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Primary immune regulatory disorders (PIRDs) are inborn errors of immunity

caused by a loss in the regulatory mechanism of the inflammatory or immune

response, leading to impaired immunological tolerance or an exuberant

inflammatory response to various stimuli due to loss or gain of function

mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or

opportunistic infection in their phenotype, this group of syndromes has

broadened the spectrum of disease caused by defects in immunity-related

genes to include autoimmunity, autoinflammation, lymphoproliferation,

malignancy, and allergy; increasing focus on PIRDs has thus redefined the

classical ‘primary immunodeficiency’ as one aspect of an overarching group of

inborn errors of immunity. The growing number of genetic defects associated

with PIRDs has expanded our understanding of immune tolerance mechanisms

and prompted identification of molecular targets for therapy. However, PIRDs

remain difficult to recognize due to incomplete penetrance of their diverse

phenotype, which may cross organ systems and present to multiple clinical

specialists prior to review by an immunologist. Control of immune dysregulation

with immunosuppressive therapies must be balanced against the enhanced

infective risk posed by the underlying defect and accumulated end-organ

damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic

stem cell transplantation may correct the underlying immune defect,

identification of appropriate patients and timing of transplant is difficult. The

relatively recent description of many PIRDs and rarity of individual genetic

entities that comprise this group means data on natural history, clinical

progression, and treatment are limited, and so international collaboration will

be needed to better delineate phenotypes and the impact of existing and

potential therapies. This review explores pathophysiology, clinical features,

current therapeutic strategies for PIRDs including cellular platforms, and future

directions for research.
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Introduction

Primary immune regulatory disorders (PIRDs) are a group of

inborn errors of immunity (IEI) defined by excessive inflammation,

auto immunity frequent ly targe t ing mult ip le t i s sues ,

lymphoproliferation, and malignancy, resulting from loss or gain

of function in immunity-related genes associated with the

regulatory mechanism of the inflammatory or immune response.

Additionally, patients may be susceptible to severe, recurrent or

opportunistic infection from impaired cellular or humoral

immunity, from accumulation of end-organ damage, or from

immunosuppressive therapy used to control immune

dysregulation. In contrast, immune dysregulation covers a

combination of autoinflammation, autoimmunity, and

lymphoproliferation alongside susceptibility to severe infections,

and can manifest by a number of different genetic conditions in

which loss of the regulatory mechanism is not the primary defect.

IEIs in which immune dysregulation may feature include, but are

not limited to, chronic granulomatous disease and Wiskott-Aldrich

syndrome. The distinction is important, because the dysfunction of

a single molecule in PIRDs makes them potentially amenable to

ta rge ted therapy us ing smal l molecu le s or spec ific

molecular inhibitors.

The diversity of clinical manifestations in PIRDs, which

frequently present to non-immunologists, may lead to delayed

recognition of the immunological and genetic diagnoses, and thus

this patient group can pose a significant therapeutic challenge.

Prompt recognition and molecular diagnosis is important to

prevent multiple organ morbidities and side effects of prolonged

immunosuppression, which underlie initial management for PIRDs;

this is increasingly relevant as targeted therapies become available

for specific molecular entities.

The number of genetically defined PIRDs has grown

significantly as our understanding of mechanisms of immune

tolerance, and access to genomic medicine has expanded. The

concept of PIRDs as a disease entity was seeded from

identification of the association between immunodeficiency and

autoimmunity over 5 decades ago (1). This idea initially challenged

understanding of IEI syndromes, given the apparent contradiction

of excessive immune activity, demonstrated by autoimmunity and

lymphoproliferation, yet recurrent infections and malignancy

suggesting a degree of immunoparesis. It was recognized that

even “classical primary immunodeficiencies” can manifest

autoimmune features (2). Proposed theories to explain this

included incomplete clearance of pathogens in immunodeficient

patients causing a suboptimal, chronic immune response and

thereby damage to ‘bystander’ tissues (2). In 1982, a case series

describing a family where 17 male infants died of diarrhea

associated with early-onset eczema and autoimmunity directed

against multiple endocrine glands led to the description of the

prototypical PIRD – immune dysregulation, polyendocrinopathy,

enteropathy, X-linked (IPEX) syndrome (3) – and subsequent link

with regulatory T-lymphocytes (Tregs) (4). Other disorders of this

lymphocyte family constitute a subclassification of PIRDs. Many

other PIRDs have since been described. Within the past decade, the

number of PIRD genes listed in the International Union of
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Immunological Societies (IUIS) phenotypic classification of IEIs

has grown from 21 (5) to 54 (6), shaping our understanding of

immune function.

In this review, we discuss common manifestations of PIRDs,

sitting at the crossroads of infection and autoimmunity, and the

challenges of describing this heterogeneous group; disease

subgroups including disorders of T regulatory lymphocytes,

familial hemophagocytic lymphohistiocytosis (fHLH) syndromes,

IEIs associated with very early onset inflammatory bowel disease,

and diseases of autoimmunity and lymphoproliferation. We explore

current and future directions for therapy such as targeted molecular

treatment, allogeneic hematopoietic stem cell transplantation, and

other cellular therapies.
Pathophysiology of PIRDs

Immune dysregulation may occur from disorders of a number

of mechanisms spanning the breadth of immune function.

However, PIRDs arise specifically from disordered regulation of

immunity and inflammation.

Instrumental to the prevention of autoimmunity in a healthy

individual are the processes of central and peripheral immune

tolerance. Central tolerance occurs within the thymus: during T-

lymphocyte development, progenitor T-lymphocytes migrate from

the bone marrow to the thymic cortex to undergo proliferation,

maturation, rearrangement of their T-cell receptors (TCR), and, in

the thymic medulla, differentiation into mature T-lymphocytes that

may enter the peripheral circulation (Figure 1A). These mature T-

lymphocytes must be capable of recognizing and reacting to

pathogens, virus-infected cells, and malignant cells through

binding of antigen to the TCR, whilst crucially being tolerant to

self-antigens; this is central tolerance. Central tolerance develops

through two sequential stages, whereby immature double-negative

(DN) T-lymphocytes that express the CD3-TCR complex but lack

either CD4 or CD8 interact with thymic cortical epithelial cells to

positively select TCRs that bind to the major histocompatibility

receptor I and II expressed by ‘self’ cells, or else undergo apoptosis;

this is termed positive selection, leading to a population of

CD4+CD8+ (double positive, DP) lymphocytes. DP lymphocytes

undergo negative selection in the thymic medulla, where

lymphocytes reactive to self-antigens expressed by medullary

thymic epithelial cells (mTEC) are deleted (7). Expression of this

restricted set of tissue antigens by mTECs relies on the transcription

factor autoimmune regulator, encoded by the AIRE gene (8).

Impairment of central tolerance by inherited defects of thymic

development leads to syndromes including the autoimmune

lymphoproliferative syndromes (ALPS), caused by failure of the

extrinsic activation-induced cell death pathways (mutations in FAS,

FASLG, and FADD), and autoimmune polyglandular syndrome

(APS) 1, caused by mutations in AIRE.

Once single-positive mature T-lymphocytes expressing either

CD4 or CD8 are in the peripheral circulation, the effector functions

are checked by Tregs, which maintain peripheral tolerance by

upregulation of cell-suppressing surface markers such as cytotoxic

lymphocyte antigen-4 (CTLA-4) and production of inhibitory
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cytokines including IL-10 (9, 10). The repertoire of Tregs extends

beyond peripheral tolerance, and includes suppression of allergic

inflammation, induction of tolerance to dietary antigens and to the

fetus during pregnancy, and protection of the microbiome (11). It is

therefore unsurprising that Tregopathies frequently feature an

allergic preponderance. Tregs develop in the thymus as natural

Tregs (nTregs) or following antigen exposure peripherally as

inducible Tregs (iTregs). Treg development and function is

dependent on the forkhead box protein-3 (FOXP3) transcription

factor, deficiency of which abrogates Treg development and causes

IPEX syndrome with absent or dysfunctional Tregs (9) (Figure 1B).

A phenotypically similar syndrome is caused by deficiency of CD25

(the a-chain of the IL-2 receptor) (12, 13), which is universally

expressed on Tregs. Functional Treg defects are seen in defects of

surface markers and intracellular proteins such as CTLA-4 (14) and

the closely-related lipopolysaccharide-responsive beige-like anchor

(LRBA, Figure 1B) (15). Additionally, dysfunction of suppressor

cytokine pathways involving IL-2 (15, 16), IL-10 (17) either by

deficiency of receptors or altered downstream signaling molecules

such as JAK1 (18), STAT1 (19), STAT3 (20), and STAT5b (21),

renders ineffective the common mechanisms by which Tregs

usually restrain inflammation.

PIRDs may a l so mani f e s t in hyperac t iva t ion or

hyperinflammation that functioning peripheral tolerance

mechanisms cannot restrain: this typically manifests as HLH, a

syndrome of fever, hepatosplenomegaly, and consumption of
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and central nervous system (hemophagocytes) due to excessive pro-

inflammatory cytokine release from activated macrophages. This

process is usually prevented by the inhibitory effect of NK and CD8

+ lymphocytes, which insert pores into macrophage cell membranes

to deliver cytotoxic granules and cause cell death, through the

intrinsic cell death pathway. Monogenic defects in pore formation,

cytotoxic granule production, and their delivery cause familial HLH

(22). However, a range of additional immune disorders may

predispose to HLH due to NK cell deficiency or impairment,

suboptimal handling of viral infections such as EBV, or

dysregulated inflammasome control. HLH seen in the context of

these other IEI is termed primary HLH (23).
Common manifestations of PIRDs

PIRDs pose a diagnostic and therapeutic challenge for clinicians

due to the broad spectrum of potential manifestations involving

multiple organs, which may therefore present to various medical

specialities. Autoimmunity may be antibody- or cell-mediated, and

can target hematopoietic cells causing cytopenias, endocrine organs

causing type 1 diabetes mellitus (T1DM) or thyroiditis, skin and

connective tissue causing dermatitis, vitiligo, alopecia or arthritis,

visceral organs causing hepatitis or glomerulonephritis, and the

epithelial barrier causing uveitis or inflammatory bowel disease.
A B

FIGURE 1

Genetic aetiology of specific PIRDs. (A) Normal T-lymphocyte development within the thymus results in removal of T-lymphocytes that bind self-
antigen expressed by AIRE, on mTEC cells in the thymic medulla. A subset of CD4+ lymphocytes develop into Tregs with suppressor functions on
effector T-lymphocytes through inhibition of co-stimulation (via CTLA-4 binding), or IL-10 production. (B) Monogenic defects of proteins involved in
tolerance mechanisms of Treg development or function result in specific PIRDs. Adapted from “T-cell development in thymus 2” and “Tregs
suppress dendritic cells and effector T cells”, by BioRender.com (2023). Retrieved from https://biorender.com/biorender-templates.
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Individually, these manifestations may be common: immune

thrombocytopenia purpura has an estimated incidence of 1.9-6.4

per 100,000 children each year (24), whilst T1DM has an incidence

of 22.9/100,000 per year (25). This makes early diagnosis of

potential PIRDs difficult until multi-organ autoimmunity

develops, or unless additional features such as a positive family

history or severe or recurrent infection are present. Allergic

disorders such as food or drug allergy, rhinitis, and asthma may

also manifest. Impaired control of lymphoid cells may interact with

abnormal handling of viruses such as Epstein-Barr virus (EBV) and

predispose to lymphoproliferation and development of lymphoma.

Given the multi-organ nature of many PIRDs, understanding

and quantifying the burden of immune dysregulation is important,

and may be done through disease activity scoring systems. At an

individual patient level, these scoring systems allow clinicians to

track response to therapies, whilst at a population level, they aid

understanding natural history and progression of different

monogenic diseases. The heterogeneity between different PIRDs

and failure to identify a monogenic defect in every patient with

immune dysregulation features makes such scoring systems

challenging to design. The Immune Deficiency and Dysregulation

Activity (IDDA) score is a composite of the presence and severity of

different clinical parameters, graded 0–4 depending on the impact

of each manifestation. It is altered by other factors such as chronic

infection and duration of hospitalization. This was initially

conceived to provide a comparison of phenotype in patients

before and after HSCT for LRBA deficiency (26), but has since

been updated to encompass all PIRDs (IDDA2.1 (27)). It can be

used to longitudinally track disease activity in individual patients

and assess response to treatment, and used visually represent

different disease phenotypes through a ‘kaleidoscope’ function (27).
Moving towards targeted
therapy for PIRDS

Historically, challenges in obtaining a molecular diagnosis for

PIRDs has led to patients receiving prolonged immunosuppression,

particularly with corticosteroids. Chronic corticosteroid use carries

significant morbidity due to weight gain, risk of osteoporotic

fractures, and immunosuppression; the latter may be particularly

important in these diseases where there is infection susceptibility in

addition to autoimmunity.

Allogeneic HSCT may be considered diametrically opposed to

targeted therapy; rather than selecting a specific pathway to

modulate, HSCT offers the opportunity to replace recipient stem

cells carrying a disease-causing allele with those from a healthy

donor, thereby affecting all bone marrow-derived cells. The benefits

of HSCT must be balanced against the limitations of its use: firstly,

HSCT may not correct the underlying defect in all PIRDs,

particularly in cases where there is pleiotropic expression of the

mutated protein (such as in STAT3-GOF), or where the defect is of

thymic origin (such as APS1). Secondly, HSCT carries a significant

and variable risk of mortality. This is typically associated with early

transplant-related complications arising from preparative
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conditioning, from the period of aplasia prior to engraftment of

donor cells and subsequent immune reconstitution, and from

alloreactivity from donor lymphocytes causing graft-versus-host

disease (GvHD). Thirdly, HSCT may not be available in every

healthcare setting, particularly when considering the differences

between HSCT experience in IEI patients as opposed to more

common indications such as hematological malignancy, and even

if available, is expensive and reliant on availability of a well-matched

donor. These limitations in availability have led to the subset of

patients undergoing HSCT in historic series representing a multi-

morbid, therapy-resistant cohort who were transplanted without a

genetic diagnosis, late in their disease course with accumulated end-

organ damage and treatment side effects. An additional challenge in

HSCT for PIRDs as opposed to ‘classical’ immunodeficiency is the

need to attain sufficient myeloablation to remove recipient

lymphocytes which may facilitate graft rejection, whilst

minimizing associated toxicities. A degree of alloreactivity is also

required so that hyperactivated recipient cells may be destroyed by

emerging donor immunity. HSCT for PIRDs thus represents the

intersection of philosophies for treatment of hematological

malignancy, where conditioning regimens favor myeloablation

and where alloreactivity may aid a graft-versus-leukemia effect,

and of treatment of classical immunodeficiency, where pre-HSCT

infection and organ-damage is common and conditioning intensity

aims to minimize associated toxicity. Together, these challenges

result in poorer HSCT outcomes for PIRDs than for other

monogenic IEIs such as chronic granulomatous disease or

Wiskott-Aldrich syndrome, with particularly high rates of graft

rejection or GvHD (28, 29). The role of autologous ex-vivo gene

therapy for these diseases is evolving; whilst successful engraftment

of corrected HSCs still mandates conditioning to create a marrow

‘niche’, advantages include ability to harvest from the patient and

not rely on a matched donor, and no risk of GvHD (30). Gene

therapy platforms have been established and trials are in clinical

phases for severe combined immunodeficiency (SCID; IL2RG,

RAG1, DCLRE1C) and non-SCID IEI including IPEX, Wiskott-

Aldrich syndrome, and X-linked chronic granulomatous disease

(30, 31). Gene therapy trials for familial HLH genes (UNC13D,

PRF1) are currently in pre-clinical phases (32, 33). Whilst attractive,

application of this science to the clinical setting is in early stages,

with little long-term outcome data and concerns regarding cost and

availability (34).

The ability to maintain remission of autoimmunity with

minimal side-effects is therefore an attractive alternative to both

chronic corticosteroid use, and allogeneic HSCT. Today, with

several agents being either disease mechanism-specific (such as

abatacept) or pathway-specific (such as JAK inhibitors), control of

underlying immune dysregulation may be better balanced against

side-effect profile, and thus the treatment paradigm may be

changed. Diseases affecting CTLA-4 expression (CTLA-4

haploinsufficiency and LRBA/DEF6 deficiencies) may be treated

with replacement of CTLA-4 protein in the form of abatacept or

belatacept, with good clinical response, particularly for enteropathy

or lymphoid cell-infiltrative disease of the lungs or nervous system

(35, 36). A multicenter trial exploring its efficacy and safety is

currently underway (37). For several diseases where there is a
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quantitative or qualitative Treg defect and subsequent

hyperactivation of effector T lymphocytes, mTOR inhibition using

sirolimus has proven to be an effective steroid-sparing agent (35,

38–40). It may also be useful in ALPS (41). A range of agents

antagonizing common pro-inflammatory mediators such as IL-1

(anakinra) and IFN-g (emapalumab) may be employed to aid

remission in primary HLH, whilst specific aetiologies where IL-18

hyperactivation is implicated may benefit from IL-18 binding

protein analogues (42–45). B-lymphocyte directed therapy, such

as rituximab, may benefit diseases where EBV infection causes HLH

(such as SAP and XIAP deficiencies) or where autoantibody

production is problematic (such as APS1, or CTLA-4

haploinsufficiency) (35, 46). Anakinra, which is a recombinant

IL-1 receptor antagonist, may remit the multi-system

inflammation seen in disease states where IL-1 antagonism is

impaired such as deficiency of endogenous IL-1RA and the

closely-related IL-36RA (DIRA and DITRA syndromes,

respectively) (47, 48). For PIRDs caused by hyperactivation of a

specific protein, use of small molecules to inhibit activity and return

it to baseline is attractive and has been trialed for activated

phosphoinositide 3-kinase-d syndrome (49). Given the broad

clinical and immune phenotype of PIRDs, and that individual

diseases may cause symptoms through different pathways, it is

unsurprising that there is no ‘silver bullet’ that can remit all aspects

of a disease. Furthermore, the novelty of several of these agents and

small patient population means long-term data on efficacy and

safety are limited, and the financial and clinical impact of very long-

term treatment is yet to be determined. Collection of ongoing

longitudinal data is required to fully understand whether these

treatments will serve as long-term maintenance therapy, a tool for

inducing remission, or a bridge to definitive cure with HSCT or

other cellular therapies.
Specific disease groups

We will discuss specific PIRD entities, defined either by

genotype or by phenotype, and their specific clinical and

immunological characteristics and current understanding of

different treatments. Table 1 summarizes disease entities and

strategies for treatment, including targeted therapy and results of

HSCT or gene therapy.
APS1/APECED

Biallelic LOF mutations in AIRE, which are autosomally

inherited, cause a defect in central tolerance with failure to delete

auto-reactive lymphocytes in the thymus, manifesting in a

syndrome characterized by chronic mucocutaneous candidiasis

and multi-organ autoimmunity, particularly against parathyroid

and adrenal glands (autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy, APECED, also called APS1) (63). The

syndrome was first reported in 1929 (64), with its genetic

aetiology identified by two groups in 1997 (65, 66), and has a

prevalence that varies by population, with certain founder
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mutations found in relative high numbers of the Persian Jewish,

Sardinian, and Finnish populations (67). There is poor genotype-

phenotype correlation, with significant intra-familial variability

despite sharing identical AIRE mutations (68). However, some

features appear enriched within an American cohort of patients,

particularly a non-pruritic urticarial eruption which, in this cohort,

was as prevalent as CMC. The diagnostic criteria therefore

expanded to also include urticarial eruption, enamel hypoplasia,

and intestinal malabsorption (69). Recently, heterozygous AIRE

mutations exerting negative dominance have been identified in a

syndrome with milder autoimmunity and incomplete

penetrance (70).

Whilst the classic triad of hypoparathyroidism, Addison’s

disease and CMC define the syndrome, the phenotype has

expanded in recent years to include other endocrine

autoimmunity impacting pancreatic islet cells, thyroid, and

gonad; visceral autoimmunity including pneumonitis, hepatitis,

gastritis and intestinal malabsorption; non-infectious epithelial

features such as urticarial eruption, alopecia, vitiligo, nail

dystrophy and enamel hypoplasia; and a Sjogren’s-like sicca

syndrome (67). Whilst the infective manifestations have

classically been restricted to epithelial-site Candida infection only,

the recent emergence of the SaRS-CoV-2 pandemic and subsequent

discovery of anti-type-I interferon antibodies underlying mortality

risk from pneumonitis in both APECED patients (71) and the

general population (72). Some patients develop epithelial-site

malignancy associated with chronic Candida infection.

These infective complications relate to autoimmunity: failure of

AIRE to project an “immunological self-shadow” (73) within the

thymus causes escape of auto-reactive T lymphocytes into the

circulation, which then infiltrate organs and cause autoimmunity

either by a direct cellular effect, or by induction of autoantibody

formation, possibly in tandem with auto-reactive B lymphocytes

(46, 67). Multiple autoantibodies have been associated with

APECED features, including against NACHT leucine-rich-repeat

protein 5 and the calcium-sensing receptor (hypoparathyroidism),

17-a and 21-hydroxylases (adrenal insufficiency), intrinsic factor

(pernicious anemia), and cytokines such as the IL-17 family (CMC),

IL-22, and type-I interferons -a, -b, -l, and -w (SaRS-CoV-2

pneumonitis) (74); interestingly, anti-interferon-a antibodies have

been posited to provide protection from development of T1DM in

some APECED patients (75). The AIRE defect may also impair

Th17 lymphocyte development, possibly explaining the Candida

diathesis in APECED patients without detectable IL-17

autoantibodies (76).

Treatment of APECED commonly involves specialists from

multiple disciplines including endocrinology, immunology,

gastroenterology/hepatology and dermatology. CMC may be

managed with azole antifungals, or amphotericin B in cases of

azole resistance; patients should be screened for asplenia, which

may co-occur in ~10% of patients. Autoimmunity may be managed

with azathioprine, mycophenolate mofetil, or mTOR inhibitors

such as sirolimus; B-lymphocyte depletion with rituximab has

been described in cases of recalcitrant autoantibody-mediated

organ disease and in pneumonitis (77). Allogeneic HSCT does

not correct this disease, which is caused by a thymic defect.
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TABLE 1 Summary of PIRDs discussed in this review, with genetic and clinical features, and options for treatment including mechanism-specific therapies, HSCT, and gene therapy.
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Defects of central
tolerance

APS1

AIRE; AR
but some
heterozygous
mutations cause a
milder phenotype

Defect in central tolerance → auto-
reactive lymphocyte escape

Candidiasis
Multi-organ autoimmunity including
endocrinopathy (adrenal insufficiency,
hypoparathyroidism) pneumonitis,
hepatitis
Urticarial eruption
Malabsorption

Azathioprine
MMF

ALPS and ALP-
like

ALPS-FAS
ALPS-FASL
ALPS-CASP10

FAS; AD
FASL; AR
CASP10; AR

Peripheral defect in extrinsic
programmed cell death pathway →

accumulation of auto-reactive
lymphocytes

Lymphoproliferation → lymphoma
AIC
Multi-organ autoimmunity including
eczema, alopecia, hepatitis, vasculitis Immunoglob

Steroids

ALPS-FADD FADD; AR
As above, plus infection/vaccination-
provoked encephalopathy,
pneumococcal sepsis

Tregopathies

IPEX FOXP3; XL Abrogated Treg development

Endocrinopathies such as neonatal
diabetes mellitus
Eczema
Enteropathy
Nephrotic syndrome

Steroids
Calcineurin i

IL-2RA/CD25
deficiency

IL2RA; AR Impaired Treg function

IPEX-like, plus CMV susceptibility
Steroids
InfliximabIL-2RB/CD122

deficiency
IL2RB; AR Impaired Treg number
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TABLE 1 Continued

Therapeutic
options

Targeted
therapy

HSCT
Gene
therapy

Steroids
MMF

Tocilizumab
(anti-IL-6)
Ruxolitinib
(JAK inhibitor)

OS 15/23 (62%) (58) –

Steroids
MMF
Azathioprine

Abatacept,
belatacept
(CTLA-4
fusion protein)
Rituximab
(anti-CD20)
Sirolimus
(mTOR
inhibitor)

OS 15/21 (71.4%) (35)
Proof of
concept
(59)

OS 17/24 (70.8%) (26) –

Not reported –

Steroids
Azathioprine
Infliximab

Anakinra (IL-1
receptor
antagonist)

OS 5/5 (60) –

Steroids
Immunoglobulin
replacement

Rituximab
(anti-CD20)
Sirolimus
(mTOR
inhibitor)
Leniolisib
(PI3Kd
inhibitor)

OS 49/57 (86%) (61)
High rates of graft
failure, particularly if
mTOR inhibitors used
post-HSCT

–

Steroids
Other disease-modifying
anti-rheumatic drugs

Rituximab
(anti-CD20)

Not reported –

Steroids
Colchicine

Infliximab,
adalimumab
(anti-TNFa)
Tociluzumab
(anti-IL-6)

OS 2/2 (62) –

Steroids
Anakinra (IL-1
receptor
antagonist)

Not reported –
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Disease
Group

Disease
Gene and
inheritance

Pathophysiology Clinical features

STAT3-GOF STAT3; AD
Enhanced STAT3 and diminished
STAT1/STAT5 phosphorylation
Raised IL-6

Childhood-onset lymphoproliferation
and autoimmunity; AIC, growth delay,
enteropathy, vasculopathy, malignancy

CTLA-4
haploinsufficiency

CTLA4; AD

Enhanced T-lymphocyte activation
due to loss of CTLA-4 checkpoint

Lymphoproliferation → lymphoma,
gastric cancer
Lymphoid infiltration of CNS, lungs,
GI tract
Endocrinopathy, AIC, hepatitis,
nephritis

LRBA deficiency LRBA; AR

DEF6 deficiency DEF6; AR

IL-10-related
VEOIBD

IL-10 deficiency
IL-10 receptor
deficiency

IL10; AR
IL10RA; AR
IL10RB; AR

Defect in IL-10 production or
receptor formation → intestinal
inflammation

VEOIBD with perianal anal disease
Folliculitis, arthritis

APDS
APDS1
APDS2

PI3KCD; AD
PI3KR1; AD

Altered T- and B-lymphocyte
homeostasis,
dysgammaglobulinemia

Sinopulmonary infection →

bronchiectasis
Lymphoproliferation and chronic EBV
infection, lymphoma
Enteropathy, AIC, dermatitis

Predominately
autoinflammatory
syndromes

DNase1 deficiency
DNase1L3
deficiency

DNASE1; AD
DNASE1L3; AR

Impaired clearance of chromatin
and double-stranded DNA →

autoantibody formation
Systemic lupus erythematosus

Haploinsufficiency
of A20 (HA20)

TNFAIP3; AD
Enhanced NFkb signaling →

upregulation of pro-inflammatory
cytokines

Behcet-like disease with orogenital and
gastrointestinal ulceration, uveitis,
arthritis
Fever

IL-1RA deficiency
(DIRA)
IL-36RA deficiency
(DITRA)

IL1RN; AR
IL36RN; AR

Reduced antagonism of IL-1 →

enhanced pro-inflammatory
cytokine activity via NFkb

Sterile osteoarticular inflammation
(only described in DIRA)
Recurrent fever
Pustulosis and generalized pustular
psoriasis
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ALPS and ALP-like syndromes

Autoimmune lymphoproliferative syndrome (ALPS) and ALP-

like syndromes are defects of lymphocyte homeostasis caused by

impairment of the FAS-mediated apoptosis pathway. Classical

ALPS was first described in 1967 and given the eponym Canale-

Smith syndrome after the paper’s authors (78), as a syndrome of

non-malignant lymphoproliferation with autoimmunity.

Subsequently, a predisposition to lymphomatous transformation

was also identified, and the syndrome was associated with

deleterious variants in FAS (79) followed by FASL (80), CASP10

(81) and somatic FAS (82) mutations. These genes encode the

proteins of the FAS-mediated apoptosis pathway: FAS, a cell-

surface receptor, binds to its ligand (FAS-L) leading to

conformational change and recruitment of intracellular proteins

(caspase-8 and caspase-10, and FAD-associated death domain) to

herald programmed cell death. This process is upregulated in T-

lymphocytes which react to self-antigen, restraining proliferation of

autoreactive lymphocytes: thus, failure of this mechanism causes an

accumulation of autoreactive double-negative (TCRab+CD4-CD8-
) T-lymphocytes (DNTs) with a significant proliferative potential

(83). Along with clinical features and DNTs, biomarkers such as

soluble FAS-L, vitamin B12, and IL-10 comprise the diagnostic

criteria for ALPS (83).

Mutations in FAS are most commonly dominant and in the

germline, with somatic mutations representing 15-20% of cases.

However, some FAS mutations behave in a recessive manner, with

heterozygous probands being minimally symptomatic. Similarly,

the much rarer ALPS-FAS-L usually requires a biallelic mutation to

cause disease (83, 84). The incomplete clinical penetrance of ALPS

may be partially explained by a ‘double hit’ being necessary to

impair FAS-related apoptosis (85). Patients lacking a mutation in

the FAS-associated genes are categorized as ALPS-U; advances in

availability of high-throughput genomic testing have identified

mutations in >20 distinct IEI genes in ALPS-U patients, including

other PIRDs such as Tregopathies (STAT3-GOF, CTLA-4

haploinsufficiency, LRBA deficiency) (86), highlighting how

rapidly this field is expanding.

Clinical manifestations of ALPS typically begin in early

childhood. Lymphoproliferation of DNTs causes multi-focal

lymphadenopathy, particularly of cervical nodes, and

splenomegaly. These demonstrate DNT infiltration and may

remit in adulthood. Autoimmunity in ALPS is commonly

directed against erythrocytes, platelets and neutrophils, with

>80% of patients manifesting with hematological cytopenias (84).

Organ-specific autoimmunity caused by autoantibody formation,

possibly by disturbed B-lymphocyte homeostasis, may include

uveitis, eczema, alopecia, hepatitis, Guillain-Barre syndrome and

vasculitis (84); patients frequently have clonal IgG expansion.

Lymphomatous transformation may occur, particularly into

Hodgkin-type (87). Historically, splenectomy has been trialed to

reduce the burden of lymphoproliferation; however, the risks of

encapsulated bacterial infection compounded by attenuated

polysaccharide vaccine responses do not support this treatment

strategy (88). Autoimmune cytopenias (AICs) may respond in the
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first instance to immunomodulation with high dose intravenous

immunoglobulin (1 – 2g/kg), though is commonly refractory and

requires second-line therapy. Lymphoproliferation and

autoimmunity may both respond to immunosuppression,

typically steroids though mTOR inhibitors such as sirolimus have

shown favorable results with minimal infection risk, possibly due to

this pathway being hyperactivated in ALPS (40, 41). Following

induction of remission, maintenance therapy may be continued to

prevent relapse. In rare cases, due to uncontrolled life-threatening

lymphoproliferation, HSCT may be considered but experience is

limited to few reports (53, 88, 89). In a systemic review collating 12

patients with FAS or FASL mutations and ALPS who underwent

HSCT, survival was seen in 11/12 (91.7%) (89). Transplant course

was complicated by graft rejection necessitating second HSCT in

two patients, and graft-versus-host disease (89).

Syndromes caused by mutations in caspase-8 (CASP8) or FAD-

associated death domain (FADD), previously categorized as ALPS,

behave differently. Caspase-8 deficiency may cause very early-onset

inflammatory bowel disease (VEOIBD) presenting before age 6

years or other infiltrative autoimmune disease, contrasting with

ALPS, or infection susceptibility (90, 91). FADD deficiency overlaps

ALPS with the addition of infection- or vaccination-provoked

encephalopathy and seizures, ocular findings, and overwhelming

pneumococcal sepsis (54, 92–94). HSCT has been successful in 2

FADD-deficient patients (54).
IPEX

Mutations in the FOXP3 gene, on the X chromosome, cause

IPEX syndrome with abrogated Treg development. This syndrome

typically presents in the first few weeks of life with intractable

diarrhea, enteropathy and resultant failure to thrive, eczema, and

T1DM (3), though this triad may only occur in ~60% of patients

(55, 95); other features include food allergies, nephrotic syndrome,

other endocrinopathies, AIC and serious infections such as sepsis

and meningitis. Immunologically, patients have low or absent Tregs

with raised IgE and eosinophilia, and characteristic autoantibodies

against renal and gut epithelial proteins (96, 97). The impact of

mutation type and site on FOXP3 protein expression vary;

mutations that confer small changes to the protein with intact

expression appear to result in a milder phenotype (95). Certain

phenotypes and outcomes cluster to specific FOXP3 protein

domains, such as poorer outcome in repressor domain mutations

(98), but there is significant extra-familial variability amongst

patients with the same variant, suggesting influence of other

genetic or environmental factors on phenotype. More recently,

emphasis has been placed on atypical presentations of IPEX: these

include intrauterine or late onset, mild course, or IPEX-like

syndromes in patients with some features of the syndrome but no

FOXP3 mutation. Intrauterine IPEX may present with hydrops,

ultrasonographic features such as hyperechoic bowel, and poor

perinatal outcome including stillbirth or neonatal mortality (99),

and appears to cluster in families. Relatively late-onset IPEX may

present towards the end of the first decade of life with an IBD-like
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phenotype (100). Reports of mild IPEX with either single-organ

involvement, or rapid response to immunosuppression, have been

associated with non-coding region mutations and near-intact Treg

compartments (100). In IPEX-like patients with intact FOXP3

function, mutations in other IEI genes such as LRBA, STAT3

(GOF), CTLA4, IL2RA and STAT5B have been implicated (95).

Treatment of IPEX centers on nutritional support and

immunomodulation such as steroids and adjunctive therapy,

usually calcineurin inhibitors or sirolimus; the latter may offer

better disease control by restoring Treg function (38).

Retrospective data highlight that whilst immunosuppression may

ameliorate the disease, it unsurprisingly does not reverse end-organ

damage and may only temporize accrual of disease manifestations,

particularly as follow-up extends into the second or third decade

after diagnosis (55). Allogeneic HSCT offers a better disease-free

survival than immunosuppression alone, though the risk of

mortality (~25%) with HSCT is stratified by pre-HSCT morbidity,

suggesting that prompt treatment or aggressive optimization of

patient condition is critical for this treatment modality.

Interestingly, mixed rather than full donor chimerism does not

negatively affect outcome and leads to functional donor Treg

production, suggesting that reduced intensity conditioning

strategies may provide a balance between transplant-related

morbidity and immunological outcome (55). A phase 1, first-in-

human trial of restoration of the Treg compartment by induction of

CD4+ cell development into Tregs following lentiviral transfer of

wild-type FOXP3 is currently in recruitment (NCT05241444) (31).
CTLA-4 haploinsufficiency and LRBA and
DEF6 deficiencies

First identified in humans in 2014, autosomal dominant

mutations in CTLA4, causing haploinsufficiency of its encoded

protein, cause a complex PIRD with incomplete penetrance (14,

101). CTLA-4, expressed on Tregs, acts as an immune checkpoint by

outcompeting CD28 for binding to CD80/CD86 on antigen

presenting cells, prompting transendocytosis of the complex and

thereby terminating the co-stimulatory second signal required for T-

lymphocyte activation (102). Following the first description in seven

patients from four kindreds, understanding of CTLA-4

haploinsufficiency has expanded by publication of international,

multicenter cohorts (36). Whilst mutations may not be completely

penetrant, leading to divergent or absent symptoms within families

sharing the same mutation, affected patients commonly have

multiorgan involvement with lymphoid infiltration into lungs, the

central nervous system, and gastrointestinal tract along with

autoimmune endocrinopathies including diabetes, arthritis,

cytopenias, and infections (36). Lymphoproliferation may be

symptomatic in its own right, or transform into lymphoid

malignancy, often driven by EBV, with a lifetime risk of

approximately 1 in 6 patients (103, 104). Penetrance of CTLA-4

haploinsufficiency appears to be independent of the specific mutation

(35). Patients may develop primary hypogammaglobulinemia as

CTLA-4 is involved in differentiation of follicular helper T-

lymphocytes, and this may be compounded by immunosuppression
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(36, 105). CXCR5+PD1+ follicular helper T-lymphocytes may act as

a biomarker for CTLA-4 disease; other immunophenotype changes

appear to be variable across the CTLA-4 haploinsufficient

population (106).

These clinical features are shared with three other genetic

diseases. Monoallelic deletions of the 2q33.2 – 2q33.3 locus, where

CTLA4 sits, present as phenotypic CTLA-4 haploinsufficiency (107).

Recessive mutations affecting the lipopolysaccharide responsive

beige-like anchor protein (LRBA) were identified in 2012 prior to

CTLA-4 haploinsufficiency, in kindreds with childhood-onset

hypogammaglobulinemia, impaired B-lymphocyte compartments,

and autoimmunity (15). The overlap between these two diseases is

explained by the role of LRBA in protecting CTLA-4 from lysosomal

degradation, and indeed LRBA deficiency causes reduced cell-surface

CTLA-4 expression (108). Also impacting CTLA-4 surface

trafficking, homozygous mutations in DEF6 impair regulation of

the GTPase RAB11 and thereby reduce the intracellular trafficking of

CTLA-4-containing vesicles towards the cell-surface (109, 110).

Initially conceived for LRBA deficiency, a multiorgan scoring

system (IDDA) may be used for assessing longitudinal response to

therapy (26). Following its use in a cohort of 76 patients with LRBA

deficiency, the IDDA score has been revised to incorporate other

features of immune dysregulation such as hemophagocytes

(IDDA2.1), and its inclusion in the ESID registry will help expand

its use in describing the phenotype of PIRDs beyond LRBA

deficiency (27).

Treatment for CTLA-4 haploinsufficiency and related disorders

centers on immunomodulation. There is variability in organ

response to different therapies. Corticosteroids are effective in

remitting granulomatous lymphocytic interstitial lung disease and

gastrointestinal inflammation, they appear less effective for

neurological involvement. Steroid-sparing agents, such as mTOR

inhibitors, TNFa inhibitors, and B-lymphocyte directed therapy

with rituximab are commonly employed to provide multimodal

immunosuppression and reduce the adverse effects associated with

chronic corticosteroid use. The aetiology of immune cytopenias

likely relates to marrow infiltration by autoreactive T-lymphocytes,

rather than peripheral sequestration or destruction, explaining the

poor clinical response following splenectomy (no response in 10/14

patients) (35). Immunoglobulin replacement effectively reduces

infection frequency. Replacement of insufficient CTLA-4 in these

diseases, by intravenous or subcutaneous infusion of the CTLA-4

fusion proteins abatacept or belatacept, may be considered (26, 35,

111). Response rates appear promising, particularly for neurological

and gastrointestinal disease, although existing tissue destruction

such as that causing insulin-dependent diabetes mellitus cannot be

reversed. Long-term efficacy and safety data are lacking.

Surveillance for oncogenic viruses such as EBV may be

important, as chronic viraemia is common, malignancy is

frequently EBV-related, and there have been reports of

herpesvirus reactivations with CTLA-4 fusion protein therapy

(103, 112, 113). A phase IIa prospective multicenter trial

(ABACHAI) aims to answer questions surrounding safety and

efficacy in adult patients with CTLA-4 haploinsufficiency by use

of a novel morbidity score (CHAI), which could also be employed in

future study of other therapies in this disease (37). Whilst HSCT has
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a role in these diseases, further data to understand the true extent of

its efficacy and which patients should be transplanted, and when,

are required. For LRBA deficiency, twenty-four patients underwent

HSCT with a median follow-up of 20 months and OS of 70.8%, with

all deaths being transplant related. Interval to HSCT and disease

burden, particularly pulmonary involvement, affected odds of

survival (26). Surviving patients had significantly lower IDDA

scores than those on conventional therapies, and 70.6% were in

immunosuppression-free remission. In CTLA-4 haploinsufficiency,

two HSCT series were updated in a large multicenter study recently,

and along with one other series a total of 21 transplanted patients

have been reported in the literature, with OS 15/21 (71.4%) (35, 36,

114, 115). Whilst disease activity appears improved in HSCT

survivors, donor Tregs do not appear to have the same survival

advantage seen in HSCT for IPEX and consequently, immune

dysregulation may continue in the setting of mixed chimerism

(114, 116). Questions regarding optimum HSCT strategy, and the

role of CTLA-4 fusion therapy as a bridge to transplant, may be

answered by an ongoing study of the Inborn Errors Working Party

of EBMT. Autologous gene therapy using a homology-directed

repair approach in human CTLA4+/- CD4+ lymphocytes has

successfully restored CTLA-4 activity in an in vitro study with

good efficiency, but requires translation to an HSC platform (59).
STAT3-GOF

Whilst dominant negative mutations in signal transduction and

activator of transcription (STAT) 3 cause a complex multisystem

immunodeficiency with recurrent staphylococcal and fungal

infection, eczema, and connective tissue disease (STAT3 hyper

IgE syndrome) (117, 118), germline activating mutations lead to

exaggerated transcriptional activity of STAT3 and impaired

signaling through the other STAT molecules (20). STAT3

transduces multiple cytokine signals, including IL-6, IL-10, and

IL-23 (119, 120). The resultant immunological phenotype of

STAT3-GOF is of a quantitative and qualitative Treg defect.

Clinically, patients display an incompletely-penetrant phenotype

o f ch i l dhood -ons e t mu l t i o r g an au to immun i t y and

lymphoproliferation, along with stunted growth (20, 21, 121).

Whilst the most common manifestations are lymphoproliferation

with raised DN T-lymphocytes, two-thirds have autoimmune

cytopenias and end-organs affected by autoimmunity include the

gastrointestinal tract, endocrine organs, liver causing hepatitis, and

lung disease. The immune deficiency was initially reported as

modest, though a large series of 191 patients found infections in

three-quarters of patients with both humoral and cellular arms

impacted (58). Similarly to STAT3-HIES, data do not support a

genotype-phenotype correlation and indeed, mutations affecting the

same codon may cause both STAT3-GOF and STAT3-HIES

diseases in different patients (58, 122).

Treatment is challenging, with incomplete response to

individual agents and most patients require multiple (>5) lines of

therapy to sustain a clinical response (58). The ability to target the
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JAK-STAT cascade using JAK inhibitors such as ruxolitinib

provides an attractive treatment option in STAT3-GOF, with

efficacious response although long-term data are lacking (58, 123,

124). Other targeted therapies include IL-6 blockade (tocilizumab)

(123). The use of small molecules to inhibit STAT3 activity is the

subject of several pre-clinical trials, focusing primarily on somatic

STAT3-mutated malignancies (125). Whether these may translate

to therapy for germline activating mutations remains to be seen.

Data on outcomes of HSCT are limited. Initial reports were dismal,

with death in 4/5 patients, though subsequent series have shown

improved survival up to 62% in a summary of 23 transplanted

patients (58, 126). HSCT in childhood may not normalize growth

velocity. A more detailed exploration of indication, transplant

strategy, and morbidity and mortality beyond individual case

reports is yet to be published, particularly as HSCT appears to be

reserved for treatment-resistant cases with significant pre-HSCT

morbidity. The pleiotropic nature of STAT3 suggests that, as in

STAT3-HIES, HSCT for STAT3-GOF may not reverse the signaling

defect in extra-hematopoietic tissues.
IL-2RA and IL-2RB deficiencies

Whilst deficiency of the g-chain of the IL-2 receptor causes T-B

+NK- SCID (127, 128), deficiency of the a or b chains, encoded by

IL2RA and IL2RB respectively, cause immune dysregulation (129).

The a chain (IL-2RA, CD25) exclusively binds IL-2, in contrast to the

g chain, which forms receptors that bind interleukins -4, -7, -9, -15,

and -21. CD25 is expressed at high levels on Tregs, and binding of IL-

2 upregulates FOXP3 expression and therefore enhances Treg activity

in response to immune stimulus (130). Meanwhile, the b chain (IL-

2RB, CD122) forms a receptor with the g chain which binds IL-2 and

IL-15 (131). IL2-RA and IL2-RB deficiencies are rare, with few

published cases. Their shared phenotype includes autoimmunity,

with erythroderma, enteropathy, and alopecia, similar to IPEX.

However, in contrast, these patients also exhibit a significant

susceptibility to herpesvirus infections such as CMV (12, 13, 57).

Phosphorylation of STAT5 following IL-2 stimulation is reduced or

absent, depending on whether the mutation is null or hypomorphic,

in both syndromes (57). In IL-2RA deficiency, Treg numbers are low-

normal, but the cells are non-functional; in IL-2RB deficiency, Tregs

are low-absent (129). Autoreactive CD8+ cells may infiltrate organs

causing autoimmunity in IL-2RA deficiency (12). Interestingly, some

patients with hypomorphic IL-2RG mutations display a phenotype

akin to IL-2RA and IL-2RB mutations, with immune dysregulation

and lymphoproliferation (129).

HSCT has been reported in one patient with IL-2RA deficiency,

who survived (132). In IL-2RB deficiency, two cases have been

published and one additional, unpublished case was performed at

our center, with survival and cure in two patients and death from

CMV in the third (57). mTOR inhibition has been reported to

improve autoimmune symptoms in one case (133). Pooling of data

for these rare monogenic diseases is needed to better understand

their manifestations and natural history.
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Primary and familial HLH syndromes

Hemophagocytic lymphohistiocytosis (HLH) describes a

syndrome of immune hyperactivation caused by sustained

activation of cytotoxic T-lymphocytes and resultant release of

inflammatory cytokines , l eading to pers is tent fever ,

hepatosplenomegaly, cytopenias, and coagulopathy (23). Whilst

identification of hemophagocytes in bone marrow or

cerebrospinal fluid specimens may aid diagnosis, absence does

not exclude HLH (134). HLH may be classified by as primary

(driven by monogenic IEI) or secondary (driven by environmental

or acquired triggers, such as malignancy, infection, or inflammatory

disease) (23). In the setting of rheumatological disease, typically

systemic-onset juvenile idiopathic arthritis, HLH may be termed

‘macrophage activation syndrome.’ HLH is diagnosed using criteria

defined by the Histocyte Society, including fever, splenomegaly,

bicytopenia, hypertriglyceridemia and/or hypofibrinogenemia,

hemophagocytes, low/absent NK-cell activity, hyperserotonemia

and high soluble-IL-2-receptor levels; at least five criteria must be

met in order to diagnose HLH (135). The treatment strategy set out

by the HLH-2004 trial includes combination chemotherapy with

etoposide, dexamethasone, ciclosporin A ± intrathecal

methotrexate and corticosteroids (135, 136). In recent years, other

therapeutic strategies have emerged, primarily as second-line or

salvage therapy, including lymphodepletion with alemtuzumab

(137, 138), blockade of inflammatory cytokines such as IL-1

(anakinra), IL-6 (tocilizumab), and IFN-g (emapalumab) (43),

and JAK-inhibition (ruxolitinib) (42, 139). Identification of

whether HLH is primary or secondary is important, as patients

with primary HLH should progress to allogeneic HSCT; this may

rely on molecular or genetic studies as some infectious triggers, such

as EBV, may cause either primary or secondary HLH.

Primary HLH may be subdivided into a collection of diseases

impacting lymphocyte cytotoxicity, including the five ‘familial’

HLH (FHLH) syndromes where HLH is the primary disease

manifestation, and those where impaired control of infection or

dysregulated inflammasome activation leading to immune

hyperactivation are seen in addition to other clinical

manifestations. FHLH results from defective trafficking of vesicles

containing cytotoxic molecules such as perforin and granzymes to a

target cell, preventing its destruction and prolonging immune

activation (140). Whilst the genetic aetiology of FHLH1 is

unknown, the other syndromes relate to defects in vesicle content

(FHLH2, PRF1), priming (FHLH3,UNC132), or docking and fusion

to the target cell membrane (FHLH4, STX11 and FHLH5, STXBP2)

(22, 140). The largest cohort published to date, from the HLH-2004

study, demonstrated 5-year overall survival of 71% in children with

FHLH (141).

Aside from these familial syndromes, other IEI affecting

lymphocyte granule-mediated cytotoxicity include pigmentary

disorders such as Chediak-Higashi syndrome caused by

mutations in LYST, Griscelli syndrome type 2, caused by RAB27A

mutations, and less frequently in Hermansky-Pudlak syndrome

type 2, caused by AP3B1 mutations (142–144). Unfortunately,

HSCT does not arrest the neurodevelopmental sequelae seen in
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Chediak-Higashi syndrome (145). Susceptibility to EBV-driven

HLH may be seen in mutations of SH2D1A, causing X-linked

lymphoproliferative syndrome (XLP) 1 and manifesting in

hypogammaglobulinemia, and development of EBV-driven

lymphoma, as well as other IEIs rendering patients unable to

handle this virus effectively, such as deficiencies of CD27, CTPS1,

ITK, and CD70 (146, 147). A multi-center study reporting the

outcome of HSCT for XLP1 recommended that transplantation is

undertaken in all patients who develop HLH, as the outcome

without HSCT is poor (overall survival 18.8%) although HLH

manifestations associated with higher mortality during HSCT

(51). Autologous T-lymphocyte gene therapy is under

investigation, with evidence of correction of the T-lymphocyte

defect in vitro (52). NK cell deficiency, such as that seen in

MCM4 defects, also predisposes to primary HLH due to inability

to clear virus-infected cells (148, 149). Other genetic aetiologies of

primary HLH include genes regulating inflammasome activity, such

as XIAP and NLRC4. XIAP-deficient males may develop HLH

following EBV infection in addition to splenomegaly and

inflammatory bowel disease (150, 151). Whilst termed XLP2,

unlike XLP1 there does not appear to be an increased risk of

EBV-driven lymphoma, and HLH episodes may occur more

frequently (152). The incidence of HLH in XIAP deficiency is

approximately 60%, whilst half have splenomegaly and a quarter

develop Crohn’s disease-like colitis. Allogeneic HSCT remains the

only curative treatment for XIAP deficiency; whilst the odds of

survival have improved drastically between patients transplanted

before and after 2015 (41% versus 89%), outcomes are poorer

following myeloablative conditioning and in patients with active

HLH at HSCT. It is not fully understood whether patients with

milder disease should be offered HSCT as the outcomes for patients

managed conservatively vary (153). For XIAP patients with

significant bowel inflammation, HSCT appears to resolve

inflammatory bowel disease (154). Future targeted therapy to aid

remission of autoinflammation in XIAP and NLCR4-related

disease, which is driven by high IL-18 levels, may come in the

form of tadekinig alfa, which mimics endogenous neutralizing IL-18

binding protein; whilst its use in XIAP deficiency has been reported

in a single patient, further evidence on efficacy may come from a

randomized trial (NCT03113760), which has completed

recruitment and is ending soon (44, 155).

Whilst the genetic landscape of primary HLH has grown with

increasing understanding of interactions leading to cell-mediated

cytotoxicity, a high index of clinical suspicion is needed to identify

possible HLH and institute appropriate initial management. Use of

specialist investigations such as NK degranulation and perforin

expression may shorten the time taken to differentiate primary from

secondary HLH and allow earlier definitive therapy (156).

PIRDs associated with VEOIBD

Children diagnosed with inflammatory bowel disease before the

age of 6 years form a subset of patients that is enriched for

underlying IEI (157). This group of patients may also be prone to

failure of conventional immunomodulation, and for patients with
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underlying IEI the balance between immunosuppression to achieve

symptom control versus infection risk may pose a challenge.

Identified monogenic defects associated with VEOIBD include

chronic granulomatous disease, IPEX syndrome, XIAP deficiency,

Wiskott-Aldrich syndrome, and defects of IL-10 signaling. In 2009,

mutations in IL10RA and IL10RB encoding the two subunits of the

IL-10 receptor, were identified in four patients with VEOIBD;

subsequent to this, loss-of-function mutations in IL-10 were also

identified in association with intestinal inflammation (60, 158). This

is consistent with previous findings showing IL-10 to be a key

suppressor of T lymphocyte activation and effector function,

particularly in the gastrointestinal tract (159). IL-10 defect-

associated VEOIBD appears to be fully penetrant and presents

with perianal disease alongside additional features such as

folliculitis and arthritis. Whilst reported cases are few, allogeneic

HSCT appears to be curative (60, 160, 161). Identification of a

genetic mutation associated with VEOIBD is important, as not all

monogenic causes relate to the hematopoietic system and thus

allogeneic HSCT may not resolve VEOIBD caused by epithelial

defects or tricho-hepatico-enteric syndromes (162, 163).

Loss of function mutations in RIPK1, encoding a serine/

threonine-protein kinase involved in cell death regulation, also

cause VEOIBD in tandem with combined immunodeficiency and

arthritis, which may be rescued by allogeneic HSCT (164).
Activated phosphoinositide-3
kinase d syndrome

Activated phosphoinositide 3-kinase-d syndrome (APDS)

results from either gain-of-function mutations in PIK3CD

encoding the catalytic subunit p110d (APDS1), or by loss-of-

function variants in PIK3R1 encoding the regulatory subunits

p85a, p55a, or p50a (APDS2) (165). APDS was first identified in

2013 in seven kindreds with recurrent respiratory infection

progressing to bronchiectasis, and lymphopenia (166). The result

of these dominant mutations is disruption of the tight balance in

phosphoinositide 3-kinase (PI3K) activity, with hyperactivation of

this pathway impacting T and B lymphocyte homeostasis (165).

Patients with APDS manifest a heterogeneous immunophenotype,

including reduced naïve and increased senescent CD8+ T-

lymphocyte populations; reduced class-switched memory B-

lymphocyte cells with increased transitional B-lymphocytes; and

dysgammaglobulinemia, typically with elevated serum IgM with

self-reactive antibody production but reduced IgA and IgG (167).

Though not classified as a PIRD in the latest IUIS classification, this

IEI shares many features with other PIRDs, as highlighted by the

recent publication of an ESID registry study analyzing 170 patients

(168). In addition to recurrent sinopulmonary infections, around

25% of patients have chronic EBV infection with high rates of

lymphoproliferation (86%) and lymphoma (14%). AIC may occur,

but less frequently than in CTLA-4 haploinsufficiency or STAT3-

GOF, as with enteropathy and skin manifestations. Patients

frequently develop bronchiectasis in childhood, and earlier onset

of symptoms predicts worsening disease severity. Rare, but

described manifestations include arthritis, pancreatic islet b-cell
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destruction causing diabetes, and neuroinflammation, which are all

more common in other dominantly inherited PIRDs such as CTLA-

4 haploinsufficiency. Phenotypically, APDS1 and APDS2 differ by

the former being relatively enriched for AIC and skin disease, whilst

the latter typically includes syndromic features such as short stature

(167–169). Strategies to reduce infection frequency are

antimicrobial prophylaxis and immunoglobulin replacement.

Immune dysregulation may be treated with steroids, B-

lymphocyte depleting agents, or mTOR inhibitors. mTOR

inhibition is attractive given the high response rate of

lymphoproliferation, enteropathy, and AIC, possibly explained by

the hyperactivation of mTOR signaling downstream of Akt, which

is enhanced by increased PI3K activity (168, 170). A retrospective

study of 57 patients who underwent HSCT for APDS demonstrates

the challenges in treating this disease with transplantation. Whilst

2-year overall survival probability was good (86%), there was a high

rate of graft failure necessitating further cellular infusions, which

rose from 10% at 1 year post-HSCT to 17% at 2 and 3 years after

transplant (61). Strikingly, the incidence of graft failure was even

higher in patients who received post-HSCTmTOR inhibitors, at 15-

42% (1-3 years post-HSCT) compared to 9% in patients who did

not receive mTOR inhibition, possibly due to giving remnant

recipient lymphocytes a survival advantage over the reconstituting

recipient cells (61). Targeted inhibition of PI3K with leniolisib is

now possible, following first approval for treatment of APDS in

adults and children aged 12 years and above in in the USA in 2023;

the randomized controlled trial leading to its approval

demonstrated high efficacy in reduction of lymphoproliferation

and normalization of the APDS immunophenotype (49, 171).

Further data, including exploration of leniolisib as a ‘bridge’ to

HSCT, are warranted.
PIRDs associated with autoinflammation

Systemic lupus erythematosus (SLE) has a strong heritable

component indicated by the association of its phenotype with

variants in multiple candidate genes in genome-wide association

studies (172). In addition to population-level variation, several

genes have been identified to correlate strongly with development

of SLE in specific pedigrees despite low allele frequency in the

general population, suggestive of a monogenic aetiology of SLE in

this small subgroup. Consistent with the finding that DNA may act

as an autoantigen in SLE, abnormal clearance of circulating DNA

may cause tissue damage by provoking formation of autoantibodies.

The primary enzyme mediating clearance of chromatin is DNase1.

Low serum DNase1 activity is associated with development of

autoimmune hepatitis, and higher SLE disease activity (173, 174).

Monoallelic null mutations ofDNASE1 were found in two unrelated

patients with SLE (175). Homozygous null mutations in

DNASE1L3, preventing the expression of this protein which is

closely related to DNase1, may also cause a fully-penetrant form

of monogenic lupus (176).The role of deficiency of these enzymes in

provoking autoimmunity suggests augmenting the activity of

DNase may help neutralize errant chromatin and interfere with

the pathogenesis of autoimmunity in murine models (177).
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In 2016, heterozygous loss-of-function mutations in TNFAIP3

leading to haploinsufficiency of its encoded protein, A20, were

identified as a monogenic cause of Behçet disease (178).

Haploinsufficiency of A20 (HA20) results in increased NFkb
signaling and subsequent upregulation of pro-inflammatory

cytokines such as IL-1, IL-6, and TNFa; consequently, use of

anakinra and anti-TNFa monoclonal antibodies such as

infliximab are efficacious for controlling disease manifestations

(178, 179). Symptoms of HA20 include Behçet disease-like

features such as orogenital ulceration, arthritis, and uveitis.

However, unlike polygenic Behçet disease, onset is typically in

childhood and patients have recurrent febrile episodes (178, 179).

HSCT has been reported in two patients with HA20, who both

remitted completely (62).

IL-1 is a powerful inducer of fever and inflammation; upon

binding of this cytokine to its receptor, transcription of pro-

inflammatory cytokines is upregulated via MyD88, IRAK-4, and

NFkb (180). This process is regulated by IL-1RA, which competes

with IL-1a and IL-1b for binding with the IL-1 receptor;

recombinant IL-1RA (anakinra) is licensed for several

autoimmune diseases including rheumatoid arthritis. Whilst

impaired IL-1 results in immunodeficiency characterized by

susceptibility to Staphylococcus aureus, Streptococcus pneumoniae,

and Pseudomonas aeruginosa infections (181), deficiency of IL-1Ra

leads to a syndrome of sterile multifocal osteomyelitis, periostitis,

and pustulosis caused by unrestrained IL-1-mediated inflammation

(DIRA) (47). These patients respond rapidly to replacement therapy

with anakinra (47). Similarly, deficiency of IL-36RA, which shares

44% of its homology with IL-1RA, causes increased IL-1-related

signaling and a clinical syndrome of infection-provoked generalized

pustular psoriasis, fever and asthenia, which may progress to death

from overwhelming infection (48, 182). This syndrome, labelled

Deficiency of Interleukin-Thirty-six-receptor Antagonist, DITRA),

does not appear to cause sterile osteoarticular inflammation seen in

DIRA, but is responsive to anakinra (48).
Future directions

The result of improved diagnostics and ability to differentiate

patients with a PIRD phenotype into distinct genetic aetiologies is

that understanding of how our immune system is regulated and

how disruptions of this cause disease has grown, particularly over

the past decade. Understanding these mechanisms has enabled

development of targeted therapies that aim to ‘switch off’ a

deleterious process whilst minimizing off-target effects. Many of

these agents show significant promise in improving disease control

and quality of life in patients with specific PIRDs, although long-

term efficacy, and side effects are unknown. However, the inevitable

conclusion of our ability to differentiate this patient group is that

sample sizes are diluted, and our ability to fully understand the

epidemiology, clinical and immunological phenotype, and

treatment options for a given disease becomes more challenging

and reliant on large, multicenter international efforts. Whilst time-

and resource-consuming, these collaborations are necessary to
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further our understanding of these diseases, particularly for

studies with a longitudinal component, such as assessing

treatment efficacy or natural history. Setup and maintenance of

prospective disease registries, including adaptations of existing

projects such as addition of the IDDA2.1 score to the ESID

registry, or formation of the German multi-organ AutoImmunity

Network, www.g-a-i-n.de), will provide databases to be interrogated

for future studies (27, 183).

Increasing attention has been placed on collection of quality-of-

life data in patients with IEI, with recent publication of studies

exploring the impact of chronic granulomatous disease, Wiskott-

Aldrich syndrome, common variable immunodeficiency, and

patients with SCID who have undergone HSCT (184–187).

Whilst we intuitively understand that recurrent infection,

hospitalization, and end-organ damage might negatively impact

quality-of-life, it is important to explore associated factors,

particularly when considering the impact of starting new

treatments or offering HSCT. Few existing studies can relate to

the diverse manifestations of PIRDs, and abstraction from studies

that focus on a specific manifestation of immune dysregulation,

such as colitis, do not account for the cumulative burden of having

multiple organ system disease. Quality of life data pertaining to

specific PIRDs are scant; one study of Finnish patients with APS1

identified poor general health and worsening fatigue and well-being

with a longer interval from diagnosis to data collection (188). Use of

quality-of-life instruments should form part of collaborative efforts

to characterize clinical aspects of these diseases.

Intrinsic to discussions regarding HSCT in IEI is which patients

should be offered HSCT, and at what stage of their disease course

this treatment should be considered. For several IEI, the decision to

offer HSCT early prior to accumulation of organ damage is justified

by large multicenter studies, for example in SCID and chronic

granulomatous disease (29, 189). However, for diseases with a

variable natural history, or incomplete penetrance, the decision to

offer HSCT exchanges a potential risk of subsequent poor health

over a period of years-decades for a concentrated period of high risk

around HSCT and during the initial period of immune

reconstitution. Whilst the decision to undergo HSCT must come

jointly from clinician and patients and their families, the potential

risks and benefits of this treatment must be informed by good

quality clinical data, requiring use of registries such as those

coordinated by the European Blood and Marrow Transplant,

European Society for Immunodeficiencies, and Stem Cell

Transplantation for Immunodeficiencies in Europe groups.
Conclusion

Conceptually, PIRDs provide a fascinating lens through which

we can observe how alterations in immune regulatory genes lead to

diverse clinical phenotypes. However, for patients, these diseases are

far from fascinating. Their multi-organ manifestations may lead to

delay in reaching a unifying diagnosis, and the chronicity of ill

health, need for long-term treatment, and absence of natural history

data for many, cast uncertainty on patient lives. Collective efforts to
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better understand these diseases and the therapies we may offer

patients must continue.
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