CD3 bifunctional in

melanoma patients (13). Unlike antibody-based TCE (14), which

have been widely studied, little is known about how the formats of

TCR-based TCE affect their potencies. In this context, Van Diest

et al. recently developed a novel TCE format based on the soluble

g9d2TCR-antiCD3 bispecific molecule (GAB) (15), and described

an alternative design based on the multimerisation of GABs to

improve their potency. Here, van Diest et al. could further enhance

the fraction of GAB-dimers by shortening the linker length within

the anti-CD3 scFv, and showed that GAB-dimers were superior in

function, without apparent on-target/off-tumor reactivity.
3 Novel strategies for genetic
engineering of T cells, including
CAR-T and TCR-T cells

Hiltensperger and Krackhardt have reviewed in depth the TCR-T

and CAR-T field, comprising several aspects, from the design of

different generations of CARs for providing signal 1 to 3 in T-cell

activation, prevention of TCR mispairing by TCR protein

engineering and genome editing, the set up of allogeneic T-cell
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transfer to boost T-cell fitness and T-cell graft manufacturing,

adverse events to reckon with and counteracting tumor escape,

persistence of T-cells, to treatment modalities for solid cancers. The

review also covers gene transfer shuttle systems, persistence of T-cells,

gene delivery approaches in vivo, potentially arising adverse events

such as on/off-target toxicities, and cellular and molecular strategies

to force back tumor escape mechanisms and resistance of solid

tumors in TME, and provides an overview of ongoing clinical trials.

Degirmencay et al. have explored how modifications of

framework residues in the TCR variable domains affect TCR

expression and function. They used bioinformatic and protein

structural analyses to identify candidate amino acid residues in the

framework of the variable b domain predicted to drive high TCR

surface expression. Replacing these residues in poorly expressed

TCRs resulted in improved surface expression and enhanced target

specific killing by these engineered TCR-T. Their results corroborated

improved expression and functionality, while at the same time

reducing the risk of toxicity associated with TCR mispairing.

Autologous T cell engineering is not only costly but also time-

consuming, limiting the number of patients who can benefit from this

new therapy. Yu et al. developed an allogeneic approach by generating

CD19-CAR T cells from cord blood of allogeneic donor, and

demonstrated their anti-tumor activity in vitro and in vivo using a

diffuse large B-cell lymphomamodel (DLBCL). The rationale behind this

idea is the higher proportion of naïve T-cells from cord blood that can be

redirected into potent effector T cells, thus having a better anti-tumor

activity. This strategy may provide a broader option for immunotherapy,

offering readily accessible “off-the-shelf” cellular products.
4 Strategies for overcoming
the immunosuppressive
tumor microenvironment

In a previous study, TCR-T cells were engineered to disrupt PD-1

upregulation upon antigen encounter by CRISPR/Cas9 genome editing

to minimise immunosuppression through PD-L1-positive tumor cells

(16). Here, Kim et al. went on one step further and took advantage of

the tightly regulated PDCD1 locus for replacing PD-1 by a pleiotropic

cytokine such as IL-12 to positively affect the persistence of T-cells in

TME. By this means, an inhibitory signal of PD-1 would be reversibly

inverted into a stimulatory signal of IL-12 only in the presence of the

tumor antigen recognised by the introduced TCR, and hence in a local

(TME) and timely (as long as antigen is present) restricted manner so

as to avert cytokine-induced toxicities.
5 Manufacturing platforms for vector
production and cellular engineering

Niu et al. analysed the phenotype of lentivirally (LV) transduced

versus PiggyBac transposon (PB)-transfected CAR-T cells in vitro and in

vivo. They scrutinised biomarker expression rates and phenotype

(effector versus central memory subsets), cytokine/chemokine

secretions and cytolyses, including a transcriptomic approach, and
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validation of an in vivo tumor model. In PB- compared to LV-CAR-T,

they reported on higher expression of IL-9, a cytokine that enhances anti-

tumor responses, and on lower expression of IL-6, the hub cytokine

triggering cytokine release syndrome, suggesting a favourable profile of

the former manufacturing platform. Importantly, both systems control

tumor cells comparably in vivo, in line with recently published work (17).
6 Strategies for reducing toxicity and
improving safety

Although, CAR-T cell therapy approximates a consolidated

mainstay in the treatment of several hematologic malignancies,
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adverse side effects may occur. In this Research Topic, Wang

et al. reviewed CAR-T treatments in the context of multiple

myeloma and potential toxicities, while Hiltensperger &

Krackhardt covered CAR-T and TCR-T approaches in

general, highlighting recent innovations capable of enhancing

efficacy and reducing toxicity. Zundler et al. also reported a

case of a rare complication in a patient treated with CD19 CAR-

T for DLBCL, who developed chronic diarrhea with

characteristics of inflammatory bowel disease-like colitis.

Resolution of colitis occurred by using an antibiotic therapy

that might have changed the intestinal microbiota, which most

likely limited the stimulation of these intestinal infiltrating

CAR-T cells.
FIGURE 1

Apple pie chart attributing 11 articles (2 reviews, 8 original research articles, 1 case report) to the 6 topics 1.-6. listed in the Editorial summary in a clockwise
manner. The 11 articles are indicated by their first author names. The 6 apple pie pieces are colour-coded according to their assigned articles covering either
the subject TCR (red), CAR (blue), or both (purple). The review articles are shown in the center of the chart indicating to which topics they refer to. TCRs,
CARs, MHCs, PD-1, IL-12, and GABs are depicted in a stylised fashion. The outline of the circle represents the T-cell membrane where all immunoreceptors
(TCRs, CARs) are embedded. IL-12, GABs and MHCs are either soluble molecules or membrane proteins from target cells, respectively, and hence located
outside the circle. Tumor antigens presented by MHC are indicated as coloured spheres, depending on the particular peptide. Antigen specificities of TCRs,
CARs and GABs are denoted besides the stylised molecule. Helical DNA, lentivirus, recombinant transposon DNA, and colon are adumbrated as cell or body
internal components and hence, located inside the circle. Red double/single arrows represent mutually interacting/inflammatory, a ‘┴’ inhibitory reactions, a
blue arrow an activating reaction in transcription/translation, green lines in a TCR denotes point mutations in TCR Vb domain. Abbreviations: TSA tumor
specific antigen, TAA tumor associated antigen, TCR T-cell receptor, CAR chimeric antigen receptor, GAB gamma delta TCR anti-CD3 bispecific molecule,
CMV cytomegalovirus, allo alloreactive, IL-12 interleukin 12, KO knock out, KI knock in, CRISPR clustered regularly interspaced short palindromic repeats, PD-
1 programmed cell death protein 1, LV lentivirus, PB PiggyBac, IR inverted repeats, GOI gene of interest, Rac1P29S, PRAME, CTCFL, Her2, CEA, CMV, HA1,
NY-ESO-1, CD19 represent processed or full length tumor/viral antigens, respectively.
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