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m6A is the most prevalent internal modification of eukaryotic mRNA, and plays a

crucial role in tumorigenesis and various other biological processes. Lung cancer

is a common primary malignant tumor of the lungs, which involves multiple

factors in its occurrence and progression. Currently, only the demethylases FTO

and ALKBH5 have been identified as associated with m6A modification. These

demethylases play a crucial role in regulating the growth and invasion of lung

cancer cells by removing methyl groups, thereby influencing stability and

translation efficiency of mRNA. Furthermore, they participate in essential

biological signaling pathways, making them potential targets for intervention in

lung cancer treatment. Here we provides an overview of the involvement of m6A

demethylase in lung cancer, as well as their potential application in the diagnosis,

prognosis and treatment of the disease.
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1 Introduction

Lung cancer is a highly prevalent and devastating form of primary lung malignancy,

contributing to a significant portion of cancer-related deaths worldwide. It accounts for

approximately 18% of all cancer fatalities. Unfortunately, the survival rates for lung cancer

remain alarmingly low, with five‐year relative survival rates of 23% (1). Understanding the

diverse histopathological classifications is crucial for comprehending the complexity of this

disease. In terms of histopathologically, lung cancer can be categorized into non-small cell

lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is the most common type,

and it accounts for approximately 85% of all cases, while SCLC represents about 15%.

Within the subtypes of NSCLC, lung adenocarcinoma is the most prevalent histological

variant, making up around 40% of NSCLC cases. Lung squamous cell carcinoma closely

follows, comprising approximately 35% of NSCLC cases (2).

Epigenetic modifications play a crucial role in the initiation and progression of various

tumours. These modifications mainly involve regulation of gene function and expression
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through processes such as DNA methylation, regulation of non-

coding RNA, histone modification, and chromatin remodelling. By

modifying these epigenetic marks, tumor cells can manipulate gene

activity and disrupt normal cellular processes, thereby contributing

to the development and advancement of cancer (3). Among the

various epigenetic modifications, one of the most extensively

studied is N6-adenylate methylation (m6A), which is a common

internal modification in eukaryotic mRNA molecules. It represents

around 60% of all known RNA modifications identified in

mammals (4, 5). m6A takes place when methylation occurs at the

sixth position of adenylate (A) nucleotides within the RNA

molecule (6). The discovery of m6A modification provides new

insights into the intricate regulation of gene expression in cancer

cells. This modification serves as a dynamic and reversible mark

that can impact multiple aspects of mRNA metabolism, such as

splicing, stability, localization, and translation efficiency. Through

m6A modification, tumor cells possess the ability to precisely

regulate the expression of crucial genes that are involved in

pathways essential for cell survival, proliferation, invasion, and

metastasis (7). In addition, there is evidence indicating that

dysregulation of m6A modification machinery and aberrant m6A

patterns are commonly observed in various cancer types, can affect

the occurrence and development of breast cancer, ovarian cancer,

gastric cancer, lung cancer, colon cancer and other cancers (8–12).

These changes can affect the behaviour of tumour cells, leading to

disease advancement and resistance to treatment. Consequently,

some researchers have concentrated their efforts on uncovering the

specific mechanisms involved in m6A modification and its

functional implications in the development of tumors (13, 14).

The occurrence of m6A modification involves the participation

of multiple enzymes, including Writers, Readers and Erasers.

During the transcription of DNA into RNA, the sixth N of

adenosine is methylated and modified by methyltransferases such

as METTL3, METTL14 and WTAP (15–17). These enzyme are

referred to as Writers, specifically methylases. RNA base sites often

require specific enzymes to recognize them after methylation. These

enzymes, known as Readers, primarily include YTH domain

proteins, nuclear heterogeneous riboproteins (hnRNPs) and

eukaryotic initiation factors (eIFs) (18–20). Readers can recognize

the bases where m6A methylation occurs and have the functions

that include participating in mRNA degradation, downstream

translation, and accelerating the rate of mRNA nuclear export.

m6A demethylases are called Erasers, mainly including Fat mass

and obesity-associated protein (FTO) and human AlkB homolog 5

(ALKBH5). FTO, a member of the Alkb protein family, is the first

m6A demethylase that acts on mRNA in an iron-dependent

manner (21). It primarily localizes in the nucleus and exhibits a

punctate pattern in the nucleoplasm, partially co-localizing with

splicing or splicing-related spot factor SART1 (22). Under

physiological conditions, FTO demonstrates the highest affinity

for m6A as a substrate. Changes or dysfunction in FTO

expression may contribute to the occurrence and development of

various tumors, where it can act as either a tumour suppressor gene

or oncogene. FTO has been found to play a critical role in tumor cell

proliferation, metastasis and apoptosis. ALKBH5, another

important m6A demethylase, is capable of demethylating mRNA
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in the nucleus. It possesses an alanine-rich region at the N-terminus

and a unique coiled-coil structure (23). Current studies have

revealed dysregulation of ALKBH5 expression in various cancers,

including lung, breast, and gastric cancer. ALKBH5 can exert both

carcinogenic and tumor-suppressive effects, depending on the

specific cancer type. Its involvement in cancer is closely related to

death, migration, invasion, and metastasis (12, 24, 25).

In general, m6A demethylases catalyze the removal of methylation

at the N6 position of adenylate in mRNA, thereby modulating the

epigenetic information of mRNA. Upregulation of their expression

decreases m6A modification, impacting the stability and translation

efficiency of mRNA. m6A modification has been implicated in the

promotion of lung cancer growth and progression, affecting the

proliferation, invasion, and metastasis of lung cancer cells. Aberrant

m6Amodification may result from abnormal expression of writers and

erasers. When exposed to external factors such as environmental

pollutants, m6A modification abnormalities may occur, influencing

the onset and progression of lung cancer and other cancers.

Additionally, other proteins and signaling pathways involved in m6A

modificationmay also play a role in lung cancer. m6Amodification can

influence the characteristics and maintenance of lung cancer stem cells,

thereby facilitating tumor initiation (26, 27). It can also impact the

transcription and translation processes in lung cancer cells, thereby

regulating key signaling pathways and promoting tumor progression

and metastasis. Moreover, m6A modification can modulate the

expression of genes associated with lung cancer by altering mRNA

stability, thereby affecting crucial processes such as cell cycle control

and apoptosis (10, 28). Notably, lung cancer is a multifaceted disease

influenced by various contributors, including genetic mutations,

epigenetic alterations, and environmental factors. Thus, further

investigations are needed to comprehensively elucidate the precise

mechanisms underlying m6A modification in lung cancer.

Understanding the significance of m6A modification in cancer is

crucial for the advancement of targeted treatment strategies and the

discovery of potential biomarkers. By unraveling the intricate interplay

between m6A writers, erasers, and readers, researchers can gain

insights into the molecular mechanisms driving tumor progression.

Recent studies have highlighted the importance of FTO and ALKBH5,

as erasers involved in m6A RNA demethylation, in the development of

lung cancer. These demethylases have been found to be closely

associated with occurrence and development of the cancer.

Furthermore, we will discuss future directions of research in this

field and explore the potential clinical applications of targeting of

FTO and ALKBH5 in the treatment of lung cancer. The relationship

between erasers and lung cancer is shown in Figures 1, 2.
2 The impact of m6A demethylases on
lung cancer progression

m6A, as the most prevalent mRNA modification, has

methyltransferases like METTL3 being responsible for adding

methyl groups to specific mRNA sites, while m6A demethylases

FTO and ALKBH5 are responsible for removing methyl groups

from m6A. The interaction between methyltransferases and

demethylases helps maintain a balanced level of m6A. When
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FIGURE 1

Relationship between FTO and lung cancer: The m6A methylated RNA can be demethylated by FTO, resulting in the occurrence of cytological behaviors
that contribute to the development of NSCLC. MZF1, Myeloid Zinc Finger Protein 1; USP7, ubiquitin-specific protease-7; E2F1, E2F transcription factor-1;
MYC, v-myc avian myelocytomatosis viral oncogene homolog; A3B, APOBEC3B; PHF1, Human Plant Homeodomain (PHD) finger protein 1. The Red and
orange arrows represent increased m6A demethylase levels or m6A modification levels of RNA; The green and blue arrows represent decreased m6A
demethylase levels or m6A modification levels of RNA.
FIGURE 2

Relationship between ALKBH5 and lung cancer: The m6A methylated RNA undergoes demethylation through the action of ALKBH5, leading to the
occurrence of cytological behaviors that promote the development of NSCLC. FOXM1, Forkhead box M1; TIMP3, TIMP metallopeptidase inhibitor 3;
RMRP, RNA Component of Mitochondrial RNA Processing Endoribonuclease; PTEN, Phosphatase and tensin homolog deleted on chromosome 10;
PRRX1, Paired related homeobox 1; YAP, Yes-associated protein; SOX2, SRY-box transcription factor 2; SMAD7, SMAD family member 7. The Red and
orange arrows represent increased m6A demethylase levels or m6A modification levels of RNA; The green and blue arrows represent decreased
m6A demethylase levels or m6A modification levels of RNA.
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m6A levels are stable, mRNA transcripts with appropriate m6A

levels can undergo proper splicing, transport, translation, or

degradation. Imbalanced m6A regulation can lead to RNA

metabolism defects (29, 30). FTO and ALKBH5 are known to be

upregulated in lung cancer tissues. They have been found to play a

crucial in tumor cell proliferation, apoptosis, invasion, and

migration, and their functions are dependent on the presence of

m6A modifications (31, 32). These demethylases also contribute to

the regulation of tumor progression in lung cancer (33). The

possible mechanisms by which m6A demethylation affects the

development and progression of lung cancer are listed in Table 1.
2.1 The role of demethylase overexpression
in cell proliferation and apoptosis

The research on the relationship between demethylase and lung

cancer, as well as its mechanism is still in the early stages. However,

increasing evidence suggests that m6A demethylases FTO and

ALKBH5 are frequently overexpressed in lung cancer and

significantly associated with the tumor’s prognosis. As research

progresses, the involvement of m6A modification in lung cancer is

gradually being confirmed. Numerous studies have demonstrated

that the demethylation process in lung cancer cells plays a crucial

role in regulating the expression of key genes involved in essential
Frontiers in Immunology 04
cellular processes such as cell proliferation and apoptosis.

Disturbances in DNA methylation patterns can disrupt the

normal regulation of these genes, leading to increased

proliferation of lung cancer cells and decreased apoptosis. These

alterations contribute to progression and aggressiveness of tumors

(46, 47). In lung cancer, abnormal DNA demethylation can occur at

specific genomic regions, resulting in the activation of oncogenes or

the silencing of tumor suppressor genes (48). Through the removal

of the methyl groups from the DNA molecule, demethylation can

lead to the overexpression of genes that promote cell proliferation,

giving cancer cells a growth advantage (10). Moreover, the

suppression of genes responsible for apoptosis can enable cancer

cells to evade programmed cell death, aiding in their survival and

expansion (28).

Li et al. conducted a study that revealed a significant association

between high expression of m6A demethylase FTO and cancer

development. The overexpression of FTO could promote cell

proliferation and colony formation (34, 49, 50). Both mRNA and

protein levels of FTO were observed to be overexpressed in human

NSCLC tissues and cell lines. Conversely, the loss of FTO function

resulted in a reduced proliferation rate of cancer cells.

Mechanistically, FTO can decrease m6A levels through its

demethylase activity, enhance the stability of ubiquitin-specific

protease (USP7) mRNA, and promote the growth of lung cancer

cells (49, 50). Another study demonstrated that FTO can promote

the proliferation and invasion of LUSC by reducing the m6A level in

myeloid zinc finger 1 (zinc finger 1, MZF1) mRNA transcription

and maintaining the mRNA stability (38). Additionally, some

studies have shown that circular RNAs can act as miRNA

sponges, promoting cancer cell proliferation and participating in

the process of NSCLC. For instance, Hsa_circ_0072309 can sponge

miR-607, leading to the upregulation of its target gene FTO and

promoting the occurrence of NSCLC (44). Another m6A

demethylase also ALKBH5 also plays a key role in promoting or

inhibiting cell proliferation and apoptosis. FOXM1 is involved in

important cellular processes such as cell proliferation, cell

differentiation, cell cycle regulation, angiogenesis and metastasis.

It is often upregulated in human malignant tumors, indicating a

poor prognosis (51, 52). Studies have shown that upregulation of

ALKBH5 in cancer cells can enhance the translation efficiency of

FOXM1 mRNA, leading to increased FOXM1 protein expression

and promoting the proliferation and invasion of cancer cells (24).

Similarly, Zhu et al. demonstrated in their studies that ALKBH 5

promotes the proliferation of NSCLC cells and reduces apoptosis in

vitro. Knockdown of ALKBH5 in vivo inhibited tumor growth

primarily by destabilizing TIMP 3 mRNA. ALKBH5 interacts

with the methylation site of TIMP3 in the 3’UTR to facilitate

protein production (10). Additionally, studies have shown that

knockout ALKBH5 can induce G1 phase arrest, inhibit the cancer

cell proliferation, and increase the number of apoptotic cells (43).

ALKBH5 also can indirectly regulating autophagy. For instance,

UBE2C, a ubiquitin-conjugating enzyme, selectively inhibits

autophagy in NSCLC. Destroying UBE2C-mediated autophagy

inhibition weakens the proliferation and clonogenicity of NSCLC.

ALKBH5 stabilizes UBE2C transcription by reducing the m6A

methylation level in its mRNA (28). Indeed, m6A demethylation
TABLE 1 Biological function of M6A demethylase in lung cancer.

Function
m6A
demethylases

Targeted
genes

Ref.

Involved in regulating
the proliferation and
invasion of lung
cancer cells.

FTO, ALKBH5 USP7, E2F1 (34–36)

Regulate angiogenesis in
the lungs.

ALKBH5 PVT1 (37)

Regulate transcriptional
and post-transcriptional
modification levels in
lung cancer cells.

FTO, ALKBH5 MZF1 (38, 39)

Affect drug tolerance of
lung cancer cells.

FTO, ALKBH5
ABCC10,
cMyc, WIF1

(40–42)

Regulate the properties
and self-renewal ability
of lung cancer
stem cells.

FTO, ALKBH5 KRT7 (26, 27)

Participate in the
metastasis and invasion
process of lung cancer.

FTO, ALKBH5
UBE2C,
IGF2BP

(27, 28)

Affect the mechanism of
apoptosis and apoptosis
evasion in lung
cancer cells.

FTO, ALKBH5
UBE2C,
TIMP3,
IGF2BP

(10, 28, 43)

Interact with other
signaling pathways to
affect the survival and
proliferation of lung
cancer cells

FTO, ALKBH5
FOXM1,
miR-
607, A3B

(24, 44, 45)
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plays a significant role in lung cancer cell proliferation, providing

important insights into the understanding and treatment of lung

cancer. The biological function and specific mechanism leading to

cancer development and progression of m6A demethylation are not

fully understood, and further research is required for validation.
2.2 m6A demethylases-mediated
regulation of invasion and migration in
lung cancer cells

Demethylation is closely related to the invasion and migration

of lung cancer cells as well. Studies have shown that demethylation

can affect the metastatic ability of lung cancer cells, thus facilitating

the metastasis and invasion of these cells. Demethylation plays a

role in gene expression regulation, particularly in relation to cell

metastasis by transcription factors and signaling molecules. One

example is the activation of cell migration by FTO through mRNA

demethylation. This activation can contribute to the progression of

lung cancer and affect the prognosis of patients (35). Liu et al.’s

study demonstrated that the higher levels of FTO are associated

with worse prognosis in LUSC patients. FTO acts as an m6AmRNA

demethylase, promoting cell migration and invasion (38). Another

study found that FTO can inhibit the M6A modification of E2F1 in

vivo, leading to increased expression of E2F1. E2F1, in turn,

enhances the survival, migration, and invasion of NSCLC cells by

activating NELL2 transcriptionally. Furthermore, FTO can promote

the formation and metastasis of NSCLC through the FTO/E2F1/

NELL2 axis in vitro (36). As for ALKBH5, some studies have found

that ALKBH5 can promote cell migration and invasion. In lung

cancer patients, the levels of ALKBH5 protein expression have been

observed to be positively associated with tumor size, TNM staging,

and clinical staging. Research by Yu et al. indicated that patients

with higher ALKBH5 gene expression had a poorer prognosis (53).

ALKBH5 upregulates the expression of RMRP through

demethylation, and the upregulation of RMRP promotes the

proliferation and invasion of lung adenocarcinoma cells while

inhibiting cell apoptosis. However, other researchers have

discovered that overexpression of ALKBH5 effectively reverses the

proliferation, colony formation and migration of kras mutant lung

cancer cells that are regulated by LKB1 (47).

The impact of demethylation on the phenotypic transition of cells,

such as the transition from epithelial cells to mesenchymal cells, and its

effect on the invasion and migration of lung cancer cells have yielded

different conclusions, including both promotion and inhibition of lung

cancer cell migration by ALKBH. Experiments conducted by Guo et al.

demonstrated that downregulation of ALKBH5 using miR-381 and

siRNA specifically impedes the EMT of NSCLC cells, thereby

inhibiting their migration and invasive growth (28). Liu et al. also

found that ALKBH 5 is highly expressed in NSCLC-derived CSCs

(cancer stem cells), and downregulation of ALKBH5 significantly

reduces Sox2 expression, leading to increased levels of E-cadherin

protein, inhibition of EMT, and suppression of tumor invasive

development and metastasis (54). However, some researchers have

come to the opposite conclusion. Studies have shown that TGF-b
Frontiers in Immunology 05
induces EMT in NSCLC and regulate cell migration and invasion.

Interestingly, overexpression of ALKBH 5 can inhibit the metastasis of

NSCLC cells stimulated by TGF-b in vivo (45). Jin et al. also believe that
ALKBH5 acts as an inhibitor of NSCLC cell migration and invasion,

ALKBH5 regulates the miR-107/LATS2 axis in a HURP-dependent

manner, thereby reducing the expression and activity of YAP, thereby

inhibiting tumor growth and metastasis (48). The possible explanation

for this phenomenon is that when the gene interacts with a tumor

suppressor gene it promotes cancer cell growth and metastasis while

when it interacts with an oncogene it inhibits cancer cell growth. In

addition, lung cancer is a highly heterogeneous disease, and biological

diversity and subtype differences in lung cancer need to be considered.

The specific reasons for the differences still need to be explored.

Notably, patients with Trp53 gene mutations tend to have a poorer

prognosis when FTO is expressed at high levels, while patients with the

wild-type gene don’t exhibit the same trend (39). This suggests that the

observed phenomenon may be associated with specific genotype

mutations, highlighting the need for further research. Overall,

demethylation is a critical factor in the invasion and migration of

lung cancer cells, playing a role in their metastatic potential. By

influencing gene expression, the phenotypic transition of cells and

other processes, demethylation can promote the acquisition of invasive

and migratory characteristics in lung cancer cells. Further research

focusing on the identification of specific genes and molecular pathways

affected by demethylation in the context of lung cancer metastasis

could offer valuable insights for targeted therapies to address

metastatic disease.
3 Potential applications of m6A
demethylase in the diagnosis,
prognosis assessment and
treatment of lung cancer

3.1 Application of m6A demethylase in the
lung cancer diagnosis

Recent studies have shown that significant application value of

m6A demethylase in diagnosing lung cancer. Specifically, by

comparing the expression levels of m6A demethylase in lung

cancer tissue and normal lung tissue, researchers have observed

significant alterations in its expression, either upregulation or

downregulation, indicating its potential as a diagnostic marker for

lung cancer. These findings have garnered considerable attention in

the field of lung cancer diagnosis. Among the m6A demethylases,

FTO and ALKBH5 may be associated with lung cancer, and their

relationship has been gradually studied. These enzymes have

demonstrated potential in developing risk assessment models that

enhance the accuracy of diagnosing lung adenocarcinoma (LUAD),

a prevalent histological subtype of lung cancer. By incorporating

methylation-related enzymes, such as FTO and ALKBH5, into these

risk assessment models, researchers have achieved improved

prediction accuracy for LUAD diagnosis (55). Moreover,

evaluating the expression levels of m6A demethylases in blood or
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tissue samples from lung cancer patients holds the potential for

early diagnosis, pathological classification, and staging of lung

cancer staging (47). The application of m6A demethylases in lung

cancer diagnosis is an exciting area of research with significant

clinical implications. By incorporating these enzymes into

diagnostic algorithms and utilizing their association with

tumorigenesis, healthcare professionals may enhance the accuracy

and efficiency of lung cancer diagnosis (56). Additionally, the ability

to detect m6A demethylase expression in various sample types,

including blood and tissue, may offer a non-invasive and easily

accessible approach for the early detection and monitoring of lung

cancer (57, 58). Indeed, additional research is required to validate

and enhance the diagnostic potential of m6A demethylases in lung

cancer. Large-scale clinical studies involving diverse patient

populations are necessary to establish robust diagnostic models

and determine the specific thresholds for demethylase expression

levels in different stages and subtypes of lung cancer (59, 60). These

investigations will aid in developing standardized diagnostic

protocols and facilitate the integration of m6A demethylases into

routine clinical practice for accurate lung cancer diagnosis. In

summary, recent studies have demonstrated the potential value of

m6A demethylases in diagnosing lung cancer. The differential

expression of these enzymes in lung cancer tissue and their

potential integration into risk assessment models underscore their

diagnostic potential (61). Moreover, assessing m6A demethylase

expression levels in blood or tissue samples shows promise for early

diagnosis, pathological typing, and lung cancer staging (62). Further

research and validation are needed to fully realize the diagnostic

capabilities of m6A demethylases, leading to improved lung cancer

diagnosis and patient care.
3.2 Application of m6A demethylase in the
lung cancer prognosis assessment

m6A demethylases have shown significant potential in the

prognostic assessment of lung cancer. The expression levels of

these enzymes in lung cancer tissues have been strongly correlated

with patient survival rates and overall prognosis (63). Abnormally

expression of demethylases, either too high or too low, may serve as

indicators of poor clinical outcomes. Studies have indeed reported

that high expression of ALKBH5 and FTO is associated with a

favourable prognosis in lung cancer patients (64). Elevated levels of

these demethylases may indicate better outcomes for patient (65).

Furthermore, the expression levels of m6A demethylases can be used

to develop prognostic models to assess the risk of poor prognosis in

patients. Recent research has focused on the construction of such

models using factors including FTO and other genes. For instance,

Zhang et al. developed a model, and found that a two-gene model

combining FTO and METTL3 was more effective in guiding

prognostic assessment of lung cancer (66). Additionally, researchers

have utilized methylation-related enzymes such as FTO and

ALKBH5 to develop risk assessment models for LUAD patients.

These models divide LUAD patients into high-risk and low-risk

categories based on the constructed models, and correlations have
Frontiers in Immunology 06
been observed with various clinical factors including TNM staging,

lymph node staging, gender, and tumour stage (55). This suggests

that the risk assessment model based on m6A demethylases can

provide valuable insights into the prognosis and clinical

characteristics of LUAD patients. These findings highlight the

potential of m6A demethylases as prognostic markers in lung

cancer. Incorporating m6A demethylase expression levels into

prognostic models or risk assessment models can improve the

accuracy of prognostic evaluation and assist in clinical decision-

making. By considering the expression levels of these demethylases

along with other relevant clinical factors, healthcare professionals can

better predict patient outcomes and tailor treatment strategies

accordingly. It is important to note that further research and

validation are necessary to establish standardized prognostic

models incorporating m6A demethylases in lung cancer (67, 68).

Large-scale studies involving diverse patient populations must be

conducted to confirm the associations between demethylase

expression, prognostic risk, and clinical characteristics (69). These

efforts will contribute to developing reliable prognostic tools that can

guide patient management and improve prognostic assessments in

lung cancer. m6A demethylase, along with other m6A regulatory

factors, collaborates to regulate methylation in the body. Relying

solely on ALKBH5 and FTO is not reliable for diagnosing and

predicting prognosis in lung cancer patients. Therefore, it is more

meaningful to collectively detect various regulatory factors than

focusing on individual ones, as it can better reflect the actual

conditions of lung cancer patients (70, 71). In clinical practice,

monitoring the expression level of m6A demethylase in lung cancer

patients is expected to offer personalized treatment recommendations

and an accurate assessment of efficacy and prognosis. Numerous

studies have indicated that m6A demethylase has the potential as a

diagnostic and prognostic marker for lung cancer.
3.3 Application of m6A demethylation
drugs in lung cancer treatment

Lung cancer, particularly NSCLC, continues to be the primary

cause of cancer-associated mortality globally, constituting 85% of

newly diagnosed cases (72). With the in-depth study of m6A

demethylase mechanism in lung cancer, the potential application of

m6A demethylation drugs in treating lung cancer is becoming

increasingly evident. Significant progress has been made in the

laboratory and clinical trials small molecule inhibitors and

activators targeting demethylases such as FTO and ALKBH5 have

made certain research progress. At present, the most commonly used

m6A demethylase drugs are mainly focused on m6A demethylase

inhibitors, which can regulate the activity of m6A demethylase by

binding to its active site. FTO inhibitors included FB23 and FB23-2,

rhein, Meclofenamic acid, fluorescein, R-2-hydroxyglutarate (R-

2HG), et al. (73–77). In recent years, 44/ZLD115, Xanthine

derivatives and other FTO inhibitors have been developed. Among

them, 44/ZLD115 shows good anti-leukemia activity in xenograft

mice and is a very promising FTO inhibitor (78, 79). With the

continuous progress of scientific research, the development of
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ALKBH inhibitors is also ongoing. For example,2- [(1-hydroxy-2-

oxo-2-phenylethyl) sulfanyl] acetic acid (3) and 4-[(furan-2-yl)

methyl] amino-1,2-diazinane-3,6-dione (6). These two novel

ALKBH5 inhibitors could selectively inhibit the growth of leukemia

cell lines (80). These drugs have shown promise in affecting tumor

cell growth, invasion and metastasis by regulating the activity of m6A

demethylase. However, the current development of m6A demethylase

inhibitors is mainly focused on various types of leukemia, breast

cancer, bowel cancer and other cancers, but they have shown

promising characteristics, while m6A demethylase inhibitors for

lung cancer still need to be developed by researchers.

A research team reported that the synthesis of an FTO inhibitor,

which demonstrated its ability to inhibit cancer progression via the

inhibition of cell invasion, migration, and EMT (epithelial-

mesenchymal transition). Additionally, the inhibitor showed

potential in inhibiting angiogenesis, a critical process for tumor

growth and metastasis (27). Therapeutic resistance to multiple

small molecules, including chemotherapeutics and targeted

agents, is a significant factor contributing to poor prognosis in

NSCLC (71, 81). Gefitinib, an essential drugs for treating lung

cancer, has been found to be associated with demethylase-related

resistance in NSCLC. Specifically, studies have reported that there is

an association between the methylation level of WIF1 in cfDNA

(Cell-free DNA) and the insensitivity of gefitinib in the treatment of

lung cancer. In patients with more advanced disease, the DNA

methylation levels of the WIF1 promoter are significantly elevated

(41). Co-administration of GE (gefitinib) with MA (meclofenamic

acid) has been demonstrated to enhance the sensitivity of drug-

resistant NSCLC cells to treatment (42). This effect is attributed to

the inhibition of BCRP and MRP7 expression levels through the

FTO/m6A/MYC axis. These findings suggest that combining drugs

can potentially overcome treatment resistance in NSCLC.

Moreover, exosomes derived from gefitinib-resistant (GR) cells

can play a role in intercellular transmission of gefitinib resistant

through the FTO/YTHDF2/ABCC10 axis. These findings confirm

the Feasibility of targeting FTO-m6A axis to prevent or delay the

acquisition of gefitinib resistance in NSCLC (40).

In the future, m6A demethylation drugs have the potential to

become a vital component of the comprehensive treatment strategy

for lung cancer. By combining these drugs with traditional treatments

such as surgery, radiotherapy, and chemotherapy, it is expected that

the survival rate and quality of life for lung cancer patients can be

improved. It is important to highlight that the research and

development of drugs targeting m6A demethylation still encounter

certain challenges. Firstly, there is a need to enhance the effectiveness

of these drugs and minimize the occurrence of side effects by further

refining their the selectivity and specificity (82). In addition, owing to

the considerable heterogeneity of lung cancer, variations in the

response of different patients to m6A demethylating drugs may

exist (83). Hence, it is imperative to study biomarkers that can

predict patient response to drugs and prognosis in order to achieve

precision medicine (84). Overall, m6A demethylases hold significant

potential for applications in lung cancer diagnosis, prognosis

assessment, and therapy. Future research should focus on gaining a
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deeper understanding of the mechanism of action of m6A

demethylase, expediting the development of drugs, and providing

more effective and personalized treatment options for lung cancer

patients (85). Additionally, interdisciplinary cooperation and clinical

trials will play an essential role in advancing the application of M6A

demethylase in lung cancer.
4 Environment specific factor for
abnormal m6A modification in
lung cancer

Research has indicated that prolonged exposure to

environments with heavy metals increases the risk of lung cancer

in humans. For instance, exposure to beryllium (Be) and arsenic

(As) compounds, both in vivo and in vitro is strongly associated

with the occurrence and development of lung cancer (86). m6A

demethylase also plays a role in the interaction between heavy

metals and lung cancer. For example, FTO protein is highly

expressed in tumor samples of NSCLC patients and it can

mediate the reduction of m6A modification induced by arsenic in

A3B, resulting in increased expression of A3B (87). Similarly,

ALKBH5 can regulate the m6A methylation level of PTEN

mRNA and reduce the stability of PTEN mRNA and promoting

the cadmium-induced malignant transformation of human

bronchial epithelial cells, as well as enhancing proliferation,

migration and invasion of cancer cells (88). Furthermore,

ALKBH5 may be involved in silica-induced pulmonary fibrosis,

which may be through the miR-320a-3p/FOXM1 axis or by directly

targeting FOXM1 (89). However, there is limited knowledge

regarding how m6A demethylases contribute to the pathogenesis

of lung cancer and their relationship with heavy metal exposure.

Studying and understanding these mechanisms is of great

significance as it can provide new ideas and methods for the

treatment and prevention lung cancer.
5 Discussion

In recent years, m6A demethylase, a novel RNA-modifying

enzyme, has emerged as a prominent molecular mechanisms in

lung cancer research. Studies have demonstrated that m6A

demethylase affects the stability, transcription, and translation of

target genes, subsequently impacting the proliferation, migration,

invasion and other processes of lung cancer cells. It also interacts with

other molecules such as MZF1, USP7, FOXM1, forming a complex

molecular regulatory network. Additionally, m6A demethylase can

regulate certain MicroRNAs, including miR-107, miR-607 (44, 48),

thereby affecting various physiological functions in the body.

Furthermore, researchers have discovered that m6A demethylase

may also have an impact on cancer metastasis. For example, m6A

modification can regulate the malignancy of breast cancer lung

metastasis cells, and overexpression of FTO can significantly inhibit
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the lung colonization of BT-549LMF3 cells (26). All these findings

highlight the close association between m6A demethylase and the

malignant progression of lung cancer. Increasing evidence suggests

that m6A demethylase holds significant potential in the diagnosis,

prognosis evaluation, and treatment of lung cancer. However, the

current research is unable to fully elucidate the complete functionality

of m6A demethylase. m6A methylation can be likened to a double-

edged sword since its overexpression may contribute to certain tumor

types, while the absence of m6A modification may drive the

progression of other tumors. The inconsistent results observed

among researchers can be attributed to various factors. Therefore,

conducting more multicenter, large-scale studies is imperative in

order to delve deeper into this topic and establish a solid foundation

for the effective treatment of human tumors. Advancing the field of

m6A demethylases requires a thorough investigation into their

underlying mechanisms. By unravelling the complex molecular

pathways and regulatory networks involved in the malignant

transformation of lung cancer cells, researchers can lay the

foundation for development of more precise and targeted

treatments (90). Gaining a comprehensive understanding of the

specific role of m6A demethylases within these networks will

provide valuable theoretical insights and offer practical support

for the design and implementation of effective therapeutic

strategies. Additionally, investigating molecular network regulation

models involving m6A demethylases in lung cancer holds

great potential. By unraveling the intricate interactions between

m6A demethylases and other critical genes implicated in the

progression of lung cancer, researchers can identify novel targets

and pathways that can be targeted for therapeutic purposes (91, 92).

This approach has the potential to revolutionize the treatment

landscape by enabling the development of innovative combination

therapies or the identification of specific molecular signatures that

can guide personalized treatment approaches for individuals with

lung cancer.

Although it will be some time before m6A demethylase can be

applied to clinical practice, the current study has shown its

translational value. This requires large-scale clinical samples and

cell model studies to obtain sufficient data support. In addition,

accurate and meticulous analysis of the large amount of RNA

modification data is also a difficult point that needs to be broken

through. The development of targeted drugs for different stages of

lung cancer may be challenging and promising.
6 Conclusion

Overall, m6A modification is one of the most common RNA

modifications. It not only plays an important role in various cell

biological processes, but also participates in the occurrence and

development of cancers, such as lung cancer, acute myeloid

leukemia and breast cancer, etc. Therefore, m6A-modified related

molecules are considered as potential tumor diagnostic markers and
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therapeutic targets. Conducting in-depth research on the

mechanisms of m6A demethylase function and its intricate

network interactions in lung cancer will greatly enhance our

understanding of the disease and o provide opportunities for

targeted treatments. Through rigorous scientific inquiry,

researchers can establish the groundwork for the development of

more effective therapies to fight against lung cancer and well-being

of patients affected by this condition.
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