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Neutrophils comprise the majority of immune cells in human peripheral circulation,

have potent antimicrobial activities, and are clinically significant in their abundance,

heterogeneity, and subcellular localization. In the past few years, the role of

neutrophils as components of the innate immune response has been studied in

numerous ways, and these cells are crucial in fighting infections, autoimmune

diseases, and cancer. T-helper 17 (Th17) cells that produce interleukin 17 (IL-17)

are critical in fighting infections and maintaining mucosal immune homeostasis,

whereas they mediate several autoimmune diseases. Neutrophils affect adaptive

immune responses by interacting with adaptive immune cells. In this review, we

describe the physiological roles of both Th17 cells and neutrophils and their

interactions and briefly describe the pathological processes in which these two

cell types participate. We provide a summary of relevant drugs targeting IL-17A and

their clinical trials. Here, we highlight the interactions between Th17 cells and

neutrophils in diverse pathophysiological situations.

KEYWORDS
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1 Introduction

Over the past few years, our understanding of neutrophil function has considerably

progressed. Neutrophils play a role in homeostatic control as part of innate immunity and

can affect adaptive immunity in tissues through activation or inhibition. The concept of T-

helper 17 (Th17) cells was introduced less than 20 years ago. Due to their

immunomodulatory roles in autoimmune diseases and infection resistance, Th17 cells

have been the subject of substantial research. Th17 cells are potent inducers of neutrophils,

recruiting neutrophils to sites of inflammation via IL-17A and promoting inflammation.

The mechanisms underlying Th17 cell-mediated induction of neutrophils have been

studied earlier, whereas the impact of neutrophils on Th17 cells remains largely

unknown. Recent studies have reported that neutrophils regulate Th17 cells. Therefore,
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we reviewed the current knowledge on the mechanisms by which

neutrophils modulate the impact on Th17 cells.

2 Neutrophils

Neutrophils comprise the majority of myeloid leukocytes in

humans, constituting 50–70% of circulating leukocytes (1).

Neutrophils have a short lifespan, with a specific polymorphonuclear

and defined granule content (2). Neutrophils are believed to activate

and regulate innate and adaptive immunity, mainly Th17 cell-driven

adaptive immune responses against infections and the subsequent

activation and regulation of innate and adaptive immunity against

infections (3, 4). Neutrophils interact in a complex bidirectional

manner with various immune cells by expressing a wide range of

cytokines and immunosuppressive and immunostimulatory molecules

(5, 6). The three key ways whereby neutrophils fight pathogens are

phagocytosis, degranulation, and the formation of neutrophil

extracellular traps (NETs) (7). The process of neutrophil

phagocytosis is receptor-mediated. The neutrophil cytoskeleton

rearranges, and the plasma membrane surrounds the target organism

or granules to form phagocytic vesicles. Preformed granules within

neutrophils fuse rapidly with phagocytic vesicles to kill and degrade

target organisms or granules (8). Neutrophil phagocytosis

accompanied by degranulation. Neutrophil degranulation occurs

mainly at the plasma membrane, mimicking the granule–phagosome

fusion. Neutrophils perform their antimicrobial functions by releasing

granule-derived soluble proteins extracellularly via degranulation to

activate and deliver various antimicrobial components (9). DNA,

histones, and neutrophil granule proteins form net-like structures

known as NETs, produced by activated neutrophils (10). NET-

binding proteins are mainly cationic bactericidal proteins, including

24 proteins such as histones, elastase, cathepsin G, myeloperoxidase

(MPO), proteinase 3, neutrophil defensin, calcium-binding protein,

lactoferrin, and lysozyme (11, 12). Notably, NETs can be formed in two

ways, i.e., NETosis and nonlytic NETosis. In NETosis or canonical

death pathway, peptidylarginine deiminase-4 converts arginine in

histones to citrulline after being triggered by Ca2+ ions. The strong

positive charge on histones diminishes when arginine changes to

citrulline, which weakens their strong electrostatic binding to DNA

in the nucleosome, leading to chromatin decompression and NET

formation. Subsequently, the neutrophil nuclear membrane begins to

disintegrate, and the nucleus loses its lobules, starts to swell, and

undergoes granule proteolysis. Eventually, neutrophils excrete histones

and granules and deconcentrate DNA to form NETs (13, 14), which,

when released, kill pathogens directly or capture them and wait for

further processing by phagocytes (14–16). The second is the nonlytic

form of NETosis. After exposure to Staphylococcus aureus, neutrophils

rapidly expel chromatin and granules to form NETs. However, this

process is not accompanied by neutrophil death (7). The cytoplasm left

after the neutrophils excrete chromatin and granulins can continue to

perform bactericidal functions by ingesting and engulfing pathogens

(17). Reactive oxygen species (ROS) are not necessary for nonlytic

NETosis (18).

The antimicrobial activity of neutrophils is biotoxic. When

neutrophil activation is not properly controlled, pathological
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damage may occur in the host. Neutrophils are associated with

numerous autoimmune diseases. Phenotypic and functional

neutrophil aberrations, increased levels of circulating pro-

inflammatory low-density granulocytes (LDGs), increased

neutrophil apoptosis, and loss of neutrophil phagocytic function

are observed in patients with systemic lupus erythematosus (19).

Neutrophil-forming NETs are believed to be involved in

atherosclerotic thrombosis (20). They play an essential role in

thrombosis by promoting the deposition of hemofibrin and the

formation of hemofibrin networks (21). Activated platelets induce

neutrophils to form NETs (22). Impaired directed migration and

function of neutrophils during sepsis leads to harmful accumulation

in the lungs and liver (23, 24). In the early stages of sepsis, platelets

stimulate neutrophils to release NETs that benefit the host by

wrapping and eliminating pathogens. Notably, NETs and their

components can harm host tissues and endothelium during

severe infections and may lead to the formation of a diffuse

thrombus (25). Neutrophils play a significant role in

malignancies. Neutrophils undergo ferroptosis and release

immunosuppressive molecules that promote tumor cell growth in

the tumor microenvironment (26). Neutrophils promote tumor cell

metastasis by forming NETs and encapsulating tumors in NETs,

limiting tumor killing caused by cytotoxic T cells and promoting the

escape of tumor cells from the immune system (27–29).
3 Th17 cells

The first CD4 helper T lymphocytes described were Th1 and

Th2 subpopulations. Th17 cells were first conceptualized in 2005

(30, 31). This subset of lymphocytes, which differentiate from naive

CD4 T cells, is known for its capacity to release interleukin (IL)-17A

at high levels. Th17 cells release cytokines such as IL-17F, IL-21, and

IL-22, in addition to IL-17A (32, 33). Th17 differentiation is

associated with retinoic acid-related orphan receptor (ROR)gt,
interferon regulatory factor 4 (IRF4), basic leucine zipper ATF-

like transcription factor (BATF), and aryl hydrocarbon receptor

(AHR). Notably, RORgt was shown to be the first critical regulator

of Th17 differentiation. It induces the expression of IL-17A and IL-

17F, and lack of RORgt leads to a functional decline in Th17 (34).

Moreover, IRF4 is located upstream of RORgt, and its deficiency

results in the reduced capacity of naïve T cells to upregulate RORgt
(35). Both Th17 and T regulatory cells (Tregs) express AHR, and

Th17 cells do so relatively more highly, and the ablation of AHR

significantly lowers the expression of the Th17 effector cytokine IL-

22 (36). BATF is not a Th17 cell-specific transcriptional regulator

and is essential for Th17 cell differentiation and related cytokine

expression (37). The differentiation of Th17 in mice can be divided

into three stages: (1) due to the effects of IL-6 and transforming

growth factor-beta (TGF-b) on naïve T cells in mice, the activation

of signal transducer and activator of transcription 3 (STAT3) causes

IL-21 production; (2) IL-21 upregulates the expression of IL-17A,

IL-23R, and STAT3-dependent expression of RORgt in an autocrine
manner to maintain Th17 differentiation; and (3) IL-23 derived

from antigen-presenting cells interacts with the IL-23 functional
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https://doi.org/10.3389/fimmu.2023.1279837
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2023.1279837
receptor, promoting Th17 maintenance, proliferation, and effector

activities (38–41).

Th17 cells were terminally differentiated. However, Th17 cells

can transdifferentiate into certain cytokines or inflammatory

environments. The difference between Th1 and Th17 subsets is

not as distinct as previously believed in experimental autoimmune

encephalomyelitis (EAE). Notably, T cells with an in vitro bias

toward Th17 cells develop a Th1-like phenotype in vivo and can

produce interferon-gamma (IFN-g) (42, 43). Th17 cells are

abundant in the lamina propria of the intestinal mucosal barrier.

Short-chain fatty acids promote Treg differentiation and attenuate

EAE, whereas long-chain fatty acids stimulate Th17 and Th1

differentiation and exacerbate EAE (44). Bile acid metabolites

regulate Th17/Treg homeostasis in the intestine (45). In

autoimmune diseases, Th17 cells transdifferentiate into Tregs,

secrete IL-10, and acquire regulatory and anti-inflammatory

functions (46, 47). Hypoxia modulates the Th17 phenotype.

Hypoxia-inducible factor 1a is required for Th17 differentiation,

mediates glycolytic activity and forkhead box P3 degradation, and

regulates Th17 and Treg homeostasis (48, 49). Th17 cells are

heterogeneous in their phenotype, transcription, and metabolism.

Th17 cells are classified into hypermetabolic and hypometabolic

subsets based on their metabolism. Hypermetabolic Th17 has

strong IFN-g expression and supports transdifferentiation to Th1-

like cells (50).

Th17 cells and their associated effector cytokines play crucial

roles in the pathogenesis of many autoimmune diseases and

mediate defense mechanisms directed against extracellular

pathogenic infections. They are essential for maintaining the

homeostasis of the mucosal immune microenvironment. Hosts

lacking Th17 cells are highly susceptible to fungal infections. In a

mouse model of systemic candidiasis in which the IL-17A/IL-17A

receptor axis was essential for the host defense system in vivo, Th17

protected mice from lethal doses of the oral commensal fungus

Candida albicans infection (51). Th17- and IL-17R-deficient mice

exhibited severe oropharyngeal candidiasis, and the saliva of these

mice showed low C. albicans-killing activity (52). In addition, Th17

cells participate in host defense against S. aureus and Citrobacter

rodentium in the mucus epithelium (53). Th17 cell overexpression

has a detrimental effect on the host immune response. The IL-27/

IL-27R complex mediates chlamydial-protective immunity by

inhibiting Th17 cell overresponse and reducing neutrophil-

induced inflammation (54). Th17 cells have been associated with

various autoimmune diseases. Psoriasis is an inflammatory skin

disease characterized by well-defined red macules and sterile

pustules. Notably, IL-17A and IL-23 are key drivers of psoriasis

development. Th17 cell counts are elevated and positively linked to

disease activity in the blood and skin lesions (55). Patients with

psoriatic arthritis often have resident Th17 cells within the

synovium that overexpress IL-17A and IL-22, exacerbating

inflammation and bone reconstruction. Research using mouse

models of colitis has demonstrated that inflammatory bowel

disease is significantly influenced by IL-17A derived from Th17

cells. Aberrant Th17 proliferative diseases produce enormous levels

of pro-inflammatory cytokines, which attract additional

inflammatory cells and trigger abnormal immune responses (56).
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In both EAE and multiple sclerosis (MS), Th17 cells play a key

pathogenic role in central nervous system (CNS) inflammation in

both EAE and MS. Th17 cells are abundant in the brain and spinal

cord of EAE mice, as well as in the CNS lesions, cerebrospinal fluid,

and peripheral blood of patients with MS, and are positively

correlated with disease activity (57–60). Mice lacking Th17 cells

are resistant to EAE (61). Both asthma and chronic obstructive

pulmonary disease, characterized by high mucus production, share

a similar immunological pathogenesis. Notably, IL-17A regulates

respiratory mucus production, and high levels of IL-17A may be

linked to severe intestinal and respiratory inflammation (62, 63).

Th17 cells protect the body from metabolic syndrome by regulating

intestinal microbiota and fat absorption (64).

The contribution of IL-17A and Th17 cells to various diseases is

the basis for their clinical targeting. Table 1 summarizes the current

status of IL-17A-targeted drugs.

Secukinumab is a high-affinity, fully humanized monoclonal

immunoglobulin (Ig)G1k antibody that selectively binds to IL-17A

and blocks IL-17A from binding to its receptor, thereby controlling

the progression of IL-17A-associated diseases, such as psoriasis,

psoriatic arthritis, ankylosing spondylitis (65–68). Secukinumab has

a blocking effect and was clinically effective in a phase III clinical

trial of plaque psoriasis. Psoriasis area and severity index (greater

than or equal to 75) scores (PASI75) decreased by at least 75%

compared to placebo and Etanercept (69). Histologically, epidermal

hyperplasia reduced rapidly, and psoriasis-associated transcriptome

expression was significantly reduced in genomic analysis (70).

Secukinumab has been shown to be effective in controlling

psoriatic arthritis. In phase III clinical trials, subcutaneous

injections of 150 or 300 mg secukinumab effectively treated

psoriatic arthritis. In the FUTURE trial, both 150 and 300 mg

doses of secukinumab significantly improved the symptoms of

psoriatic arthritis, with higher American College of Rheumatology

20% response criteria (ACR20) at 16 and 24 weeks of treatment

than in patients using placebo (71–75). The proportions of patients

achieving greater than or equal to 50% improvement in ACR

response criteria (ACR50) and patients achieving improvements

in PASI75 and PASI90 were significantly higher than in patients

using placebo. Notably, ACR20 response rates at 5 years can still be

as high as 70–74% (76, 77). Secukinumab improved the clinical

signs and symptoms compared with those obtained with placebo

use. Moreover, the improvement was sustained over a longer period

than with the use of tumor necrosis factor (TNF) antagonists,

making secukinumab an effective treatment modality that can be

used as an alternative to TNF antagonists.

Ixekizumab is a high-affinity, recombinant humanized

monoclonal IgG4k antibody indicated for the treatment of

psoriatic arthritis and moderate-to-severe plaque psoriasis by

binding specifically to IL-17A and blocking IL-17A activity,

reducing inflammation and achieving relief in psoriasis symptoms

(78). Ixekizumab was significantly more effective than placebo in

phase I and II clinical trials of psoriasis treatment. In a phase I trial,

150 mg of ixekizumab every 2 weeks resulted in maximum disease

control within 6 weeks (79). Phase II trials reduced the

concentration to 75 mg every 2 weeks and achieved satisfactory

disease control (80). Ixekizumab is indicated to treat genital
frontiersin.org
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psoriasis, generalized pustular psoriasis, and psoriatic arthritis. For

treating patients with genital psoriasis, 80 mg of ixekizumab was

administered every 2 weeks for 12 weeks. At 12 weeks of treatment,

genital pruritus scores decreased in 60% of patients using

ixekizumab compared with that in patients using placebo, and

73% of patients using ixekizumab had genital pruritus scores of
Frontiers in Immunology
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“0” or “1” (81). The clinical phenotype and genetic background of

generalized pustular psoriasis differ from those of normal psoriasis

and are uncommon in the clinic; therefore, there are not many

clinical subjects of different biological agents in generalized pustular

psoriasis. Promising therapeutic efficacy with limited adverse effects

was observed in a German patient treated with ixekizumab for one

year (82). In a psoriatic arthritis clinical trial, patients were

randomized into the following four groups: 80 mg ixekizumab

every 2 weeks group, 80 mg ixekizumab every 4 weeks group, 40 mg

adalimumab every 2 weeks group, and a placebo group. The trial

was concluded at 24 weeks, and the ACR20 rates were 62.1, 57.9,

57.4, and 30.2% for the corresponding groups, respectively (83).

Ixekizumab is effective in the treatment of psoriatic arthritis.

Brodalumab is a humanized IL-17RA IgG2monoclonal antibody.

Brodalumab inhibits IL-17A downstream signaling by binding to a

shared subunit of the IL-17 receptor complex and blocking multiple

IL-17 family cytokines (84). Brodalumab is indicated for the

treatment of moderate-to-severe plaque psoriasis. In the

AMAGINE-1 phase III clinical trial, patients with plaque psoriasis

were divided into the following three groups: 140 mg brodalumab

every 2 weeks, 210 mg brodalumab every 2 weeks, and placebo. The

PASI75 and static Physician’s Global Assessment of 0 or 1 (sPGA 0/1)

ratios of these three groups were determined at 12 weeks. The PASI75

and sPGA 0/1 ratios increased significantly in subjects using

Brodalumab (85). Based on the outcomes of the AMAGINE-2,3

phase III clinical trials, brodalumab (210 mg every 2 weeks) had a

higher rate of PASI100 than that with ustekinumab use at 12 weeks.

In addition, brodalumab provided long-term, high-level skin

clearance in patients with moderate-to-severe plaque psoriasis. At

52 weeks, patients administered 210 mg brodalumab every 2 weeks

rapidly achieved high levels of complete and sustained skin clearance

(86). Brodalumab is effective in treating psoriatic arthritis. At 12

weeks, patients treated with 140 and 280 mg brodalumab had a

higher ACR20 rate than those using placebo (87).

Bimekizumab was the first IL-17A/IL-17F dual-target inhibitor

for moderate-to-severe plaque psoriasis. In the BE VIVID phase III

clinical trial, patients with moderate-to-severe plaque psoriasis were

divided into three groups: a 320 mg bimekizumab every 4 weeks

group, a 45 or 90 mg (chosen based on body weight) ustekinumab

group at weeks 0 and 4 and every 12 weeks subsequently, and a

placebo group. At 16 weeks, 85% of the patients in the bimekizumab

group achieved PASI90, a much higher proportion than those in the

ustekinumab and placebo groups. Bimekizumab has performed well

in treating moderate-to-severe plaque psoriasis, with a therapeutic

efficacy superior to that obtained with ustekinumab use (88). In the

BE OPTIMAL phase III trial, patients with psoriatic arthritis were

divided into the following three groups: 160 mg bimekizumab every

4 weeks group, placebo group, and 40 mg adalimumab every 2

weeks group. At week 16, subjects in the placebo group were

administered 160 mg of bimekizumab every 4 weeks. The

proportion of patients with ACR50 was counted at week 16, and

a significantly higher number of bimekizumab-treated patients than

those in the placebo group achieved ACR50. Improvements in joint,

skin, and imaging outcomes were relatively more pronounced in the

bimekizumab-treated patients than in the placebo group (89).
TABLE 1 Clinical trials using IL-17A as a target.

Drug Disease Phase NCT code

Secukinumab
(Cosentyx/
AIN457)

Psoriasis Completed NCT05320159

Psoriatic arthritis Completed NCT02854163

Pityriasis rubra pilaris Completed NCT03342573

Hidradenitis suppurativa Completed NCT03099980

Non-infectious uveitis Completed NCT00685399

Ankylosing
spondyloarthritis

Completed NCT02896127

Rheumatoid arthritis Completed NCT01426789

Dry eye Completed NCT01250171

Bullous pemphigoid,
pemphigoid

Completed NCT03099538

Multiple sclerosis Terminated NCT01874340

Asthma Terminated NCT01478360

Necrobiosis lipoidica
diabeticorum

Terminated NCT03791060

Type 1 diabetes mellitus Terminated NCT02044848

Lupus nephritis Phase III NCT04181762

Ixekizumab
(LY2439821)

Psoriasis Completed NCT03073213

Rheumatoid arthritis Completed NCT00966875

Hidradenitis suppurativa,
Acne inversa

Completed NCT04979520

Pityriasis rubra pilaris Completed NCT03485976

Type1 diabetes mellitus Phase II NCT04589325

Spondylitis, ankylosing Phase III NCT01870284

Major depressive disorder Phase II NCT04979910

Brodalumab

Psoriasis Completed NCT04149587

Ankylosing spondylitis Completed NCT03355573

Psoriasis vulgaris,
Psoriatic arthritis,
Psoriatic erythroderma

Completed NCT04183881

Psoriatic arthritis Completed NCT02024646

Systemic sclerosis Phase I NCT04368403

Crohn’s disease Terminated NCT01150890

Bimekizumab

Hidradenitis suppurativa Completed NCT04242498

Psoriatic arthritis Completed NCT03895203

Chronic plaque psoriasis Completed NCT03025542
This table summarizes information on a selection of IL-17A-targeted drugs used in clinical
trials at this stage and provides an overview of the indications for these drugs and the stage of
clinical trials they are in. https://clinicaltrials.gov.
frontiersin.org
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4 Effects of Th17 cells on neutrophils

Th17 cells affect neutrophils via IL-17A production. Increasing

the levels of granulocyte colony-stimulating factor (G-CSF), IL-17A

encourages the synthesis of granulocytes and the mobilization of

mature neutrophils from the bone marrow. Through peripheral

blood circulation, neutrophils travel to the area of infection or

inflammation and perform their effector functions (Figure 1).

IL-17A does not act directly on neutrophils; however, it recruits

them by acting on a variety of nonimmune cells (e.g., epithelial cells,

endothelial cells, and fibroblasts), causing them to release

neutrophil chemokines, such as chemokine (C-X-C motif) ligand

(CXCL) 1, CXCL6, and CXCL8 (90). Neutrophils in blood vessels

sense these chemokines via the C-X-C motif chemokine receptor

(CXCR) 1, which activates signaling downstream of vasodilator-

stimulated phosphoprotein, phosphoinositide 3-kinase, and Src

family kinase, mediating directional migration of neutrophils (91)

(92). In addition, activated neutrophils produce matrix

metalloproteinases that cleave CXCL8 family chemokines and

enhance their chemotaxis (92). Overexpression of IL-17A

upregulates neutrophil-targeted chemokine expression, which, in

turn, increases neutrophil infiltration. Conversely, knockdown of

IL-17A expression or defective IL-17A receptors results in

downregulated chemokine expression and inhibition of

neutrophil infiltration (91). However, IL-17A acts directly on

neutrophil CXCR2 to induce neutrophil chemotaxis (93).

Moreover, IL-17A exerts a granulogenic effect (91). It intervenes

in neutrophil generation by upregulating G-CSF expression, which
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plays a crucial role in neutrophil development. For example, G-CSF

directs the differentiation of committed progenitors to myeloid

lineage, promotes the proliferation of neutrophil precursors, reduces

the time required for neutrophils to pass through the compartment,

and promotes the release of mature neutrophils from bone marrow

(94, 95). During inflammation, IL-17A, derived from Th17 cells,

promotes G-CSF production, which acts on neutrophils in response

to inflammation. After the inflammation subsides, neutrophils

undergo apoptosis, and these apoptotic neutrophils are cleared by

nearby phagocytes (such as macrophages) (94). This process is

accompanied by a decrease in IL-23 levels, which, in turn, leads to

a reduction in Th17-derived IL-17A production, resulting in

decreased G-CSF synthesis (96, 97). Defects in G-CSF, induced by

anti-IL-17A antibodies, result in elevated levels of the chemokine

stromal cell-derived factor (SDF)-1a, a retention factor for

neutrophils to reside in the bone marrow. Elevated levels of SDF-

1a interfere with bonemarrowmobilization of neutrophils, leading to

a decrease in the number of circulating neutrophils (98).

The following subsections describes how Th17 cells affect

neutrophils in various immune microenvironments.
4.1 Effects of Th17 cells on neutrophils
in psoriasis

Characterized by epidermal proliferation and inflammation,

psoriasis is a chronic relapsing inflammatory skin disease (55).

The etiology of psoriasis is greatly influenced by the IL-23/IL-17A
FIGURE 1

Neutrophils communicate with Th17 cells. Th17 cells secrete IL-17A to act on epithelial cells when the organism is infected. The epithelial cells produce a
series of neutrophil chemokines that induce neutrophil activation and migration to the site of infection. Neutrophils carry out anti-infective functions
through phagocytosis, degranulation, and NETosis. Through their histones, cathelicidin, and the cytoplasm remaining after NETosis, Neutrophil extracellular
traps (NETs) promote naïve T cell upregulation of RORgt expression, thereby promoting Th17 differentiation.
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axis and, to a certain extent, reflects disease severity (99). Moreover,

IL-23 activates IL-17A-producing Th17 cells and enhances their

cytokine production capacity and pathogenicity. In patients with

psoriatic arthritis, high levels of IL-23 and IL-17A are present in the

synovium, and tissue-retained Th17 cells highly express IL-22 and

IL-17A. The production of granulocyte-macrophage CSF (GM-

CSF) and several chemokines, including CXCL8, is promoted in

response to the IL-23/IL-17A axis (99). CXCL8 promotes

neutrophil recruitment and migration, whereas GM-CSF and G-

CSF replenish circulating neutrophils, which are exhausted during

infiltration into the epithelium (100). In patients with psoriasis, skin

lesions, serum Th17 cell counts, and IL-17A levels were positively

correlated with disease activity (101). Various immune and

nonimmune cells are involved in the pathogenesis of psoriasis. In

addition to driving epidermal hyperproliferation and activating

keratin-forming cells, IL-17A promotes the production of several

cytokines and chemokines, such as the chemokine CXCL8. CXCL 8

induces neutrophil migration to lesion sites and promotes

inflammation (102). Notably, IL-17A induces epithelial cells to

express IL-36, contributing to neutrophil inflammatory activity

and migration (103, 104). In addition, IL-17A has an apoptosis-

inhibiting effect on neutrophils and promotes the production of IL-

1, IL-6, and TNFa. Notably, TNFa activates neutrophils and

promotes neutrophil infiltration into the epithelium, amplifies

and propagates inflammation, promotes characteristic changes in

psoriasis symptoms, and creates a self-sustaining inflammatory

cycle (100). Neutrophils are a source of IL-17A at psoriatic

lesions (99, 105). Neutrophil-derived IL-17A is a potential drug

target for the treatment of psoriasis. Targeted drugs prevent

neutrophils from interacting with keratin-forming cells and

entering the lesion site (101). In lesions of progressive psoriasis,

large aggregates of neutrophils are often observed at the epidermal

site, forming neutrophilic pustules such as Kogoj spongiform

pustules and Munro’s microabscess, among other typical

pathologic changes (100). Neutrophils infiltrating the epidermis

produce NETs that act directly on keratinocytes and are involved in

the maintenance and amplification of the inflammatory

environment in the skin. In addition, MPO and NETs released

during neutrophil degranulation are involved in ROS generation,

protein hydrolysis of inflammatory mediators, and self-antigen

formation during psoriasis (106).
4.2 Effects of Th17 cells on neutrophils
in asthma

Asthma is a common chronic noncommunicable respiratory

disease characterized by chronic airway inflammation,

hyperresponsiveness, variable reversible airflow limitation, and

airway remodeling due to the prolonged course of the disease.

Approximately 334 million people are affected by asthma (107). The

traditional view is that dysregulation of Th2 immunity is the

primary cause of asthma. However, recent studies have revealed

that Th17 cell-secreted IL-17A plays a role in the development and

progression of neutrophilic asthma. Patients with severe asthma
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have higher levels of IL-17A in their airways when their diseases are

more severe (108). Th17 cells secrete cytokines, such as IL-17A, and

recruit neutrophils by acting on airway epithelial cells expressing

the neutrophil chemokines CXCL1 and CXCL8. Neutrophils that

receive recruitment signals migrate to the airways and produce

cytokines, such as IL-6, CXCL8, G-CSF, and macrophage

inflammatory protein-2, which induce neutrophilic inflammation

in the airway (103, 109). Most patients with asthma control their

symptoms using glucocorticoid therapy. However, in patients with

steroid-resistant asthma (SRA), glucocorticoid use does not

adequately control the symptoms (110). Patients with SRA have

large neutrophil infiltrates in the airways and high Th17/IL-17A

expression (111, 112). Neutrophilic asthma exhibits significant

steroid resistance and IL-17A dependence (113). Glucocorticoid

receptor-b (GR-b) overexpression is linked to steroid resistance in

patients with SRA. The development of steroid resistance may be

facilitated by GR-b, which does not bind to corticosteroids. Notably,
IL-17A induces GR-b expression in the airway epithelium of

patients with asthma and generates steroid resistance in

peripheral blood mononuclear cells, resulting in SRA (114). Mice

overexpressing RORgt exhibit steroid-insensitive neutrophilic

inflammation. Anti-IL-17A antibody, CXCR2 agonist, or anti-

IL-6R antibody effectively suppress airway hyperresponsiveness

and neutrophilic inflammation in RORgt-overexpressing mice

(115). Airway remodeling is a crucial pathological hallmark of

asthma. IL-17A, derived from Th17 cells, can activate and secrete

neutrophil chemokines, such as IL-6 and CXCL8, by promoting the

activation of various cells, such as epithelial cells, fibroblasts, and

neutrophils, which causes neutrophils to release a variety of

bioactive substances, such as neutrophil elastase, in the airways to

mediate lung tissue destruction and mucus hypersecretion (112).
4.3 Effects of Th17 cells on neutrophils in
other diseases

Inflammatory resorption of the bone tissue supporting the teeth

is a hallmark of the chronic, progressive, and destructive disease

periodontitis. According to previous studies, bacteria are the

primary cause of periodontitis. Th17 cells are crucial for the

progression of periodontitis and correlate with disease severity

(116). Th17-derived IL-17A is involved in bone destruction in

periodontitis. In the presence of IL-17A, fibroblasts and epithelial

and endothelial cells of gingival tissue produce numerous

inflammatory mediators, e.g., IL-6, CXCL8, IL-1b, granulocyte
chemotactic protein, and GM-CSF, promoting neutrophil-

mediated inflammation and causing tissue damage and alveolar

bone resorption (117–121). In an experimental periodontitis model,

i.e., IL-17A receptor-deficient mice infected with Pseudomonas

gingivalis, neutrophil recruitment decreased at the site of

periodontal lesions; however, bone loss was increased (122).

Th17 cells are present in the tumor microenvironment, and

excessive inflammation caused by Th17 cells may be associated with

tumorigenesis (90). Notably, IL-17A activates and recruits
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antitumor immune cells, such as neutrophils, macrophages, natural

killer cells, and CD8+ T cells, to exert antitumor effects (123). In

breast cancer, Th17 cells promote tumor development by recruiting

neutrophils via IL-17A (124).

In necrotic glomerulonephritis, IL-17A deficiency leads to

impaired neutrophil recruitment to the glomerulus, which, in

turn, downregulates MPO and improves glomerulonephritis (125).

The Th17 cell counts are higher in the decidua than in the

peripheral blood and correlate positively with neutrophil counts.

Th17 cells induce protective immunity against extracellular

microbes through neutrophils (126, 127).
5 Effects of neutrophils on Th17 cells

Numerous studies have documented mechanisms underlying

Th17 cell-mediated induction of neutrophil chemotaxis. In recent

years, as neutrophils have been studied relatively more intensively,

researchers have found that they interact with Th17 cells.

The formation of NETs is a major mechanism underlying

neutrophil activation to fight pathogens. DNA and histones

constitute most NETs. Histones are either free or bound to DNA.

Free histones are relatively more pathogenic and have pro-

inflammatory effects (128–130). Large numbers of NETs and

histones are present in patients with autoimmune diseases.

However, the exact function of these components remains

unknown (131). Wilson et al. (132) co-cultured NETs with naïve T

cells under Th17-differentiation conditions and found that NETs

promoted Th17 differentiation in a concentration-dependent

manner. This effect is eliminated upon the application of histone

inhibitors. Upregulation of RORgt expression leads to the promotion

of Th17 differentiation by NET-derived histones. Specifically,

histones activate toll-like receptor 2 in naïve T cells, which

phosphorylates STAT3, thereby facilitating Th17 differentiation.

The neutrophil antimicrobial peptide cathelicidin has potent

antimicrobial activity and immunomodulatory effects and can be

released from neutrophils upon degranulation, NET formation, and

necrotizing death. Minns et al. (133) reported that cathelicidin

derived from neutrophils released by secondary lymphoid organs in

mice promotes Th17 cell differentiation in a TGF-b-dependent way
by upregulating the expression of AHR and RORgt. Cathelicidin
dramatically reduced Tbet expression while promoting STAT3 and

Smad2/3 phosphorylation in the presence of TGF-b. Neutrophils and
Th17 cells converge at sites of inflammation by producing chemokine

C-C motif ligands 20/22, IL-17A, and CXCL8 (134). During severe

asthma, neutrophils form nonlytic NETosis, and the remaining

cytoplasm can indirectly induce Th17 cell differentiation in the

lung (135). Toll-like receptor 8-dependent activated neutrophils can

produce the Th17-inducing differentiation factor, IL-23, and their

culture supernatant induces naïve T cells to differentiate into Th17

cells (136). In vitro, Th17 differentiation is promoted by neutrophil-

derived elastase, which converts dendritic cell-derived CXCL8 into

the Th17-promoted form (137). Neutrophils from patients with

autoimmune diseases are defined as LDGs (19). This class of
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neutrophils has pro-inflammatory properties that promote the

differentiation and proliferation of Th17 cells (2, 138–140). They

are stimulated by IFNs and promote Th17 differentiation by

upregulating the levels of costimulatory molecules and major

histocompatibility complex II (141). In addition, IL-17A recruits

neutrophils to lymph nodes during the Th17 response, providing

additional neutrophil-derived IL-1b for Th17 differentiation

(91) (Figure 1).

In addition to Th17 cells, neutrophils regulate other T cells.

Neutrophils are susceptible to ferroptosis. Ferroptosis-induced

oxidation of phosphatidylethanolamine and lecithin inhibits T cell

proliferation (26). In sepsis, the production of macrophage-1

antigens by neutrophils inhibits T cell proliferation (142).

Neutrophils can disrupt T cell function and differentiation

through ROS, programmed cell death-ligand 1, and arginase

overexpression to degrade arginine, which is necessary for the

activation and proliferation of T cells (143–147). By expressing

the suppressor surface protein CD10, neutrophils can interfere with

T cell function (148). During lung infection, neutrophils inhibit T

cell recruitment and activation and promote the sustained

expansion of microbes in the lung (149, 150). During influenza,

neutrophils promote T cell function and migration to the sites of

infection (151, 152). In vitro-cultured T cells can recognize NET

components through T cell receptors, lowering the threshold for T

cell activation (153).
6 Conclusions

Neutrophils and Th17 cells interact closely under physiological

conditions. A closed loop is formed between the two via the IL-23/

IL-17A axis to maintain homeostasis in the immune

microenvironment. The disruption of this regulatory loop can

lead to a local imbalance in immune homeostasis, resulting in

inflammatory or severe pathological reactions. Extensive research

has been conducted on the effects of Th17 cells on neutrophils.

However, research on how neutrophils intervene with Th17 cells in

a complex immune microenvironment is still in the early stages of

development. Herein, we summarize how neutrophils affect and

regulate Th17 cells. The study of the relationship between

neutrophils and Th17 cells has considerable potential for clinical

applications because of the complex relationship between the two

cells and their synergy in the immune microenvironment. Future

immunotherapy may depend on targeting the different biological

roles of neutrophils and their effects on T cells to develop new

treatments for tumors and chronic inflammatory diseases. Th17

cells are plastic, and their role in tumors is highly dependent on the

tumor microenvironment. They are recruited to the sites of

malignant tumors. Exploiting the interaction of neutrophils with

Th17 cells, inducing the transformation of Th17 cells in specific

environments, and enhancing the Th17 antitumor response may be

effective strategies for the future development of cancer

immunotherapies. Neutropenia, an adverse event, has been

reported in a few clinical trials of drugs targeting IL-17A,
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summarized in this review. Neutropenia may increase the risk of

infections in patients. Reducing the incidence of neutropenia as an

adverse event while targeting IL-17A and reducing the risk of

infections in patients will be the focus of future studies.
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