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prognosis, immunotherapy
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Background: Coagulation is critically involved in the tumor microenvironment,

cancer progression, and prognosis assessment. Nevertheless, the roles of

coagulation-related long noncoding RNAs (CRLs) in colorectal cancer (CRC)

remain unclear. In this study, an integrated computational framework was

constructed to develop a novel coagulation-related lncRNA signature

(CRLncSig) to stratify the prognosis of CRC patients, predict response to

immunotherapy and chemotherapy in CRC, and explore the potential

molecular mechanism.

Methods: CRC samples from The Cancer Genome Atlas (TCGA) were used as the

training set, while the substantial bulk or single-cell RNA transcriptomics from

Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR (RT-

qPCR) data fromCRC cell lines and paired frozen tissues were used for validation.

We performed unsupervised consensus clustering of CRLs to classify patients

into distinct molecular subtypes. We then used stepwise regression to establish

the CRLncSig risk model, which stratified patients into high- and low-risk groups.

Subsequently, diversified bioinformatics algorithms were used to explore

prognosis, biological pathway alteration, immune microenvironment,

immunotherapy response, and drug sensitivity across patient subgroups. In

addition, weighted gene coexpression network analysis was used to construct

an lncRNA–miRNA–mRNA competitive endogenous network. Expression levels

of CRLncSig, immune checkpoints, and immunosuppressors were determined

using RT-qPCR.
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Results: We identified two coagulation subclusters and constructed a risk score

model using CRLncSig in CRC, where the patients in cluster 2 and the low-risk

group had a better prognosis. The cluster and CRLncSig were confirmed as the

independent risk factors, and a CRLncSig-based nomogram exhibited a robust

prognostic performance. Notably, the cluster and CRLncSig were identified as

the indicators of immune cell infiltration, immunoreactivity phenotype, and

immunotherapy efficiency. In addition, we identified a new endogenous

network of competing CRLs with microRNA/mRNA, which will provide a

foundation for future mechanistic studies of CRLs in the malignant progression

of CRC. Moreover, CRLncSig strongly correlated with drug susceptibility.

Conclusion:We developed a reliable CRLncSig to predict the prognosis, immune

landscape, immunotherapy response, and drug sensitivity in patients with CRC,

which might facilitate optimizing risk stratification, guiding the applications of

immunotherapy, and individualized treatments for CRC.
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Introduction

According to the global cancer report released by the

International Agency for Research on Cancer of the World

Health Organization, colorectal cancer (CRC) has become the

third most common and second most lethal cancer in the world,

with more than 1.9 million new cases and approximately 900,000

deaths every year (1). With the development of gene profiles,

targeted therapy, and immunotherapy, the treatment of advanced

CRC has achieved great progress, but the 5-year survival rate of

those patients is still less than 15%. Research of molecular

mechanisms has confirmed that CRC is not a single type of

disease but a group of diseases with highly heterogeneous and

complex biological characteristics (2). Differentiating the different

subtypes of CRC helps to understand the biological behavior of

CRC at the molecular level and provides individualized treatment to

patients. Currently, the common staging strategies for CRC are

mainly the tumor size, node, and metastasis (TNM) staging system

following the American Joint Committee on Cancer (3) standard

and the consensus molecular subtype (CMS) system based on gene

expression (4). However, there is still a wide variance in the clinical

outcome of patients belonging to the same subtype. Immune-

checkpoint therapy has revolutionized cancer therapy and become

one of the most important anticancer immunotherapy methods.

Immune-checkpoint inhibitors (ICIs) can reactivate disabled T cells

and block the process of tumor immune escape to inhibit the

malignant progression. However, the current benefit of ICIs therapy

in CRC is limited to patients with high microsatellite instability,

which prevents 85% of CRC patients from benefiting from

immunotherapy (5–7). In recent years, with the deepening of the

concept of precision medicine, the detection of related biomarkers is

an effective supplement for CRC screening and plays an important
02
role in the judgment of individualized prognosis, precision

medicine, and efficacy prediction.

There is a certain connection between the occurrence of tumors

and the formation of thrombosis. The disorder of the coagulation

system often leads to the occurrence of malignant tumors, so patients

with malignant tumors are prone to venous thromboembolism (VTE)

(8). However, not only can cancer cause VTE, but it may also lead to

systemic coagulopathy, thereby leading to disseminated intravascular

coagulation or thrombotic microangiopathy (9, 10). Specific

expression promoted by tumor cell–associated clots is a unique

feature of malignant tumors. The prognostic role of coagulation-

related molecules in various cancers has been reported. The models

constructed from coagulation-related molecules have good prognostic

value in invasive ductal carcinoma and colon cancer (11, 12). A novel

platelet-related gene signature has also been developed to predict the

prognosis of patients with triple-negative breast cancer (13). In studies

related to skin cutaneous melanoma, coagulation molecules could

predict patients’ prognosis and tumormicroenvironment (TME) (14).

It has been shown that the coagulation cascade plays an important

role in the TME of hepatocellular carcinoma (HCC). There is a clear

correlation between coagulation and TME in HCC, and the

coagulation-related risk score can be used as a reliable prognostic

biomarker to provide therapeutic benefits for chemotherapy and

immunotherapy and help in clinical decision-making for HCC

patients (15). In addition, in gastric cancer, the expression level of

procoagulant genes is increased, resulting in increased angiogenesis,

epithelial–mesenchymal transition (EMT), and TGF-b signaling, thus

resulting in a poor prognosis (16). Collectively, the disorder of the

coagulation system plays a very important role in the occurrence and

development of tumors, and coagulation-related molecules are highly

likely to become biomarkers for the prediction of prognosis and

treatment in patients with CRC.
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Long noncoding RNAs (lncRNAs) are noncoding products with

a length of more than 200 nucleotides (17, 18). There is increasing

evidence that lncRNAs play roles of oncogenes or antioncogenes in

the regulation of tumorigenesis and development (19). However,

there are few studies on coagulation-related lncRNAs (CRLs) in

cancer. Coagulation Factor XI Antisense RNA 1 (F11-AS1) is an

lncRNA that has been detected in ovarian cancer and pancreatic

cancer (20, 21). It has been found that F11-AS1 is downregulated in

liver hepatocellular carcinoma (LIHC) tissues and cells and can

inhibit the proliferation and migration of LIHC cells. F11-AS1

regulates the expression of PTEN through competitive binding

with miR-3146, thereby inhibiting the progression of LIHC

(22). Another CRL, ncRuPAR (non-protein coding RNA,

upstream of coagulation factor II thrombin receptor [F2R]/

protease-activated receptor-1 [PAR-1]), can inhibit tumor cell

proliferation and promote apoptosis of human gastric cancer cells

by inhibiting PAR-1, PI3K/Akt signaling, and cyclin D1, and its

downregulation can promote angiogenesis, invasion, metastasis,

and progression (23, 24). However, it is not clear whether CRLs

have a regulatory effect on the occurrence and development of CRC.

Considering the important role of the coagulation system and

lncRNAs in the development of cancer, we assume that CRLs

may become a clinically valuable biomarker for CRC.

In this study, we screened the lncRNAs related to the coagulation

pathway and successfully established the cluster of CRLs as well as the

coagulation-related lncRNA signature (CRLncSig) in CRC. We

comprehensively studied the prognostic value, potential

mechanism, immune microenvironment, immunotherapy response

rate, and drug sensitivity of the cluster and signature constructed

using CRLs in CRC and constructed a competing endogenous RNA

(ceRNA) network based on CRLs. Our findings suggest that CRLs

can be used as novel biomarkers to predict the mortality risk and can

elucidate signaling pathways and mechanisms involved in CRC

progression. In addition, CRLs can predict the response to

immunotherapy and drug sensitivity of CRC patients, which is

conducive to the personalized treatment of CRC patients.
Materials and methods

Data sources for research

The gene expression profiles and clinical data of 619 CRC

tissues and 50 adjacent normal tissues were downloaded from The

Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga). CMSs

for the patients in the cohort were downloaded from Colorectal

Cancer Subtyping Consortium Synapse (4). We used the annotation

file downloaded from GENCODE (https://www.gencodegenes.org)

to acquire the gene list of lncRNA. Furthermore, we used the

software R to merge the gene list of the lncRNA and the gene

expression profiles to obtain the expression of lncRNAs in CRC

patients. RNA-sequencing and clinical data for the external

validation cohorts GSE147602 (25) and GSE198103 (26), an

immunotherapy cohort (GSE181815) (27), and a single-cell RNA-

sequencing (scRNA-seq) cohort (GSE136394) (28) were

downloaded from the Gene Expression Omnibus (GEO) database
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(https://www.ncbi.nlm.nih.gov/geo/). The mutation data for

TCGA-CRC patients were acquired from TCGA database and

analyzed using the package “maftools” (29).
Identification of CRLs

A total of 454 coagulation-related genes (CRGs) were extracted

from the Molecular Signatures Database (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb). We used the Spearman

correlation analysis to screen the CRLs. With a threshold of P-

value< 0.05 and an absolute value of correlation coefficient > 0.3, we

confirmed 2680 CRLs.
Consensus clustering based on CRLs

First, we performed univariate Cox regression analysis in TCGA

cohort to obtain CRLs that were related to the prognosis of CRC

patients (P< 0.05). Then consensus clustering analysis was

performed to identify the distinct coagulation patterns based on

the expression of 97 prognosis-related CRLs. The univariate Cox

regression and consensus clustering analyses were performed using

the R packages “survival” and “ConsensusClusterPlus,” respectively.
Development of a coagulation-related
prognostic model

Among the prognosis-related CRLs (P< 0.01), a stepwise regression

analysis was used for the development of a coagulation-related

prognostic model. Afterward, we obtained 10 CRLs (dynein light

chain roadblock-type 2 antisense RNA 1 (DYNLRB2-AS1), EF-hand

calcium binding domain 13 divergent transcript (EFCAB13-DT),

Ewing sarcoma-associated transcript 1 (EWSAT1), long intergenic

non-protein coding RNA 645 (LINC00645), long intergenic non-

protein coding RNA 901 (LINC00901), long intergenic non-protein

coding RNA 1496 (LINC01496), long intergenic non-protein coding

RNA 1738 (LINC01738), long intergenic non-protein coding RNA

2962 (LINC02962), LDL receptor-related protein 1 antisense RNA

(LRP1-AS), and PATJ divergent transcript (PATJ-DT) to construct a

prognostic model. The risk score of each patient was computed

through multivariate Cox regression analysis. Based on the median

risk scores, we divided the CRC patients into two groups, namely, the

group with a high-risk score and the group with a low-risk score. The

stepwise and multivariate Cox regression analyses were performed

using the R packages “MASS” and “survival,” respectively. The risk

score for each patient was calculated using the following formula:

Risk score =o10
i=1Expression (lncRNAi)� Coefficient(lncRNAi)
Validation of the prognostic value and
construction of a nomogram

To evaluate the prognostic value of the clusters and risk scores

in TCGA cohort, the Kaplan-Meier (K–M) survival curves were
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plotted to compare the overall survival (OS), progression-free

survival (PFS), or disease-specific survival (DSS) between the

clusters and risk groups using the R package “survminer.” To

better demonstrate the reliability of our results, we randomly

divided the samples in TCGA into training and validation sets at

a ratio of 4:6. In addition, to determine the stability of the clusters

and risk scores in predicting OS, we analyzed the correlation

between the clusters and clinical characteristics and plotted K–M

curves of risk scores for different clinical groups.

We constructed a nomogram model to predict the 1-, 3-, 5-, and

7-year OS of TCGA-CRC patients by selecting the risk scores and

certain clinical features from the multivariate Cox regression analysis

(P< 0.05) and tested the predictive ability of this model through

calibration and receiver operating characteristic (ROC) curves. The

nomogram was constructed using the R packages “survival” and

“regplot,” and the calibration and ROC curves were drawn using the

R packages “rms” and “timeROC,” respectively.
Functional enrichment analysis of
differentially expressed genes

We used the R package “limma” to mine differentially expressed

genes (DEGs) in different clusters and risk groups, with filtering

criteria of an adjusted P-value< 0.05 and an absolute value of log2
(fold change (FC) > 0.5. We performed pathway enrichment

analysis of DEGs using the R package “clusterProfiler” (30),

including the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, Gene Ontology (GO) analysis, and

Gene Set Variation Analysis (GSVA). GSVA was performed using

the R package “GSVA” (31).
Immune profile analysis

First, we used the Estimation of STromal and Immune cells in

MAlignant Tumours using Expression data (ESTIMATE) algorithm

to evaluate the immunity scores of different clusters and risk groups,

including estimate, immune, and stromal scores (32). Subsequently,

we downloaded the immune cell infiltration data of TCGA-CRC

patients from the TIMER 2.0 database (Tumor IMmune Estimation

Resource, https://cistrome.shinyapps.io/timer/), including multiple

deconvolution algorithms to assess the extent of immune cell

infiltration of patients, namely, the Estimating the Proportion of

Immune and Cancer cells (EPIC) (33), the Microenvironment Cell

Populations-counter (MCP-counter) (34), the quantification of the

Tumor Immune contexture from human RNA-seq data (quanTIseq)

(35), TIMER (36), and Xcell (37) algorithms. We used the GSVA

algorithm to evaluate the score of six immune-related gene sets

[hematopoietic cell kinase (HCK), lymphocyte-specific protein

tyrosine kinase, immunoglobulin G (IgG), major histocompatibility

complex (MHC) I and II, and signal transducer and activator of

transcription 1 (STAT1)] in different clusters (38) and compared the

expression of different immunomodulatory genes among the clusters

and risk groups. The gene list of immunomodulatory genes was
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downloaded from the TISIDB database (http://cis.hku.hk/TISIDB/

download.php) (39).
Analysis of immunotherapy efficacy

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm can be used to predict a patient’s response to ICI

therapy. The TIDE score is superior to the recognized

immunotherapy biomarkers (tumor mutation burden (TMB),

PDL1 level, and interferon g) for measuring the effect of anti-PD1

and anti-CTLA4 treatment (40). The TIDE score, T-cell exclusion

score, and the infiltration of cancer-associated fibroblast (CAF) were

retrieved from the TIDE portal (http://tide.dfci.harvard.edu) by

entering the normalized transcriptome data of TCGA-CRC

patients. The Cytolytic activity (CYT) score is a novel

immunotherapy biomarker that reflects the antitumor immune

activity of CD8+ cytotoxic T cells and macrophages, which can be

assessed by calculating the geometric mean of the expression of

GZMA and PRF1 (41). The T-cell–inflamed gene expression profile

(GEP) score is a predictive score of the efficacy of ICIs widely used in

preclinical studies. The GEP score was calculated using the 18

characteristic gene sets of IFN-gamma inflammation. Log2 log

conversion was performed on the TPM values of each gene, and

the average of the 18 genes was calculated (42).
Construction of a ceRNA network

To construct an lncRNA–miRNA–mRNA competitive

endogenous network (ceRNA), we used weighted gene

coexpression network analysis (WGCNA) to screen out the CRLs

most correlated with the clusters and risk scores (hub-CRLs) and

the immune-related CRGs (immune-CRGs) (43). Next, the

miRcode database was used to obtain the miRNA family that

bound to hub-CRLs (44). To improve the reliability of the results,

mRNAs bound to miRNAs were obtained from the TargetScan (45),

miRDB (46), and miRTarBase databases (47), and the results of the

three databases were intersected with the immune-CRGs obtained

previously. Finally, the ceRNA network was visualized using the

software Cytoscape (version 3.9.1, U.S. National Institute of General

Medical Sciences).
Drug-sensitivity prediction

To predict the drug sensitivity of TCGA-CRC patients

according to the risk scores, the drug information from three

databases, namely the Genomics of Drug Sensitivity in Cancer

(GDSC) (48), the Cancer Therapeutics Response Portal (CTRP)

(49–51), and the Profiling Relative Inhibition Simultaneously in

Mixtures (PRISM), was included in our research (52, 53). We also

acquired the transcription data of cell lines from DepMap Public

22Q2 (https://depmap.org/portal/download/), and the prediction

was made using the R package “oncoPredict” (54).
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scRNA-seq analysis

We used the scRNA-seq cohort GSE136394, which contained

single-cell sequencing data of tumor-infiltrating lymphocytes from

five CRC patients to perform scRNA-seq analysis. The R packages

“Seurat” (55) and “harmony” (56) were used to read sample data

and remove batch effects between the samples, and then we used the

TSNE method for dimension reduction processing to obtain the

clusters. Finally, we performed cell type annotation through

Cellmarker 2.0 website (http://bio-bigdata.hrbmu.edu.cn/

CellMarker/index.html).
Cell lines and cell culture

For the validation of our previous results, we used two human

CRC cell lines (LOVO cells and HCT116 cells) and a normal human

epithelial cell line (HcoEpic cells), which were purchased from

BNBIO Company (Beijing, China). All cells were cultured in a

constant temperature and humidity cell incubator at 37°C and 5%

CO2. The corresponding medium for the cells was as follows:

LOVO cells [F-12K medium (Gibco, Invitrogen, Paisley, UK)],

HCT116 cells [F12/Dulbecco’s modified Eagle medium (Gibco,

Invitrogen, Paisley, UK)], and HcoEpic cells [F12/Dulbecco’s

modified Eagle medium (Gibco, Invitrogen, Paisley, UK)]. The

medium was supplemented with 10% fetal bovine serum

(Corning, NY, USA) and 2% penicillin–streptomycin (10,000

units/mL penicillin, 10,000 mg/mL streptomycin; Gibco,

Invitrogen, Paisley, UK).
RNA extraction and real-time quantitative
PCR (RT-qPCR) validation

In addition to the three cell types mentioned above, we used

samples from 51 patients with CRC. A total of 51 CRC and matched

adjacent normal (distance to cancer greater than 5 cm) tissue

samples used for RT-qPCR assay were obtained from patients

who had been diagnosed with CRC by pathological examination

of tissue biopsy and undergone operations at the Affiliated Hospital

of Qingdao University. No radiotherapy or chemotherapy was

applied before tissue collection. Informed consent was obtained

from all of the participating patients. This work was approved by

the Research Ethics Committee of The Affiliated Hospital of

Qingdao University and was performed following the 1964

Helsinki Declaration and its later revisions. We used an RNeasy

kit (Beyotime, Shanghai, China, R0027) following the

manufacturer’s instructions to extract RNA from the cells and

tissues. Then, we reverse-transcribed 1 mg of total RNA using

SuperScript II reverse transcriptase (TaKaRa, Japan, RR047).

Quantitative PCR analysis was performed using SYBR Green

Master Mix (TaKaRa, Japan, RR820) with an ABI 7900 HT real-

time PCR system. The primer sequences for RT-qPCR are listed in

Supplementary Table S1.
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Statistical analysis

We used the software IBM SPSS Statistics 25, RStudio 4.2, and

GraphPad Prism 8 for the analysis and visualization of the data.

Differences were analyzed using the two-sided Wilcoxon rank-sum

test for non-normally distributed continuous data and the chi-

square test for categorical data. The correlation between non-

normally distributed variables was analyzed using Spearman

correlation analyses. The difference in survival between different

groups was calculated using the log-rank test, and P-values were

corrected using the Benjamini–Hochberg method in functional

enrichment analysis. A P-value lower than 0.05 was considered

statistically significant.
Results

Consensus clustering identifies two
clusters based on CRLs

The flowchart of the entire research is shown in Figure 1. First,

we used Spearman correlation analysis of 454 CRGs and obtained a

total of 2680 CRLs (P< 0.05, |r| > 0.3). Then, we used univariate Cox

regression analysis and obtained 97 of the 2680 CRLs associated

with prognosis (P< 0.05, Figure 2A). Subsequently, the 97 CRLs

were used for unsupervised cluster analysis. According to the

consensus CDF curve, the optimal cluster number was

determined to be 2 (Figure 2B). After unsupervised clustering, we

identified two clusters within TCGA cohort that showed different

expression patterns of CRLs (Figure 2C). The expression levels of

CRLs varied between the different clusters (Supplementary

Figure 1). Specifically, CRLs with a positive correlation with

CRGs were highly expressed in cluster 2, while CRLs with a

negative correlation were poorly expressed in cluster 2.
Prognostic significance of the clusters
based on CRLs

According to the results of the K–M survival analysis of OS,

PFS, and DSS in TCGA cohort, the patients in cluster 2 had a higher

survival probability than those in cluster 1 (Figures 2D, E;

Supplementary Figure 2). Then, we performed a correlation

analysis between the clusters and clinical characteristics. As

shown in Figure 2F, the clusters significantly correlated with OS,

MSI, venous invasion, clinical stage, TNM stage, and CMS

classification. To explore the prognostic value of the clusters in

TCGA patients, Cox regression analysis was performed. First, the

clusters and clinical characteristics were incorporated into the

univariate Cox regression model, and the P-values of the cluster

for OS and PFS were lower than 0.05 (Figures 2G–H). Subsequently,

the factors with P< 0.05 in the univariate Cox regression analysis

were included in the multivariate Cox regression analysis. As the

clinical stage, lymphatic metastasis, and vascular invasion are not
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FIGURE 1

Flowchart of the entire research.
B C D E

F
G

H I J

A

FIGURE 2

Construction and prognosis analysis of CRL clusters. (A) Univariate Cox regression analysis to obtain CRLs associated with prognosis (P< 0.05).
(B) Consensus CDF curve of unsupervised cluster analysis. (C) Patients were classified into two clusters through unsupervised cluster analysis.
(D–E). (K–M) survival curve of two clusters’ OS (D) and PFS (E) in TCGA cohort. (F) Correlation heat map between the cluster and clinical
characteristics (*P< 0.05, **P< 0.01, and ***P< 0.001). (G–J). Cox regression analysis of the cluster and clinical characteristics. Univariate (G, H) and
multivariate (I, J) regression analyses of TCGA-OS or TCGA-PFS.
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independent of the TNM stage, the TNM stage was included in this

study. As shown in Figures 2I, J, the cluster was a significant

independent prognostic factor for CRC.
Biological pathways and functional
enrichment analysis of the clusters based
on CRLs

To explore the potential mechanism of the coagulation-related

cluster as an independent prognostic factor in CRC, we performed

mutation analysis, GO, and KEGG pathway enrichment analysis.

Because the occurrence of cancer is closely related to gene mutation,

we first performed mutation analysis of clusters 1 and 2 and showed

the top 20 mutant genes with a waterfall plot (Supplementary

Figure 3A). Then, we compared the mutation percentages of 10

common genes closely related to the occurrence of cancer in the two

clusters and found that there was no significant difference in the

mutation percentages of those genes, except BRAF and RNF43

(Supplementary Figure 3B).

To further explore the potential mechanism, we first used the R

package “limma” to mine the DEGs in clusters 1 and 2, and a total

of 1624 genes upregulated in cluster 1 and 377 genes upregulated in

cluster 2 were obtained (Figure 3A). Subsequently, gene name and

log2FC of the DEGs in the clusters were used for enrichment

analysis of GO and KEGG pathways. In the KEGG pathway

analysis, the pathways mainly enriched in cluster 1 included

cytokine–cytokine receptor interaction, microRNAs in cancer,

and the TGF-beta signaling pathway. The pathways mainly

enriched in cluster 2 included inflammatory bowel disease, IL-17

signaling pathway, and Th17 cell differentiation (Figure 3B).
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According to the results of GO analysis, immune-related

pathways, such as positive regulation of antimicrobial humoral

response, response to interleukin-17, and positive regulation of

humoral immune response, were mainly enriched in cluster 2

(Figure 3C). The above results suggest that the better prognosis of

CRC patients in cluster 2 may be due to the anticancer effects of the

immune-related pathways.
Immune profile analysis of the clusters
based on CRLs

Previous pathway enrichment results suggest that the

prognostic value of the clusters may be related to immunity. In

addition, tumor immune microenvironments play a crucial role in

the development and progression of tumors. Therefore, we

performed the immune profile analysis of the clusters. First, we

calculated the estimate, immune, and stromal scores for clusters 1

and 2 using the R package “Estimate.” As shown in Figure 4A, the

scores of cluster 1 were all higher than those of cluster 2.

Subsequently, we downloaded multiple deconvolution algorithms

from the TIMER2.0 database to evaluate immune cell infiltration in

patients with TCGA-CRC. In cluster 1, CAFs, M2 macrophages,

myeloid dendritic cells, and other immunosuppressive cells were

infiltrated to a high degree (Figure 4B). Furthermore, to investigate

the immune system metagene, we examined crucial genes involved

in inflammatory activities and immune molecules. We used the

GSVA algorithm to calculate the scores of several key gene sets and

then compared the scores between clusters 1 and 2. The radar plot

presented in Figure 4C shows that the HCK score of cluster 1 was

significantly higher than that of cluster 2, while the IgG, MHC-I,
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FIGURE 3

Analysis of the underlying biological pathway of CRL clusters. (A) Volcano plot of the differentially expressed genes in clusters 1 and 2 with a
threshold of FDR< 0.05 and absolute log2 (FC) > 1. (B) KEGG enrichment of differentially expressed genes. (C) GO enrichment of differentially
expressed genes.
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MHC-II, and STAT1 scores of cluster 2 were significantly higher

than those of cluster 1. To further explore the association between

the prognostic value of cluster and immunity, we analyzed the

differences in the expression levels of immunostimulatory and

immunosuppressive genes in clusters 1 and 2. We found that the

expression levels of most immunosuppressive genes, such as CD96,

IDO1, IL10, and KDR, increased in cluster 1 (Figure 4D), while the

expression levels of some immune stimulatory genes, such as

HHLA2, TMIGD2, and TNFRSF14, increased in cluster 2

(Figure 4E). These results further indicated that the prognostic

value of clusters was related to immune regulation. The higher

immune score of cluster 1 may be due to the higher level of

immunosuppressive cell infiltration and immunosuppressive gene

expression, which presented an immunosuppressive TME and led

to a worse prognosis for patients.
Construction of a prognostic CRLncSig

To construct a prognostic model of CRLs, the aforementioned

prognostic CRLs (P< 0.01) were used for stepped-regression

dimension reduction analysis, and 10 CRLs (DYNLRB2-AS1,

EFCAB13-DT, EWSAT1, LINC00645, LINC00901, LINC01496,

LINC01738, LINC02962, LRP1-AS, and PATJ-DT) were finally

obtained for the prognostic model construction. The results of the

univariate Cox regression analysis of the 10 CRLs are shown in

Figure 5A. Next, a multivariate Cox regression analysis was
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employed to derive regression coefficients for individual genes

and compute patient risk scores (Figure 5B). Figure 5C displays

the distribution of risk scores among TCGA-CRC patients. The

patients were categorized into high- and low-risk groups based on

the median risk score. Subsequently, a correlation analysis was

performed to determine the relationship between the risk score and

10 CRLs (Figure 5D) and the expression differences of the 10 CRLs

between the high- and low-risk groups (Figure 5E). The results

indicated a high correlation among most of the CRLs. Specifically,

the expression levels of DYNLRB2-AS1, EFCAB13-DT, EWSAT1,

LINC01496, LINC01738, LRP1-AS, and PATJ-DT were significantly

higher in the high-risk group than in the low-risk group, while the

expression levels of LINC00645, LINC00901, and LINC02962 were

higher in the low-risk group than in the high-risk group.
Prognostic significance of the CRLncSig

Next, we examined the prognostic role of the risk scores in

TCGA-CRC cohort. The results of the K–M survival analysis

showed that the patients in the high-risk group had a lower

survival probability than those in the low-risk group in terms of

OS, DSS, and PFS (Figure 6A). In addition, the results of the K-M

survival analysis of the training and validation sets showed that

patients with high risk scores had worse survival than other patients

(Supplementary Figure 4). To verify the stability of the model,

different clinical characteristics were stratified, and K–M survival
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FIGURE 4

Immune profile analysis of CRL clusters in TCGA-CRC cohort. (A) Evaluation of the immune infiltration of clusters 1 and 2 using the ESTIMATE algorithm.
(B) Evaluation of immune cell infiltration in clusters 1 and 2 using multiple deconvolution algorithms. (C) The expression of genes involved in HCK, LCK,
IgG, MHC-I, MHC-II, and STAT1 in different clusters. (D, E). Analysis of immune-inhibitor (D) and immune-stimulator (E) expression in different clusters.
HCK, hematopoietic cell kinase; LCK, lymphocyte-specific protein tyrosine kinase; IgG, immunoglobulin G; MHC, major histocompatibility complex; and
STAT1, signal transducer and activator of transcription 1. *P< 0.05, **P< 0.01, ***P< 0.001, and ns: no significance.
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analysis was performed independently (Supplementary Figures 5,

6). With different clinical characteristics, the patients in the high-

risk group still had a worse survival probability. Subsequently,

univariate and multivariate Cox regression analyses were

performed to verify whether the risk score was an independent

prognostic factor for CRC. The results showed that the p-values of

the risk score were all lower than 0.05 (Figure 6B), indicating that

the risk score constructed based on CRLncSig is an independent

prognostic factor for CRC.
Construction and validation of a
nomogram combining
clinical characteristics

We combined the factors with P< 0.05 in TCGA-OS

multivariate Cox regression analysis to construct a nomogram

model based on the risk score to predict the 1-, 3-, 5-, and 7-year

OS of CRC patients (Figure 7A). We then used the calibration curve

and ROC curve to verify the accuracy of the nomogram model

prediction (Figures 7B, C). The calibration curve coincided well

with the diagonal, and the area under the curve (AUC) values of the

1-, 3-, 5-, and 7-year nomograms were all larger than 0.7, indicating

that the nomogram had a good predictive ability.
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Biological pathways and functional
enrichment analysis of the CRLncSig

We used the R package “maftool” for the mutation analysis of

the high- and low-risk groups (Supplementary Figure 7). There was

no significant difference in the frequency of the key gene mutations

in the process of cancer occurrence between the two groups,

indicating that the difference in prognosis between the two

groups may not be related to gene mutations. Subsequently, we

used the R package “limma” to excavate the DEGs between the

high- and low-risk groups. We found that a total of 2840 genes were

highly expressed in the high-risk group and 790 genes were highly

expressed in the low-risk group (Figure 8A). We used these DEGs

for GO and KEGG pathway enrichment analyses in the high- and

low-risk groups. The results of GO enrichment analysis showed that

the main enrichment pathways in the high-risk group were cell

migration involved in sprouting angiogenesis, ERBB2–ERBB3

signaling pathway, positive regulation of epithelial cell migration,

natural killer cell inhibitory signaling pathway, regulation of

epithelial cell proliferation, and regulation of platelet-derived

growth factor receptor-alpha signaling pathway. In the low-risk

group, the mainly enriched pathways were positive regulation of

chemokine (C−X−C motif) ligand 1 production, antimicrobial

humoral immune response mediated by antimicrobial peptide,
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FIGURE 5

Construction of the CRLncSig. (A) Univariate Cox regression analysis of TCGA-OS of the 10 lncRNAs used to construct the signature. (B) Coefficients
of the 10 lncRNAs in the prognosis signature. (C) Distribution of the risk score (high and low) and status (dead and alive) in TCGA-CRC cohort.
(D) The correlation between the risk score and 10 lncRNAs. (E) Expression profiles of the lncRNAs in the high- and low-risk groups. **P< 0.01
and ***P< 0.001.
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positive regulation of immunoglobulin production in mucosal

tissue, positive regulation of cytokine production involved in

inflammatory response, and natural killer cell differentiation

involved in immune response (Figure 8B). Similarly, the KEGG

enrichment analysis showed the enrichment of cancer immune-
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related pathways. microRNAs in cancer, chemical carcinogenesis-

receptor activation, chemical carcinogenesis-receptor activation,

and JAK−STAT signaling pathway were enriched in the high-risk

group, and inflammatory bowel disease was enriched in the

low-risk group (Figure 8C). From those enrichment results, we
B

A

FIGURE 6

Prognosis analysis of the CRLncSig in TCGA-CRC cohort. (A) K–M survival curve of OS, DSS, and PFS of the high- and low-risk groups. (B) Univariate
and multivariate regression analyses of TCGA-OS, TCGA-PFS, and TCGA-DSS of the risk score and clinical characteristics.
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FIGURE 7

Construction and validation of a nomogram. (A) Prediction of 1-, 3-, 5-, and 7-year overall survival using a nomogram constructed using three
independent prognostic factors. (B) Calibration curves for 1-, 3-, 5-, and 7-year survival. (C) Receiver operating characteristic (ROC) curves showing
the prediction accuracy of the risk score and nomogram. AUC, area under the curve.
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speculated that the differential prognosis of the high- and low-risk

groups may be mediated through cancer immune pathways. To

further verify our conjecture, we performed a GSVA pathway

enrichment analysis. As shown in Figure 8D, many immune-

related pathways were upregulated in the low-risk group, such as

activated T-cell proliferation, activation of the immune response,

antigen processing and presentation, CD4-positive alpha beta T-cell

activation, CD8-positive alpha beta T-cell activation, differentiation

and proliferation, and immune response to tumor cells. The

pathways that were significantly upregulated in the high-risk

group were aggressive behavior, negative regulation of chronic

inflammatory response, and positive regulation of platelet

activation. These results further illustrated that the prognostic

value of our CRL signature in the occurrence and development of

CRC was closely related to cancer immunity.
Immune profile analysis of the CRLncSig

Next, we performed an immune profile analysis of the

CRLncSig. The results of the Estimate showed that the estimate,

immune, and stromal scores of the high-risk group were higher

than those of the low-risk group (Figure 9A). We used several

algorithms, such as EPIC, MCP-counter, quanTIseq, TIMER, and

Xcell, to evaluate the degree of immune cell infiltration in the high-

and low-risk groups. We found that the immune infiltration of

CAFs, M2 macrophages, myeloid dendritic cells, and regulatory T

cells in the high-risk group was higher than that in the low-risk

group (Figures 9B–F). In addition, the expression levels of IgG,
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MHC family, and STAT1 molecules were higher in the low-risk

group than in the high-risk group (Figure 9G). However, most of

the immunosuppressive genes, such as CD96, IDO1, IL10, KDR,

LAG3, TGFB1, and TIGIT, were expressed at higher levels in the

high-risk group than in the low-risk group, whereas most of the

immune stimulatory genes showed no significant differences

between the two groups (Figure 9H). Therefore, we hypothesized

that the patients in the high-risk group had higher immune

infiltration and presented an immunosuppressed TME, leading to

a worse prognosis.
Analysis of immunotherapy response based
on the CRLncSig

From the previous results, we saw a significant correlation between

the risk score and the patient’s immune microenvironment. Next, we

analyzed the expression levels of several key immune checkpoints in

the high- and low-risk groups. As shown in Figure 10A, the expression

levels of CTLA4, PD1, PDL1, and PDL2 in the high-risk group were all

increased, suggesting that the risk score may be related to the patient’s

response to immunotherapy. We used the TIDE algorithm to predict

the sensitivity to immunotherapy for TCGA-CRC patients. The TIDE,

Exclusion, and CAF scores of the low-risk group were all lower than

those of the high-risk group, indicating that the sensitivity of the low-

risk group to immunotherapy was higher than that of the high-risk

group (Figure 10B). We also used the CYT and GEP scores to predict

immunotherapy sensitivity in TCGA-CRC patients. Both the CYT and

GEP scores of the low-risk group were higher than those of the high-
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FIGURE 8

Analysis of the underlying biological pathway of the CRLncSig. (A) Volcano plot of the differentially expressed genes in the high- and low-risk groups
with a threshold of FDR< 0.05 and absolute log2 (FC) > 0.5. (B) GO enrichment of differentially expressed genes. (C) KEGG enrichment of
differentially expressed genes. (D) GSVA enrichment of the high- and low-risk groups. *P< 0.05, **P< 0.01, and ***P< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1279789
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1279789
risk group, which further indicated that the sensitivity of the low-risk

group to immunotherapy was higher than that of the high-risk group

(Figures 10C–D). The TIDE algorithm can also predict whether a

patient will respond to immunotherapy (False/True). As expected,

patients with a False responder had a significantly higher risk score

than those with a True responder (Figure 10E). Likewise, the

proportion of patients with a True responder was significantly higher

in the low-risk group than in the high-risk group (Figure 10F).

Subsequently, we validated the TIDE results using a thymic cancer

cohort receiving immunotherapy. The results showed that

immunotherapy response rates were lower in patients with high-risk

scores and higher in patients with low-risk scores. Then, we used the

risk score to predict the immunotherapy response of patients in

GSE181815. The results showed that the risk score had an excellent

prediction effect (Supplementary Figure 8).

To explore the relationship between the coagulation-related

clusters and immunotherapy sensitivity, we first compared the

expression levels of several key immune checkpoints in clusters 1

and 2 and found that the expression levels of immune checkpoints

in cluster 1 were higher than those in cluster 2 (Figure 10G). In

addition, the TIDE, Exclusion, and CAF scores of cluster 1 were all

higher than those of cluster 2, suggesting that cluster 2 patients were

more sensitive to immunotherapy (Figure 10H). Similarly, in cluster

2, the proportion of patients with a True responder was significantly

higher than that of the high-risk group (Figure 10J), further

indicating that the patients in cluster 2 were more sensitive to
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immunotherapy. The risk score of cluster 1 was significantly higher

than that of cluster 2 (Figure 10I), and the proportion of patients

belonging to cluster 1 in the high-risk group was significantly higher

than the proportion of patients belonging to cluster 2 (Figure 10K).

These data indicated that our cluster and risk score had a certain

correlation. To prove this correlation, we combined the OS, cluster,

and risk score of TCGA-CRC patients to draw a Sankey diagram

(Figure 10L). It was clear that most of the dead patients belonged to

cluster 1 and the high-risk group.
Construction of the ceRNA network based
on CRLs

We used WGCNA to obtain the CRLs that most correlated with

the risk score and cluster, and selected the CRLs in the MEturquoise

module as the candidate lncRNAs (Figure 11A). To further reduce

the number of candidate lncRNAs, we screened the CRLs with the

highest correlation in the module (Figure 11B). The red part is the

final candidate CRLs, abbreviated as hub-CRLs. WGCNA was also

used to obtain the most CRGs associated with the stromal, immune,

and estimate scores. As shown in Figure 11C, we chose CRGs in the

MEblue as candidate genes, abbreviated as immune-CRGs. Next, we

used the miRcode database to obtain the miRNA family binding to

hub-CRLs, and then obtained the mRNA binding to miRNA

through the TargetScan, miRcode, and miRTarBase databases,
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FIGURE 9

Immune profile analysis of the CRLncSig in TCGA-CRC cohort. (A) Evaluation of the immune infiltration of the high- and low-risk groups using the
ESTIMATE algorithm. (B–F). Evaluation of immune cell infiltration in the high- and low-risk groups using multiple deconvolution algorithms: EPIC
(B), MCP-counter (C), quanTIseq (D), TIMER (E), and Xcell (F). (G) The expression of genes involved in IgG, MHC family, and STAT1 in different groups.
(H) Analysis of immune-inhibitor and immune-stimulator expression in different groups. *P< 0.05, **P< 0.01, ***P< 0.001, and ns: no significance.
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and took the intersection with immune-CRGs. Finally, four hub-

CRLs, 25 miRNAs, and 14 immune-CRGs were obtained.

Subsequently, we drew the ceRNA network using Cytoscape

software (Figure 11D). We also analyzed the expression of 14

immune-CRGs in different risk groups and clusters, and the

expression levels of most genes, including THBS1, PLAU, SPARC,

GATA3, ITPR1, PDGFRA, and PRKG1, were different among

different groups (Figure 11E).
Drug-sensitivity prediction in the CRC
patients in the high- and low-risk groups

To better apply our CRLncSig to the clinic, we used the R

package “oncoPredict” to predict drug sensitivity. The half-maximal

inhibitory concentration (IC50) in GDSC and the area under the

dose–response curve (AUC) in CTRP and PRISM negatively

correlated with drug sensitivity. Among 198 compounds in the

GDSC database, 135 compounds showed significant differences in

the IC50 values between the high- and low-risk groups (P< 0.05). As
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shown in Figure 12, the patients in the low-risk group were more

sensitive to common chemotherapy drugs, including 5-fluorouracil,

docetaxel, oxaliplatin, paclitaxel, and vinorelbine. Compounds

targeting the EGFR signaling, ERK/MAPK signaling, and RTK

signaling, such as afatinib, AZD3759, erlotinib, ERK_2440,

selumetinib, and SB505124, were predicted to be more effective in

the high-risk group. However, osimertinib, sapitinib, trametinib,

ulixertinib, VX-11e, AZD4547, cediranib, crizotinib, and savolitinib

were predicted to be more effective in the low-risk group.

In Figure 13A, we selected compounds with a strong correlation

with the risk score from the GDSC database to draw bubble plots to

show both pathway and target information of the compounds. To

screen more drugs suitable for high-risk patients, the intersection of

drugs with more sensitivity in the high-risk group in the CTRP and

PRISM databases was conducted, and a total of 38 compounds were

obtained (Figure 13B). Figures 13C, D showed some of these

compounds, such as afatinib, bosutinib, erlotinib, and sorafenib.

The above results proved that our CRLncSig can well predict drug

sensitivity in patients of TCGA-CRC cohort and is expected to

become a drug guidance strategy for patients with CRC in the future.
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FIGURE 10

Immunotherapy response analysis of the CRLncSig in TCGA-CRC cohort. (A) The expression of key immune checkpoints in the high- and low-risk
groups. (B) Prediction of patient’s response to immunotherapy in different groups, including TIDE, Exclusion, and CAF scores, using the TIDE
algorithm. (C) The CYT score of patients in different groups. (D) The GEP score of patients in different groups. (E) Prediction of the risk score of
patients in different responders using the TIDE algorithm. (F) The distribution of different responders in high- and low-risk groups. (G) The expression
of key immune checkpoints in clusters 1 and 2. (H) The TIDE, Exclusion, and CAF scores in clusters 1 and 2. (I) The difference in risk score between
clusters 1 and 2. (J) The distribution of different responders in clusters 1 and 2. (K) The distribution of clusters in the high- and low-risk groups.
(L) Sankey diagram combining the OS, Cluster, and risk scores. **P< 0.01 and ***P< 0.001.
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Validation of the CRLncSig

We next validated the clinical significance of our CRLncSig.

First, we validated the prognostic value of the risk score in CRC

using the GEO dataset GSE147602. The results showed that in

GSE147602, CRC patients without metastasis had higher risk scores

than those with metastasis, while there were no significant

differences in the risk score between patients of different genders

and ages (Figure 14A). We divided the patients in GSE147602 into

the high- and low-risk groups based on the median and found that

the proportion of patients without metastasis in the low-risk group

was much higher than that with metastasis (Figure 14B). Then, we

used another GEO dataset, GSE198103, to further verify the ability

of this model to predict the prognosis of patients. In GSE198103,

the risk scores of patients with a distant metastasis stage were

significantly higher than those of patients with a localized stage

(Supplementary Figure 9). The ability of the coagulation-related

lncRNA signature to predict the prognosis of CRC patients was

validated with these two cohorts. In addition, we examined the

expression of the 10 lncRNAs used to construct the signature in two

types of human CRC cells (HCT116 and LOVO) and one type of

human normal epithelial cells (HcoEpic) (Figures 14C, D). The

expression levels of DYNLRB2-AS1, EFCAB13-DT, EWSAT1,

LINC00645, LINC00901, LINC01738, LINC02962, and LRP1-AS in
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HCT116 and LOVO cells were significantly downregulated

compared with those in HcoEpic cells. However, the expression

level of LINC01409 in HCT116 cells was not significantly different

from that in HcoEpic cells but was significantly upregulated in

LOVO cells. In contrast, there was no significant difference in the

expression level of PATJ between LOVO and HcoEpic cells, but it

was significantly downregulated in HCT116 cells. We also

confirmed our previous results in 51 CRC patients. As shown in

Figure 14E, DYNLRB2-AS1, EFCAB13-DT, EWSAT1, LINC01409,

LINC01738 , LINC02962 , LRP1-AS , and PATJ-DT were

downregulated in the tumor tissues, while there were no

significant differences in the expression level of LINC00645 and

LINC00901 between normal tissue and tumor tissue. We also

plotted the correlation graph between the risk score and 10

lncRNAs (Figure 14F). In addition, we examined the expression

levels of PD1, PDL1, CTLA4, TGFB1, TIGIT, IDO1, and LAG3 in 51

tumor samples. According to the median, 51 patients were divided

into the high- and low-risk groups. We found that the expression

levels of PD1, PDL1, TGFB1, TIGIT, IDO1, and LAG3 in the

high-risk group were significantly higher than those in the

low-risk group (Figure 14G). The risk score showed a significant

negative correlation with the expression levels of PD1, CTLA4,

TGFB1, and TIGIT (Figure 14H), which further proved our

previous findings.
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FIGURE 11

Construction of the ceRNA network based on CRLs. (A) Selection of the CRLs that correlated with the risk score and clusters using WGCNA.
(B) Screening of key CRLs in MEturquoise using correlation scatter map. (C) Selection of the CRGs that correlated with immunity using WGCNA.
(D) The ceRNA network constructed using Cytoscape (red: CRLs; blue: miRNAs; and purple: CRGs). (E) The expression of 14 CRGs in different risk
groups and clusters. *P< 0.05, **P< 0.01, ***P< 0.001, and ns: no significance.
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FIGURE 12

Drug sensitivity analysis in the high- and low-risk groups, including compounds in the GSDC database, targeting chemotherapy, EGFR signaling, ERK
MAPK signaling, and RTK signaling. *P< 0.05, **P< 0.01, and ***P< 0.001.
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FIGURE 13

Drug sensitivity analysis in the high- and low-risk groups. (A) The correlation between the risk score and compounds in the GDSC database.
(B) Sensitive compounds for the high-risk group shared by the CTRP and PRISM databases. (C) Four compounds sensitive for the high-risk group in
the CTRP database. (D) Four compounds sensitive for the high-risk group in the PRISM database. ***P< 0.001.
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scRNA-seq analysis of the CRLncSig

We used the scRNA-seq cohort GSE136394 to conduct a single-

cell analysis of the CRL signature. After TSNE reduction and cell

annotation, we obtained seven cell clusters, including transitional CD8

+ T cells, cytotoxic CD4+ T cells, NK cells, cycling cells, effector CD4+

T cells, dendritic cells, and mast cells (Figure 15A). A total of five

samples were included in the GSE136394 dataset, among which four

channels were used for single-cell sequencing for the sample

GSM4047944. Figure 15B shows the proportion of different cells in

each sample. Next, we explored the cellular distribution of the 10

lncRNAs used to build the signature. We found that DYNLRB2-AS1

was mainly distributed in transitional CD8+ T cells, cytotoxic CD4+ T

cells, and NK cells. EFCAB13-DT was mainly distributed in cytotoxic

CD4+ T cells and NK cells, and EWSAT1 was mainly distributed in

transitional CD8+ T cells and effector CD4+ T cells. LINC01409 was

distributed in all of the clustered cells, while PATJ-DT was mainly

distributed in transitional CD8+ T cells, NK cells, and effector CD4+ T

cells. However, the content of LINC00645, LINC00901, LINC01738,

LINC02962, and LRP1-AS in these cells was zero (Figure 15C).
Discussion

Tumor cells can activate the coagulation system and induce a

hypercoagulable state in patients with malignant tumors. Previous
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studies have shown that the incidence of VTE is significantly higher

in patients with cancer than in those without cancer (57). It has

been reported that the gastrointestinal tract is one of the sites of

high incidence of blood coagulation disorders (58, 59).

Thromboembolic events are a common cause of death in patients

with CRC, even in those with a good cancer prognosis (60). The

significant relationship between CRC and thrombosis raises the

possibility that the coagulation pathway could be a therapeutic

target. lncRNAs are a kind of highly stable noncoding RNAs, and

they are also a kind of reliable biomarker of cancer. Currently, the

construction of models to predict the prognosis of patients has been

proven to be effective and meaningful in many types of cancer (61,

62). In this study, we identified two CRC subtypes based on CRLs

and constructed a CRC prognostic signature consisting of 10 CRLs.

The CRLncSig was composed of DYNLRB2-AS1, EFCAB13,

EWSAT1, LINC00645, LINC00901, LINC01409, LINC01738,

LINC02962, LRP1-AS, and PATJ-DT, and six of them (DYNLRB2-

AS1, EFCAB13, LINC01409, LINC01738, LRP1-AS, and PATJ-DT)

had not been previously reported for their role in tumors. EWSAT1

has been reported to play a pro-tumor role in a variety of cancers.

EWSAT1 can contribute to the proliferation and invasion of glioma

(63), promote HCCmetastasis (64), and promote the progression of

ovarian cancer (65). Studies on EWSAT1 in CRC have also been

reported. In CRC, the increased expression of EWSAT1 promotes

the proliferation, invasion, and epithelial–mesenchymal transition

of CRC cells (66), and also promotes the progression of CRC by
A B C
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FIGURE 14

Validation of the CRL signature. (A) Risk score distribution in GSE147602 with different clinical features. (B) The distribution of patients with or without
metastasis in the high- and low-risk groups in GSE147602. (C) Comparison of the expression of 10 lncRNAs between HcoEpic cells and HCT116 cells.
(D) Comparison of the expression of 10 lncRNAs between HcoEpic cells and LOVO cells. (E) Comparison of the expression of 10 lncRNAs in normal and
tumor clinical samples. (F) The correlation between the risk score and 10 lncRNAs in tumor samples. (G) The expression of PD1, PDL1, CTLA4, TGFB1,
TIGIT, IDO1, and LAG3 in the tumor samples of the high- and low-risk groups. (H) The correlation between the risk score and the expression of PD1,
PDL1, CTLA4, TGFB1, TIGIT, IDO1, and LAG3 in tumor samples. *P< 0.05, **P< 0.01, and ***P< 0.001, and ns: no significance.
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regulating FBXL20 expression through sponging miR-326 (67). Li

et al. (68) found that LINC00645 promoted TGF-b–induced EMT

in gliomas by regulating the miR-205-3p-ZEB1 axis, thereby

promoting tumor malignant progression. The study also found

that the abnormal expression of LINC00901 could promote the

growth and invasion of pancreatic cancer cells (69). LINC02962,

also known as lnc-CCDST, was found to be significantly

downregulated in cervical cancer tissues and bind to pre-

carcinogenic DHX9 and E3 ubiquitin ligase MDM2, thereby

affecting cervical cancer cell invasion and angiogenesis (70).

There are few studies on CRLs in CRC, which has a very good

prospect. The signature constructed based on the CRLs also showed

excellent clinical value.

Our results indicated that the subtypes and signatures based on

CRLs can well distinguish the prognosis of CRC patients. CRC is a

highly heterogeneous malignant tumor. The current pathological

staging system completely depends on the anatomical degree of the

tumor and cannot fully reflect the biological heterogeneity of CRC

patients, which affects the accuracy of traditional methods to predict

the prognosis of CRC. Herein, we constructed a nomogram model

with age, M stage, and risk score to help determine disease

progression and personalize diagnosis. The constructed

nomogram showed excellent predictive power.

The crosstalk between coagulation and innate immunity is

complicated and has been reported in many studies (71, 72).

Coagulation is a key component of innate immunity because it

prevents the spread of bacteria and can cause inflammation (73).

By performing the pathway enrichment analysis, we showed that

inflammatory bowel disease and immune-related pathways were

enriched in the established signature and clusters. In addition, our

immune profile results showed that cluster 1 and the high-risk group
Frontiers in Immunology 17
were characterized by immunosuppressive microenvironments, in

which multiple algorithms indicated a higher proportion of CAFs.

CAFs are one of the key components of tumor mesenchyme, which

not only provide physical support for epithelial cells but also serve as

key functional regulators in cancer. It has been reported that CAFs

are associated with poor prognosis and chemotherapy resistance in

multiple solid tumors (74, 75). Furthermore, we found that the

expression levels of immunosuppressive factors were significantly

increased in cluster 1 and the high-risk group, which means that our

CRLs in CRC can inhibit the anticancer immune response of patients,

thereby leading to the malignant progression.

Interestingly, our study highlighted the potential role of the

CRLncSig in predicting the response to immunotherapy in CRC.

TIDE, CYT, and GEP scores can predict the response rate of cancer

patients to immunotherapy. A greater TIDE score and lower CYT

and GEP scores are associated with a greater possibility for immune

evasion and exclusion and a lower chance of immunotherapy benefits

(40–42). The patients in the high-risk group had higher TIDE scores

and lower CYT and GEP scores than the patients in the low-risk

group, indicating that the patients in the high-risk group had a lower

response rate to immunotherapy. Meanwhile, the TIDE algorithm

showed a substantial difference between the nonresponders and

responders and predicted a much greater probability of ICI

responders among the low-risk patients, explaining why the high-

risk patients had a poor prognosis. Additionally, the investigation of

drug sensitivity revealed significant differences in the responses to

various chemotherapeutic treatments and molecularly targeted

medications between the high- and low-risk patients. These results

demonstrate that using the risk signature to direct the application of

chemotherapy and targeted therapy may be beneficial. As a result, an

approach optimizing regimens of a combination of immunotherapy,
B

C
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FIGURE 15

scRNA-seq analysis of the CRLncSig. (A) TSNE plot visualization of all cell subtypes from five CRC patients in GSE136394. (B) Bar plots of the cell
proportions in each CRC patient. (C) TSNE plot visualization of the distribution of 10 CRLs.
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chemotherapy, and targeted therapy based on the novel CRL

signature may be effective for the individualized treatment of

patients with CRC.

The ceRNA network is an essential lncRNA-mediated

regulatory molecular mechanism that may be used for the

investigation of biomarkers, therapeutic targets, and molecular

mechanisms (76). In cancer-related studies, most lncRNAs can

participate in tumor progression by targeting microRNAs. It has

been reported that lncRNA-CDC6 can promote breast cancer

progression by sponging microRNA-215 (77). lncRNA-RMRP can

promote the proliferation, migration, and invasion of bladder

cancer through miR-206 (78). Considering the interactions

between lncRNAs and microRNAs, we constructed an lncRNA–

miRNA–mRNA ceRNA network to explore the potential regulatory

mechanisms of CRLs. Through screening, we obtained four key

CRLs, namely, HNF1A-AS1, LINC00265, NBR2, and SNHG11.

Interestingly, HNF1A-AS1 can induce resistance to 5-FU in

gastric cancer cells via the miR-30b-5p/EIF5A2 pathway (79). In

CRC, LINC00265 promotes glycolysis and lactate production by

regulating the miR-216b-5p/TRIM44 axis (80), and NBR2 inhibits

cell migration and invasion by downregulating miRNA-21 (81). In

addition, SNHG11 could enhance bevacizumab resistance in CRC

by mediating the miR-1207-5p/ABCC1 axis (82). In this study, we

identified a new endogenous network of competing CRLs with

microRNA/mRNA, which will provide new ideas for future

mechanistic studies of CRLs in the malignant progression of CRC.

In the validation of the CRLncSig at the cellular level, the

expression levels of most lncRNAs were decreased in CRC cells

(HCT116 and LOVO cells) compared with normal human

epithelial cells (HcoEpic cells). These results were verified in CRC

and adjacent normal tissue samples. However, we noticed that the

expression level of LINC01409 was significantly higher in LOVO

cells than in HcoEpic cells. CRC tissues contained cancer cells and

stromal cells such as immune cells, fibroblasts, and blood vessels,

which may explain the inconsistencies in RT-qPCR results from our

cell and tissue samples. To detect the cell distribution of lncRNAs

used to construct the signature in patients with CRC, we performed

a single-cell sequencing analysis. From the results, we could see that

LINC01409 was distributed in most immune cells, while other

lncRNAs were relatively less distributed in immune cells.

Moreover, RT-qPCR was used to detect the expression levels of

immune checkpoints and immunosuppressors in CRC tissues,

which was consistent with the results in TCGA cohort, further

confirming the reliability of our CRL model.

The results showed that our CRLncSig has a good prospect in

the precision diagnosis and treatment of CRC. Nonetheless, there

are still some limitations to our study. First, most of the current

public datasets of cancer-related sequencing fail to contain

complete lncRNA expression information; as a result, the number

of independent verification sets available is extremely limited.

Therefore, only three independent validation sets, GSE147602,

GSE198103, and GSE181815, were used to validate our signature

in this study, and more independent CRC cohorts, as well as

multicenter, large-scale prospective studies, should be integrated

to confirm our findings in the future. Second, the mechanisms by

which these CRLs affect the immune microenvironment and drug
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sensitivity of CRC patients are still unclear. Despite our functional

enrichment and ceRNA network construction, the biological

functions and interactions of these CRLs still need further

experimental studies in vivo and in vitro.

Collectively, this is the most systematic exploration of the clinical

significance of CRLs in CRC patients to date. We successfully

developed and validated coagulation subtypes and a novel CRL

model in CRC. The model performed accurately in predicting the

prognosis, immune status, immunotherapy response, and drug

sensitivity of CRC patients. This study may provide an innovative

perspective for clinical prognosis prediction of patients with CRC and

could help deepen the theoretical basis for immunotherapeutic

improvement and individualized antitumor therapy.
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