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Immune activation and
inflammation in lactating women
on combination antiretroviral
therapy: role of gut dysfunction
and gut microbiota imbalance
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Introduction: Combination antiretroviral therapy (cART) effectively controls HIV;

however, chronic low-level viremia and gut microbiota dysbiosis remain significant

drivers of gut and systemic inflammation. In this study, we explored the relationship

between gut microbiota composition, intestinal inflammation, microbial

translocation, and systemic inflammation in women on cART in Sub-Saharan Africa.

Methods: We conducted a study in HIV-infected and HIV-uninfected lactating

women followed up at 6 weeks and 6months postpartum in Harare, Zimbabwe. We

used 16S ribosomal Ribonucleic Acid (rRNA) sequencing and MesoScale Discovery

V-Plex assays to examine the gut microbiome and to quantify plasma inflammatory

biomarkers, respectively. In addition, we measured fecal calprotectin, plasma

lipopolysaccharide-binding protein (LBP), and soluble cluster of differentiation 14

(sCD14) by enzyme-linked immunosorbent assay to assess gut inflammation,

microbial translocation, and monocyte/macrophage activation.

Results: A group of 77 lactating women were studied, of which 35% were HIV-

infected. Fecal calprotectin levels were similar by HIV status at both follow-up

time points. In the HIV-infected group at 6 weeks postpartum, fecal calprotectin

was elevated: median (interquartile range) [158.1 µg/g (75.3–230.2)] in women

who had CD4+ T-lymphocyte counts <350 cells/µL compared with those with

≥350 cells/µL [21.1 µg/g (0–58.4)], p = 0.032. Plasma sCD14 levels were

significantly higher in the HIV-infected group at both 6 weeks and 6 months

postpartum, p < 0.001. Plasma LBP levels were similar, but higher levels were

observed in HIV-infected women with elevated fecal calprotectin. We found

significant correlations between fecal calprotectin, LBP, and sCD14 with

proinflammatory cytokines. Gut microbial alpha diversity was not affected by
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HIV status and was not affected by use of antibiotic prophylaxis. HIV significantly

affected microbial beta diversity, and significant differences in microbial

composition were noted. The genera Slackia and Collinsella were relatively

more abundant in the HIV-infected group, whereas a lower relative abundance

of Clostriduim sensu_stricto_1 was observed. Our study also found correlations

between gut microbial taxa abundance and systemic inflammatory biomarkers.

Discussion and conclusion: HIV-infected lactating women had increased

immune activation and increased microbial translocation associated with

increased gut inflammation. We identified correlations between the gut

inflammation and microbial composition, microbial translocation, and systemic

inflammation. The interplay of these parameters might affect the health of this

vulnerable population.
KEYWORDS

fecal calprotectin, microbial translocation, systemic inflammation, HIV, gut microbiota,
lactating women, resource limited setting
Introduction

People living with HIV in Sub-Saharan Africa (SSA) constitute

about 54% of the world’s HIV-infected population (1). The

introduction of combination antiretroviral therapy (cART) has

reduced the burden of HIV in SSA with a significant reduction in

morbidity and mortality. However, chronic persistent low-level

viremia due to residual HIV remains a significant contributor to

microbial translocation, chronic monocyte activation, and

inflammation in this population (2–4). Understanding the

relationship between these biological systems contributes to the

global effort of interventions toward the mitigation of HIV-

associated morbidities.

The acute phase of HIV infection involves depletion of the CD4+

T-cell population, causing major damage to gut-associated lymphoid

tissue, which is not fully restored by cART (5, 6). Upon gut

inflammation, neutrophils serve as a reliable defense mechanism.

Gut inflammation causes increased gut permeability and release of

calprotectin from neutrophils. The fecal calprotectin levels are thus a

useful marker of gut inflammation and an indirect marker of intestinal

permeability (7). Faecal calprotectin levels have been reported to be

higher in the HIV-infected population even if on cART compared with

that in HIV-uninfected peers (8, 9). Despite these studies, the influence

of gut inflammation on microbial translocation and systemic

inflammation is still insufficiently understood.

Inflammation of the gut epithelial lining causes translocation of

microbial antigens into circulation driving HIV disease progression

through monocyte activation and inflammation (10). The monocyte/

macrophage bound cluster of differentiation 14 (CD14) is a co-

receptor for lipopolysaccharide (LPS) and causes the secretion of

soluble CD14 (sCD14) (11) on exposure to bacterial toxins. Thus,

both LPS-binding protein (LBP) and sCD14 are considered

biomarkers of endotoxemia and intestinal permeability, which also
02
alters the gut microbiota (12). Increased systemic inflammation with

accompanied gut permeability has been observed in cART-treated

women (13). However, long-term exposure to cART has been shown

to decrease biomarkers of gut permeability, microbial translocation,

and vascular injury in adults with chronic HIV infection (6, 14, 15).

A healthy gut microbiota is usually dominated by commensal

microorganisms that continually face perturbations such as HIV-

induced gut damage and antibiotics. Dysbiosis as a result of HIV

infection is generally characterized by a decrease in alpha diversity

(16, 17) with a low abundance of Bacteroides and an increased

abundance of Prevotella (18). However, further evidence is needed

to further understand the impact of HIV-associated gut microbiota

dysbiosis on the production of proinflammatory cytokines and the

consequent systemic inflammation (19). Microbial antigens

translocated into circulation causes immune activation with

higher levels being associated with increased T-cell activation in

cART-treated individuals (15). In early chronic HIV infection,

circulating LPS has been shown to be a predictor of HIV disease

progression independent of HIV viremia and CD4+ T-lymphocyte

count (20). Evidence of the role of HIV-induced gut microbiota

dysbiosis in microbial translocation and inflammation has been

conflicting due to possible confounders in HIV management such

as antibiotic prophylaxis and cART.

To gain an understanding of the intricate relationships between

the processes, we hypothesized that microbial dysbiosis and

inflammation of the gut due to HIV infection cause microbial

translocation and, ultimately, systemic inflammation. Our study

aims to provide insights into the gut microbiota diversity and

abundance in HIV-infected and HIV-uninfected lactating women

at 6 weeks and 6 months postpartum. Biomarkers of systemic

inflammation and their association with gut microbiota

abundance, gut inflammation, and microbial translocation

were investigated.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1280262
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Munjoma et al. 10.3389/fimmu.2023.1280262
Materials and methods

Study design

This investigation was performed as a prospective longitudinal

study nested in the University of Zimbabwe Birth Cohort Study

(UZBCS). The UZBCS has been previously described in detail (21).

In brief, lactating women were longitudinally followed up at 6 weeks

and 6 months postpartum as part of a longitudinal follow-up to 2

years after birth.
Study participants

The study followed up women enrolled in the UZBCS who were

HIV-infected and HIV-uninfected and receiving postnatal care

services. They were monitored at 6 weeks and 6 months after

giving birth at four primary healthcare clinics located in areas with

low socio-economic status in Harare, Zimbabwe (Budiriro,

Glenview, Kuwadzana, and Rujeko clinics).
Inclusion and exclusion criteria

We recruited pregnant women beyond the 20th week of pregnancy

seeking antenatal care services. All participants gave written informed

consent to participate and had been tested for HIV.Women who failed

to adhere to the study procedures due to any health disorders such as

mental issues were not included in this sub-study. For this particular

study, only women who enrolled in the UZBCS in 2019 and had stool

samples available were included. These women were then followed up

at 6 weeks and 6 months after giving birth.
Data collection, sample collection,
and storage

Data were collected using paper-based approved questionnaires

and entered into a Research Electronic Data Capture (REDCap)

database—a secure, web-based software platform designed to support

data capture for research studies (22). A physical examination

including anthropometric assessments was carried out by trained

and qualified nurses. A total of 4 mL of whole venous blood samples,

collected using ethylenediamine-tetraacetic acid as an anticoagulant,

were obtained from each participant. The blood collection procedure

was carried out by trained and qualified nurses, ensuring adherence

to proper protocols. The collected samples were promptly processed

within a maximum time frame of 6 h from the time of collection.

Plasma was isolated and stored at −80°C until enzyme-linked

immunosorbent assays (ELISAs) and MesoScale Discovery (MSD)

V-plex assays were performed. About 50 g of feces was collected in
Frontiers in Immunology 03
sterile containers, aliquoted, and stored at −80°C until fecal

calprotectin and DNA extraction assays were done.
HIV RNA load and CD4+
T-lymphocyte counts

Results of HIV RNA load and CD4+ T-lymphocyte counts

measured during the third trimester of pregnancy were obtained

from the UZBCS REDCap database. The assaying methods for these

HIV disease progression markers were previously described (21).

All HIV-infected women in this study were taking cART at both

follow-up time points, and used a formulation of efavirenz,

lamivudine, and tenofovir disoproxil fumarate (Tenolam-E),

following the World Health Organization guidelines (23).
Systemic inflammation and
immune biomarkers

The MSD multi-spot V-plex assays (Rockville, Maryland, USA)

were used to quantify proinflammatory and vascular injury immune

markers in 60 µL of plasma. The assays were carried out following the

manufacturer’s instructions and as previously described (24).

Originally, 48 biomarkers were quantified in plasma, and, for this

study, the proinflammatory and vascular injury V-plex panels were of

interest. The proinflammatory V-plex panel included interferon-

gamma (IFN-g), interleukin-1-beta (IL-1b), interkeukin-2 (IL-2),

interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-8 (IL-8),

interleukin-10 (IL-10), interleukin-12p70 (IL-12p70), interleukin-13

(IL-13), and tumor necrosis factor (TNF), and the vascular injury V-

plex panel included serum amyloid A (SAA), C-reactive protein (CRP),

vascular cell adhesion molecule 1 (VCAM-1), and intercellular

Adhesion Molecule 1 (ICAM-1). The biomarker SAA was excluded

from our analyses due to calibration failure in one of the assays.
Biomarker of gut inflammation

Fecal calprotectin was quantified from stool using a Buhlmann

fecal calprotectin sandwich ELISA assay (EK-CAL2-WEX,

Schönenbuch, Switzerland) based on the manufacturer’s

instructions. The Buhlmann Calex Cap (B-CALEX-C200,

Schönenbuch, Switzerland) was utilized to prepare stool extracts

following the manufacturer’s instructions. The extracts were then

diluted at a ratio of 1:5 with an appropriate incubation buffer before

proceeding with the assay. All assays were conducted in duplicate,

and ELISA plates were read at 450 nm using Gen 5 software

(BioTek, Winooski, VT, USA). Fecal calprotectin concentrations

were determined using a standard curve and categorized based on

the manufacturer’s clinical cutoffs: normal (<80 µg/g), borderline/

grey zone (80–160 µg/g), and elevated (>160 µg/g).
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Biomarkers of microbial translocation and
monocyte activation

Plasma LBP and sCD14 levels were quantified using ELISA

assays (Hycult Biotech, Wayne, USA) according to the

manufacturer’s instructions. Absorbance was read at 450 nm, and

sample concentrations were determined from a standard curve. All

assays were performed in duplicate, and ELISA plates were read

using Gen 5 software (BioTek, Winooski, VT, USA).
Stool DNA Extraction and 16S
rRNA sequencing

Fecal samples were collected into sterile 50-mL sample cups,

aliquoted into 2-mL tubes, and stored at −80°C prior to assays. Fecal

DNA extraction was carried out from about 250 mg of stool sample

using the QIAamp PowerFecal Pro DNA kit (Qiagen, Dusseldorf,

Germany) as previously described (25). Total bacterial DNA was

eluted with 70 mL of elution buffer and then stored at −20°C prior to

PCR amplification. The eluted DNA was amplified using PCR,

targeting the V5 and V6 regions of the 16S rRNA gene. Previously

d e s c r i b e d b a c t e r i a - s p e c ifi c p r ime r s ( f o rwa rd : 5 ′ -
CCATCTCATCCCTGCGTGTCTCCGACTCAGC-barcode-

ATTAGATACCCYGGTAGTCC-3′ and reverse: 5′-CCTCTCTAT
GGGCAGTCGGTGATA CGAGCTGACGACARCCATG-3′) were
utilized (26). PCR conditions consisted of an initial denaturation at

94°C for 5 min, followed by 35 cycles of denaturation at 94°C for

1 min, annealing at 46°C for 20 s, elongation at 72°C for 30 s, and a

final elongation at 72°C for 7 min.

The PCR amplicons were run on 1% agarose gel electrophoresis

at 100 volts for 1 h, with an expected product length of

approximately 350 base pairs. The amplicons were purified using

the QIAQuick Gel Extraction Kit (Qiagen, Dusseldorf, Germany).

The concentration of amplicons was determined using a Qubit

dsDNA HS Assay Kit on the Qubit 3.0 Fluorometer (ThermoFisher

Scientific) and then set to 26 pM for sequencing library preparation.

Sequencing was carried out on the Ion PGM™ System

(ThermoFisher Scientific) using an Ion PGM™ Sequencing kit

and chip, following a previously described method (27).
Data analysis

Sociodemographic and participant
characteristics

Data analysis was conducted using R software version 4.2.2

(http://www.r-project.org/). Continous variables were tested for

normality using the Shapiro–Wilk test, and data were

summarized using median and interquartile range (IQR) or using

mean ± standard deviation (SD) where appropriate. Continous data

between groups were compared using the Mann–Whitney U-test,
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Kruskal–Wallis test, or Student T-test depending on the

distribution of the data. Categorical data were reported as

proportions and associations determined by Fisher’s exact test or

Chi-squared test where appropriate.
Microbial translocation, monocyte
activation, gut inflammation, and systemic
inflammatory bıomarkers

Continous data were tested for normalcy using the Shapiro–

Wilk test and data reported as median (IQR) or mean ± SD where

appropriate, depending on data distribution. Concentrations of

proinflammatory and vascular injury immune markers below the

assay detection limit were assigned the concentration of the lowest

calibrator as previously described (24). A q-value was calculated to

correct for multiple testing using the Bonferroni test, and q < 0.05

was considered significant. Correction was done for the 48

biomarkers originally tested during the assays. Spearman rho (r)
correlation coefficient was used to determine associations between

biomarkers of HIV disease progression, gut inflammation,

microbial translocation, and systemic inflammation.
Computational analysis of 16S rRNA
microbial data

The Fastq sequencing files generated from Ion Torrent PGM™

System were processed using the Quantitative Insights into Microbial

Ecology 2 (QIIME2) version 2021.11.0 pipeline (https://qiime2.org/), as

previously described (26, 28, 29). Amplicon sequence variants were

assigned with a 97% sequence identity threshold, using the default

options in QIIME2 as well as the q2-feature-classifier plugin and a

Naïve Bayes classifier. Taxonomic weights were assembled using the

SILVA database (https://www.arb-silva.de/).

The feature table and mapping file were used to generate a

phyloseq object in R (version 4.2.2) package phyloseq (30). Only

samples with more than 2,000 high-quality reads were further

analyzed. Diversity within communities was determined using

alpha diversity indices (Simpson and Shannon index), and inter-

community diversity was determined using beta diversity [Bray–

Curtis dissimilarity using principal coordinate analysis (PCoA)] (31).

Mann–Whitney U-tests and Adonis (PERMANOVA) tests for alpha

diversity and beta diversity were performed to test for significance of

any group differences, respectively. Taxonomy profiling was

performed using microbiome Multivariable Association with Linear

Models (MaAsLin2) package (https://huttenhower.sph.harvard.edu)

to determine associations of the gut microbiota with categorical and

continuous variables (32). A q-value was calculated to correct for

multiple testing using the Benjamini–Hochberg (BH) false discovery

rate (FDR) correction as a default step in MaAsLin2. A q-value <0.05

was considered significant, andmicrobiota plots were generated using

the package phyloseq and GraphPad prism version 9.0.0 (GraphPad,

San Diego, CA).
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Results

Of the 97 women enrolled since 2019, 77 lactating women were

successfully followed up at both 6 weeks and 6 months postpartum.

Maternal socio-demographics, concurrent medications, and clinical

characteristics at 6 weeks postpartum are shown in Table 1. The HIV-

infected women [median age, 32 years (IQR, 29–35)] were older than

the HIV-uninfected counterparts [median age, 26 years (IQR, 21–30)].

At 6 weeks postpartum, all HIV-infected women were on cART,

and 15 (55.6%) were taking cotrimoxazole prophylaxis. In all these

women, cART was started pre-conception or during pregnancy. HIV-

infected women were more likely to be on antibiotics during the study

period, p < 0.0001. In addition, HIV-infected women had a

significantly higher mid-upper–arm circumference (MUAC)

(27.0 cm; IQR, 25.7–28.0) compared with their HIV-uninfected peers

(25.4 cm; IQR, 24.0–27.3), p = 0.031. Interestingly, HIV-infected

women had a higher body mass index (BMI) compared with their

uninfected counterparts (p = 0.020), as indicated in Table 1.

Socio-demographics and clinical characteristics at 6 months

postpartum are shown in Table 2. HIV-infected women were more

likely to be in employed and to have a higher median monthly family

income (Table 2). There were no associations between HIV infection

status and toilet facilities, drinking water sources, and water

treatment. Similar to the 6-week postpartum findings, HIV-infected

women were more likely to be on antibiotics (see Table 1). In the

HIV-infected group 55.6% and 57.1% reported taking cotrimoxazole

antibiotics at 6 weeks and 6 months postpartum, respectively.
Biomarkers of gut inflammation and gut
microbial translocation

Biomarkers of intestinal inflammation (fecal calprotectin),

microbial translocation, and immune activation (plasma LBP and

sCD14) were quantified to assess the association between HIV

infection with gut inflammation and microbial gut translocation.

Overall, fecal calprotectin levels did not significantly differ by HIV

infection status and antibiotic use at 6 weeks and 6 months

postpartum. However, at 6 weeks, higher fecal calprotectin levels

(158.1 µg/g; IQR, 75.3–230.2) were observed in HIV-infected

women with third-trimester CD4+ T-lymphocyte counts <350

cells/µL compared with those with ≥350 cells/µL (21.1 µg/g; IQR,

0–58.4), p = 0.032. In a sub-analysis of the HIV infected at 6 weeks

postpartum, we investigated the effects of cART and HIV viremia.

We stratified cART duration into early (<2 years) and long-term

(≥2 years) (33) and HIV RNA load into low level viremia (<200

copies/mL) and viremic (≥200 copies/mL) groups (4). Fecal

calprotectin levels were non-significantly higher in unsuppressed

(HIV RNA > 1,000 copies/mL) versus suppressed (≤1,000 copies/

mL) in viremic versus low level viremia groups (p = 0.610 and p =

0.614, respectively). Levels were non-significantly higher (116.7 µg/

g; IQR, 43.3–230) in the early ART group compared with that in the

long-term ART group (61.3 µg/g; IQR, 16.3–165.3).

HIV-infected participants had significantly higher plasma sCD14

levels (29.7 ng/mL; IQR, 22.4–35.5) at 6 weeks postpartum when
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TABLE 1 Socio-demographic and clinical data of the study participants
at 6 weeks postpartum (n = 77), stratified by HIV status.

HIV-
infected
(n = 27)

HIV-
uninfected
(n = 50)

p-
value

Social demographics

Age (years)
[Median (IQR)] 32 (29–35) 26 (21–30) 3.95e-05

Breastfeeding type
Exclusive
Mixed

25 (92.6%)
2 (7.4%)

42 (84%)
8 (16%)

0.479

Postpartum alcohol use
Yes
No

1 (3.7%)
26 (96.3%)

1 (2%)
49 (98%)

1.000

Household meals
per day
[Median (IQR)] 3 (2-3) 3 (2-3) 0.569

Average stool frequency
Once daily
Greater or equal to
twice daily
Once every 2 days

21 (77.8%)
4 (14.8%)
2 (7.4%)

37 (75.5%)
9 (18.4%)
3 (6.1%)
Missing=1

0.883

Concurrent medications

Antibiotics use
Yes
No

15 (55.6%)
12 (44.4%)

2 (4%)
48 (96%)

4.48e-07

Anti-acid use
Yes
No

0 (0%)
27 (100%)

3 (6%)
47 (94%)

0.547

cART use
Yes
No

27 (100%)
0 (0%)

NA _

Clinical data

MUAC (cm)
[Median (IQR)] 27.0 (25.7–28.0) 25.4 (24.0–27.3) 0.031

BMI (kg/m2)
[Median (IQR)] 24.2 (22.1–25.6) 22.1 (19.6–23.9) 0.020

Mode of delivery
Spontaneous
Caesarean section

24 (88.9)
3 (11.1%)

50 (100%)
0 (0%)

0.039

cART duration
(months)
[Median (IQR); min-
max]

40.8 (13.5–86.1);
1.8–1455.4

NA _

cART duration group
Early ART (<2 years)
Long-term ART
(≥2 years)

8 (29.6%)
19 (70.4%)

NA _

Third trimester CD4
count (cells/µL)
[Median (IQR);
min-max]

355 (253–449);
176–635

NA _

Third trimester HIV
RNA suppression
Suppressed (≤1,000 23 (85.2%) NA _

(Continued)
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compared with their uninfected counterparts (18.9 ng/mL; IQR,

15.9–21.2), p < 0.0001 (Figure 1A). Similar results were found at 6

months postpartum where increased sCD14 levels were found in

HIV-infected (33.2 ng/mL; IQR, 25.0–36.2) compared with that in

HIV-uninfected women (22.7 ng/mL; IQR, 19.0–27.0), p = 0.0006.

In the HIV-infected group at 6 weeks postpartum, sCD14 levels

were similar when compared by cART duration and HIV viremia

groups (p = 0.449 and p = 0.921 respectively). In all women, at 6 weeks

postpartum, those taking antibiotics had significantly higher plasma

sCD14 levels (24.4 ng/mL; IQR, 22.1–35.3) (Figure 1B) compared with

those not taking antibiotics (20.1 ng/mL; IQR, 16.5–24.7). Plasma

sCD14 levels did not differ by antibiotic use in the subgroups of HIV-

infected and HIV-uninfected women (Figure 1C). At 6 months

postpartum, only HIV-infected women were on regular antibiotics,

and no significant difference in median sCD14 levels was noted on

comparison by antibiotic usage. Furthermore, plasma sCD14 levels at 6

weeks and 6 months postpartum did not differ between women with

elevated and normal fecal calprotectin levels.

Plasma LBP levels were similar between the HIV subgroups at 6

weeks or 6 months postpartum. In the HIV-infected group at 6 weeks

postpartum, LBP levels were similar when compared by cART duration

and HIV viremia groups (p = 0.632 and p = 0.453, respectively). At the

same time point, most HIV-infected women (88.2%) were on

cotrimoxazole prophylaxis, and there was no significant difference in

plasma LBP levels by antibiotic use. At 6 weeks postpartum,

significantly lower LBP levels were noted in women with normal

fecal calprotectin levels compared with those with elevated levels [18.2

ng/mL (IQR, 14.7–26.5) versus 26.4 ng/ml (IQR, 19.9–31.8), p = 0.022]

(Figure 2A). A similar trend was observed in the HIV-infected

subgroup at the same time point (Figure 2B).
Correlation between biomarkers of gut
inflammation, microbial translocation, and
systemic inflammation

To determine whether biomarkers of gut inflammation (fecal

calprotectin) and microbial translocation (sCD14 and LBP) are

associated with the systemic immune environment, a correlation
Frontiers in Immunology 06
matrix of these biomarkers and 13 proinflammatory cytokines and

chemokines was computed (Figure 3). These correlations were

calculated after stratification by HIV status to minimize confounding

by known effects of HIV on the cytokine and chemokine environment.
TABLE 1 Continued

HIV-
infected
(n = 27)

HIV-
uninfected
(n = 50)

p-
value

copies/mL)
Unsuppressed (>1,000
copies/mL)

4 (14.8%)

Third trimester HIV
Viremia
Low-level (<200 copies/
mL)
Viremic (≥200 copies/
mL)

23 (85.2%)

4 (14.8%)

NA _
BMI, body mass index; MUAC, mid-upper–arm circumference; IQR, interquartile range;
HIV, human immunodeficiency virus; CD4, cluster of differentiation 4; cART, combination
anti-retroviral therapy; RNA, ribonucleic acid. Statistical analysis: Group comparisons were
done using Mann–Whitney U-test or Fisher’s exact test where appropriate. P-values in bold
font are statistically significant at p < 0.05.
TABLE 2 Socio-demographic, water, hygiene and sanitation and
concurrent medications at 6 months postpartum (n = 77), stratified by
HIV status.

HIV-
infected
(n = 28)

HIV-
uninfected
(n = 49)

p-
value

Social demographics

Employment status
Employed
Unemployed

14 (50%)
14 (50%)

11 (22.4%)
38 (77.6%)

0.044

Household size
[Median (IQR)] 5 (4–5) 4 (3–5) 0.074

Family monthly income
(USD)
[Median (IQR)] 1,150 (800–

1,450)
650 (480–1,285) 0.017

Water, hygiene and sanitation

Toilet facility in household
Flush (outside/inside)
Blair

27 (96.4%)
1 (3.6%)

47 (95.9%)
2 (4.1%)

0.155

Households sharing toilet
[Median (IQR)] 1 (1–4) 3 (2–4) 0.106

Main drinking water source
Borehole
Piped water into dwelling
Protected well

18 (64.3%)
1 (3.6%)
9 (32.1%)

22 (44.9%)
5 (10.2%)
22 (44.9%)

0.293

Drinking water treatment
No
Yes

21 (75%)
7 (25%)

42 (85.7%)
7 (14.3%)

0.357

Current sewer burst/overspill
No
Yes

25 (89.3%)
3 (10.7%)

41 (85.4%)
7 (14.6%)
Missing = 1

0.736

Current diarrhea
(participant/household
member)
No
Yes

26 (92.9%)
2 (7.1%)

42 (89.4%)
5 (10.6%)
Missing = 2

0.705

Average stool frequency
Once daily
Greater or equal to twice daily
Once every 2 days

23 (82.1%)
4 (14.3%)
1 (3.6%)

34 (69.4%)
14 (28.6%)
1 (2%)

0.357

Concurrent medications

Antibiotics use
Yes
No

16 (57.1%)
12 (42.9%)

0 (0%)
49 (100%)

2.23e-09

Anti-acid use
Yes
No

0 (0%)
27 (100%)
Missing = 1

0 (0%)
49 (100%)

_

fron
IQR, interquartile range; HIV, human immunodeficiency virus. Statistical analysis: Group
comparisons were done using the Mann–Whitney U-test or Fisher’s exact test where
appropriate. P-values in bold font are statistically significant at p < 0.05.
tiersin.org

https://doi.org/10.3389/fimmu.2023.1280262
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Munjoma et al. 10.3389/fimmu.2023.1280262
In the HIV-uninfected women, at 6 weeks postpartum, fecal

calprotectin and LBP correlated positively with IL-10 (r = 0.38,

p = 0.0376) and IL-13 (r = 0.47, p = 0.0082), respectively (Figure 3A).

In the same group at 6 months postpartum, LBP correlated positively

with IL-6 (r = 0.40, p = 0.024) and fecal calprotectin (r = 0.31,

p = 0.032), whereas fecal calprotectin correlated positively with IL-2

(r = 0.43, p = 0.018) and IFN-g (r = 0.42, p = 0.022). The biomarker

sCD14 correlated positively with IL-2 (r = 0.36, p = 0.046) in this

subgroup at 6 months postpartum (Figure 3C).

In the HIV-infected group, pregnancy third-trimester CD4+ T-

lymphocyte count (En CD4) and pregnancy third-trimester HIV

RNA load (En VL) were included in the correlation analysis at 6

weeks postpartum (Figure 3B). We assumed that the time since the

third trimester of pregnancy may have caused insignificant changes

in CD4+ T-lymphocyte counts and HIV RNA load. Interestingly,

third-trimester CD4+ T-lymphocyte counts negatively correlated

with LBP (r = −0.47, p = 0.019), IL-6 (r = −0.43, p = 0.033) and

CRP (r = −0.42, p = 0.035). Third-trimester HIV RNA levels

(En VL) positively correlated with eight proinflammatory

cytokines and chemokines, p < 0.05 (Figure 3B). In the HIV-

infected group at 6 weeks postpartum, fecal calprotectin

correlated positively with LBP (r = 0.44, p = 0.027), IL-2

(r = 0.42, p = 0.037), and IFN-g (r = 0.49, p = 0.012), whereas

LBP correlated positively with IL-2 (r = 0.56, p = 0.002), IFN-g
(r = 0.48, p = 0.010), and IL-6 (r = 0.43, p = 0.026).
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At 6 weeks postpartum, sCD14 levels positively correlated

with IL-8 (r = 0.42, p = 0.029), TNF (r = 0.39, p = 0.044), and

IL-6 (r = 0.42, p = 0.029) in the HIV-infected group (Figure 3B). At

6 months postpartum, fecal calprotectin positively correlated

with IL-12p70 (r = 0.41, p= 0.044) in the HIV-infected

group (Figure 3D), whereas LBP levels positively correlated with

IL-2 (r = 0.50, p = 0.010), IL-1b (r = 0.42, p = 0.037), IL-6 (r = 0.68,

p = 0.0002), TNF (r = 0.50, p = 0.011), and IFN-g (r = 0.55,

p = 0.004). In the same group, plasma sCD14 levels positively

correlated with CRP (r = 0.52, p = 0.006) (Figure 3D).
Comparison of biomarkers of
systemic inflammation and vascular
injury according to HIV infection
status and follow-up time point

To explore the impact of HIV infection on the cytokine/

chemokine environment, we conducted a comparative analysis of

median biomarker levels between HIV-infected and HIV-

uninfected women at 6 weeks and 6 months postpartum

(Supplementary Figure 1). We did not observe any statistically

significant differences in the biomarker levels between the HIV-

infected and HIV-uninfected women even after applying multiple

testing correction to account for potential false positives.
B CA

FIGURE 1

Plasma sCD14 levels. Plasma sCD14 levels in all participants at 6 weeks postpartum, according to HIV infection status (A), antibiotic use (B), and
stratified for HIV status (C). Statistics: Mann–Whitney U-test.
BA

FIGURE 2

Plasma LBP levels by fecal calprotectin group. Plasma LBP levels in all participants (A) and HIV-infected women (B) at 6 weeks postpartum stratified
for fecal calprotectin group. Statistics: Mann–Whitney U-test.
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Gut microbiota assessment at 6 weeks and
6 months postpartum

For gut microbiota analysis, samples from 73 of the 77

participants at 6 weeks and 65 of the 77 participants at 6 months

postpartum could be used. There were four participants with

missing stool samples at 6 weeks and five participants with

missing stool samples at 6 months. Seven samples were dropped

from analysis due to low sequence read numbers. Overall, alpha

diversity measures (Shannon and Simpson index) did not differ

significantly between the two follow-up time points or by HIV

status (Figure 4A). However, there was a significant difference in

beta diversity in all participants between the two time points

(p = 0.001). Beta diversity also differed significantly by HIV status

at 6 weeks (Figure 4B) and 6 months (Figure 4C) postpartum.

We conducted a comparative analysis of the gut microbiota in the

HIV-infected group at 6 weeks postpartum, considering third-

trimester HIV RNA suppression (cutoff of ≤1,000 copies/mL) and

third-trimester CD4+ T-lymphocyte status (cutoff of ≤350 cells/µL).
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There were no significant differences in the alpha diversity (assessed

by Shannon and Simpson indices) and beta diversity according to

HIV RNA suppression and CD4+ T-lymphocyte status. In addition,

there were no significant differences in either alpha or beta diversity

stratified by antibiotic use in the HIV-infected group at 6 weeks and 6

months postpartum (data not shown). All HIV-infected participants

in our study were receiving cART; therefore, the effects of HIV and

cART on the gut microbiota could not be separated.

Our study examined the mean relative abundance of the top 10

phyla of the gut microbiota in all women (Figure 5). The

predominant phyla identified were Firmicutes (86.4%),

Actinobacteriota (7.6%), Bacteroidota (4.9%), Proteobacteria (0.8%),

Spirochaetota (0.08%), Verrucomicrobiota (0.06%), and

Desulfobacterota (0.04%). In addition to that, the mean relative

abundance of the top 10 genera was also determined. The

predominant genera were Clostriduim_sensu_stricto_1 (16.6%),

Romboutsia (16.1%), Agathobacter (5.3%), Faecalibacterium (4.9%),

Prevotella (4.4%), Sarcina (4.4%), and Blautia (3.8%). Notably, in the

HIV-infected group, a lower relative abundance of the genera
B

C D

A

FIGURE 3

Correlation matrix analysis of plasma biomarkers in HIV-infected and HIV-uninfected women at 6 weeks and 6 months postpartum. HIV-uninfected
participants at 6 weeks postpartum (A), HIV-infected participants at 6 weeks postpartum (B), HIV-uninfected participants at 6 months postpartum
(C), and HIV-infected participants at 6 months postpartum (D). Correlations marked by X were either not present or non-significant at p < 0.05.
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FIGURE 5

Overall relative abundance for the top 10 phyla of the gut microbiota. The top 10 phyla by order of decreasing relative abundance at both 6 weeks
and 6 months postpartum are indicated.
B C

A

FIGURE 4

Microbiota characteristics at 6 weeks and 6 months postpartum according to HIV status. Alpha diversity (Shannon and Simpson index) comparison
by HIV status at both 6 weeks and 6 months postpartum (A), PCoA for beta diversity (Bray–Curtis) comparison by HIV infection status at 6 weeks
postpartum (B), and PCoA for beta diversity (Bray-Curtis) comparison by HIV status at 6 months postpartum (C).
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Akkermansia and Collinsella was noted at 6 months postpartum

compared with that at 6 weeks postpartum. However, in the same

group, a higher relative abundance of the genera Lachnospira,

Prevotella, Bacteroides, and UCG.005 from the Oscillospiraceae

family was noted at 6 months compared with that at 6 weeks

postpartum. These findings highlight dynamic shifts in the relative

abundance of specific taxa in the postpartum period.

The gut microbiota was compared to determine taxa

significantly associated with HIV infection status at both 6 weeks

and 6 months postpartum. At 6 weeks postpartum, HIV infection

was significantly associated with lower abundance of genus

Clostriduim_sensu_stricto_1 and family Clostridiaceae from the

Firmicutes phylum (Figure 6A). At the same time point, HIV

infection was significantly associated with a higher abundance of

taxa from the Actinobacteriota phylum including the genera Slackia

and Collinsella (Figure 6A). At 6 months postpartum, only taxa

from the Firmicutes phylum significantly differed by HIV infection

status (Figure 6B). The genus Clostriduim_sensu_stricto_1 was

significantly abundant in the HIV-uninfected group at both 6

weeks and 6 months postpartum.

We investigated longitudinal changes in the gut microbiota from

pregnancy to 6 months postpartum. The pregnancy gut microbiota

from our study population has been previously described in detail (34).

In brief, species richness was lower (Shannon, p = 0.0092, and Simpson,

p = 0.012) in the HIV-infected women compared with that in the

uninfected peers. Beta diversity assessed using Bray–Curtis dissimilarity

index showed significant differences in diversity between HIV-infected

and HIV-uninfected pregnant women. Alpha diversity did not differ by

CD4+ T-lymphocyte group and viral load suppression using similar

cutoffs used in our study. Infection with HIV was associated with

reduced abundance of Clostridium, Bacteroides, Bifidobacterium, and

Faecalibacterium with an observed increase in Actinomyces.

In HIV-uninfected women, there were no differences in

microbial evenness between pregnancy and the two follow-up

time points (Supplementary Figure 2A). However, a significance

was noted in microbial richness (p = 0.017) when comparing the
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three time points. In the HIV-infected group, both evenness and

richness indices showed an increase from pregnancy to 6 months

postpartum although the difference was non-significant for

evenness (Supplementary Figure 2B). Beta diversity comparison

showed a significant difference (p = 0.001) when compared by time

point in HIV-uninfected (Supplementary Figure 2C) and HIV-

infected groups, p = 0.001 (Supplementary Figure 2D).

Furthermore, the effects of cART duration and HIV viremia on

the gut microbiota in the HIV-infected group were investigated at 6

weeks postpartum. No differences were observed for both Alpha

and Beta diversity when compared between early versus long-term

cART groups and low-level viremia versus viremic groups.
Association of inflammatory and
vascular injury biomarkers with
the gut microbiota abundance

We determined the association of the gut microbiota with

inflammatory and vascular injury biomarkers after stratification by

HIV infection status using the MaAsLin2 package in R. Only

associations remaining significant (q < 0.05) after BH FDR

correction were reported (Table 3). To test for microbial taxa

associations with proinflammatory and vascular injury biomarkers,

microbial features that appeared in ≥25% of the total number of

samples assayed. In the HIV-infected group at 6 months postpartum,

the genera Catenibacterium and Haemophilus positively associated

with levels of IL-2 and IL-6 respectively (q = 0.021 and q =

0.017, respectively).

In the HIV-uninfected group at 6 months, the Actinobacteriota

phylum positively associated with LBP levels (q = 0.018), whereas the

Firmicutes phylum negatively associated with IL-2 levels (q = 0.041).

The family Coriobacteriaceae positively associated with IL-2 levels

(q = 0.029), and the genus Clostridia_UCG.014 negatively associated

with IFN-g levels (Table 3). In the same group, the genusActinomyces

positively associated with fecal calprotectin levels (q = 0.032).
B

A

FIGURE 6

Association of bacterial taxa with HIV infection status. (A) Comparisons at 6 weeks postpartum and (B) 6 months postpartum are shown. *p < 0.05
and ***p < 0.001.
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Discussion

Our study addresses associations of gut inflammation, microbial

composition, and systemic inflammation in HIV-infected lactating

women on cART in SSA where data have been scarce. None of the

women in our study suffered from AIDS or HIV-related symptoms,

and the levels of systemic inflammation were low. Therefore, no

strong HIV-related alterations were observed; however, we would like

to emphasize the following key results.
Fron
1. In our study population, similar levels of gut inflammation

(fecal calprotectin levels), microbial translocation (LBP

levels) , and important descriptors of systemic

inflammation (TNF, IL-6, IL-8, and CRP) were found in

HIV-infected and HIV-uninfected individuals.
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2. HIV infection can affect intestinal inflammation in more

immune-compromised individuals, because fecal

calprotectin levels correlated with third trimester CD4+

T-lymphocyte counts.

3. HIV-infected participants showed increased levels monocyte

activation (increased sCD14 levels), despite taking cART

and prophylactic antibiotics.

4. There is a relationship between intestinal inflammation,

microbial translocation, and systemic inflammation

because fecal calprotectin, LBP, and sCD14 correlated

with biomarkers of systemic inflammation.

5. Stratified by HIV status, the gut microbiota differed in beta

diversity but not alpha diversity.

6. Several gut microbial taxa were significantly associated with

HIV status and systemic inflammation.
TABLE 3 Gut microbial taxa and systemic inflammation.

Feature Metadata Coefficient N N not 0% q-value

HIV-infected (6 weeks postpartum)

p:Proteobacteria.c:Gammaproteobacteria.o:Burkholderiales.f:Oxalobacteraceae CRP −0.6080931 25 4 0.023359

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Eubacterium_eligens_group ICAM-1 0.43383237 25 3 0.000235

HIV-uninfected (6 weeks postpartum)

p:Firmicutes.c:Bacilli.o:Lactobacillales.f:Leuconostocaceae.g:Weissella IL-4 0.9326621 48 9 6.04e-08

HIV-infected (6 months postpartum)

p:Firmicutes.c:Bacilli.o:Erysipelotrichales.f:Erysipelatoclostridiaceae.g:Catenibacterium IL-2 1.32753279 23 9 0.021138

p:Proteobacteria.c:Gammaproteobacteria.o:Pasteurellales.f:Pasteurellaceae.g:Haemophilus IL-6 1.58409509 23 6 0.017096

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Eubacterium_eligens_group IL-2 0.55998378 23 4 0.001936

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Eubacterium_eligens_group IL-10 0.60010197 23 4 0.000557

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Anaerostignum IL-4 0.45052327 23 3 0.017532

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Butyrivibrio IL-6 0.76872521 23 3 4.03e-05

p:Firmicutes.c:Clostridia.o:Lachnospirales.f:Lachnospiraceae.g:Butyrivibrio TNF 0.70911458 23 3 0.001431

HIV-uninfected (6 months postpartum)

p:Actinobacteriota LBP 0.83076488 42 42 0.018545

p:Firmicutes IL-2 −0.1308627 42 42 0.041327

p:Actinobacteriota.c:Coriobacteriia.o:Coriobacteriales.f:Coriobacteriaceae IL-2 0.91371356 42 41 0.029222

p:Firmicutes.c:Clostridia.o:Clostridia_UCG.014.f:Clostridia_UCG.014.g:Clostridia_UCG.014 IFN-g −1.5113457 42 36 0.033319

p:Actinobacteriota.c:Actinobacteria.o:Actinomycetales.f:Actinomycetaceae.g:Actinomyces FC 0.97433139 42 32 0.03262

p:Firmicutes.c:Bacilli.o:Erysipelotrichales.f:Erysipelatoclostridiaceae ICAM-1 2.02529785 42 27 0.033465

p:Firmicutes.c:Bacilli.o:Erysipelotrichales.f:Erysipelotrichaceae.g:Solobacterium ICAM-1 1.74957426 42 12 0.033465

p:Actinobacteriota.c:Coriobacteriia.o:Coriobacteriales.f:Eggerthellaceae.g:Eggerthella FC 1.21725587 42 9 0.03262

p:Actinobacteriota.c:Coriobacteriia.o:Coriobacteriales.f:Eggerthellaceae.g:Eggerthella IL-2 1.3634006 42 9 0.0208

p:Firmicutes.c:Bacilli.o:Lactobacillales.f:Lactobacillaceae.g:Lactobacillus IL-8 1.04516168 42 9 0.041506

p:Fusobacteriota.c:Fusobacteriia.o:Fusobacteriales.f:Fusobacteriaceae FC 1.30098884 42 6 0.001424
fro
Association between gut microbial taxa and microbial translocation, and systemic and gut inflammation biomarkers. N = total number of samples used in model; N not 0% = number of samples
in which microbial feature is not 0%; FC, fecal calprotectin.
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Effect of HIV infection on
biomarkers of gut inflammation
and microbial translocation

In our population of asymptomatic HIV-infected and HIV-

uninfected lactating women, intestinal inflammation (as assessed by

fecal calprotectin levels) was not affected by HIV status. Subgroups

with elevated fecal calprotectin levels included women with third-

trimester CD4+ T-lymphocyte counts <350 cells/µL consistent with

findings from previous studies (35, 36). Other studies in HIV-

infected individuals described similar (37, 38) or elevated fecal

calprotectin levels (8, 9), most likely depending on the degree of gut

mucosal damage and immune dysfunction despite taking cART

(39). In our study, above normal median fecal calprotectin levels

were observed in HIV-infected cART-experienced individuals, in

agreement with studies in cART-naïve Italians (40, 41).

In line with an overall well-preserved intestinal barrier with

similar translocation of LPS and microbial antigens into the

systemic circulation, we found no effects of HIV status on plasma

LBP levels in our population. This contradicts previous studies

showing elevated plasma LBP levels in HIV-infected adults from

Europe and Africa (3, 10). However, our findings resembled results

from studies in Ugandan, American, and Chinese adults (8, 42–44).

Moreover, a study in Swedish HIV-infected adults revealed a

decrease in LBP upon the commencement of cotrimoxazole

prophylaxis (45). However, plasma LBP correlated positively with

fecal calprotectin levels in some of our analyses, confirming that gut

inflammation can impact the translocation of microbes and/or LPS

in HIV-infected individuals on cART.

HIV-infected individuals in our study showed activation of

innate immunity, indicated by persistently high plasma sCD14

levels, a biomarker for innate immune activation including

monocytes and macrophages (46), and an independent predictor

for mortality in HIV-infected individuals on cART (47, 48). Elevated

sCD14 levels were also found in HIV-infected European and African

children as well as African and Chinese adults (2, 3, 8, 13, 36, 43, 44,

46, 49, 50). We did not determine the source of monocyte activation

in our population but our results are consistent with HIV-induced

microbial translocation potentially driving monocyte/macrophage

activation as demonstrated in another study (47).

In our study, plasma sCD14 levels did not differ significantly by

antibiotic use and correlated neither with fecal calprotectin nor with

plasma LBP levels. These findings are inconsistent with another

study in cART-naïve Ugandan adults with recent HIV infection,

which reported significant correlations between LBP and sCD14

levels (51). Differences between both study populations and/or

cotrimoxazole prophylaxis in our study might explain this

discrepancy; however, this warrants further investigations.
Association of systemic inflammation
biomarkers with HIV infection, microbial
translocation, and gut inflammation

In line with an overall preserved immune function in our study

population, we found overall similar plasma levels of important
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systemic inflammatory biomarkers (TNF, IL-6, IL-8, and CRP) in

HIV-infected and HIV-uninfected women, consistent with previous

work (2, 17, 52). Our results thus likely reflect protection from

systemic inflammation due to cART treatment, as observed in other

studies (14, 53). The situation was shown to be different in cART-

naïve and more immune-suppressed cART-experienced individuals

who showed increased levels of inflammatory biomarkers (49,

53–57).

However, our detailed analyses revealed some effects of HIV

infection on the intestinal immune system: Fecal calprotectin

positively correlated with proinflammatory cytokines in the HIV-

infected group, consistent with findings from another study (8).

Furthermore, in the HIV-infected group, LBP, a biomarker of

microbial translocation, positively correlated with IL-2, IL-6, 1L-

1b, IFN-g, and CRP. Moreover, as shown in some (58, 59) but not

all previous studies (60), CD4+ T-lymphocyte counts inversely

correlated with LBP, CRP, and IL-6. These findings indicate some

effects of gut inflammation and microbial translocation on systemic

inflammation mainly in the more immune-compromised

individuals in our study.

Furthermore, some cytokines seem to be sensitive to low-level

HIV viremia; we observed a strong correlation of third-trimester

HIV RNA levels with IL-4, IL-10, IL-6, IL-13, IL-1b, IL-13, IL-
12p70, and TNF. Similar findings were also observed in suppressed

and unsuppressed HIV-infected French and African participants

(51, 61). Some effects of HIV infection on the immune system are

likely mediated by macrophage/monocyte activation and

inflammation (62). In our and a previous Spanish study (4), the

monocyte/macrophage activation marker sCD14 correlated with

IL-2, IL-6, TNF, and CRP.

Microbial translocation might also be relevant in the HIV-

uninfected group, where we found a positive association of taxa

from the Actinobacteriota phylum with LBP and fecal calprotectin,

as well as the genus Actinomyces with fecal calprotectin in line with

existing knowledge (63).
The gut microbiota and its association with
microbial translocation, gut, and systemic
inflammation biomarkers

HIV infection can lead to a decrease in gut microbiota diversity,

potentially resulting in the loss of beneficial bacteria and the

proliferation of harmful ones (64). In contrast, the gut microbiota

richness and evenness in our study were similar between the HIV-

infected and HIV-uninfected groups in line with previous studies in

cART-treated American and Spanish adults as well as South African

and Italian children (37, 50, 65–68). In contrast, in other studies,

reduced (16, 17, 64, 69) or increased (41) alpha diversity was

observed in HIV-infected cART-naïve individuals. Furthermore,

in our study, microbiota richness or evenness was not influenced by

immune status, in agreement with some (34, 44, 70, 71) but not all

previous studies in HIV-infected individuals (72). Most likely,

cART-mediated viral suppression can restore or preserve immune

status sufficiently that gross effects of HIV on the gut microbiota are

no longer detectable.
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We observed a decrease in microbial richness in the HIV-

uninfected group from pregnancy to 6 weeks postpartum, possibly

related to effects of birth and lactation. We also observed increasing

richness in the HIV-infected group from pregnancy to 6 months

after birth. The increase could have been an effect of better maternal

compliance with cART in pregnancy and lactation to prevent HIV

mother-to-child transmission, which would also drive a partial

restoration of the gut-associated lymphoid tissue. However, in

other studies, cART use caused substantial alterations to the

composition of the gut microbiota (41) and a decrease in alpha

diversity with time (73, 74).

We show significant inter-community differences (beta

diversity) of the gut microbiota between HIV-uninfected and

HIV-infected lactating women on cART. Similar findings were

observed in cART-treated American, Spanish, and Chinese adults

as well as South African and Italian cART-treated children (37, 44,

50, 64, 66, 67, 75). However, no significant variability in gut

microbiota composition due to HIV was found in other studies

(17, 68), possibly related to varying degrees of immune dysfunction

or co-infection in the study populations.

At phylum level, we found high abundance of Firmicutes,

Actinobacteriota, and Proteobacteria in all participants as

previously reported in Asian and American cART-treated adults

(44, 68, 76). Increased relative abundances of taxa from the

Actinobacteriota phylum were observed in the HIV-infected

group at 6 weeks postpartum in line with a Japanese study in

cART-treated adults (76).

We found a higher relative abundance of the order

Coriobacteriales and the genera Collinsella and Slackia in the

HIV-infected group, consistent with previous findings in

Zimbabwean children and cART-experienced Japanese

participants (75, 76). The genus Collinsella has been previously

linked to detrimental outcomes such as obesity, non-alcoholic

steatohepatitis, and dyslipidemia (77). The lower relative

abundance of genus Collinsella in the HIV-infected group noted

by Zhao et al. was inconsistent with our results but concurred with

other studies in American and Chinese adults (44, 68).

At genus level, we observed lower relative abundance of genus

Clostridium sensu_stricto_1 in the HIV-infected group at 6 weeks

postpartum, consistent with previous studies in African and

Chinese adults (44, 59). Clostridium species are important

obligate anaerobes in the human gut with a significant role in

fermentation and metabolism of carbohydrates and amino acids. In

another Chinese study, Clostridium sensu_stricto_1 positively

correlated with CD4+ and CD8+ T-lymphocytes counts,

suggesting this taxon as a potential marker of improved immune

status in HIV-infected participants (70).

In our study, the relative abundance of the genera Romboutsia

and Clostridium sensu_stricto_1 was lower in the HIV-infected

group at 6 months postpartum in line with a study in South

African children (37). The significantly lower relative abundances

of Romboutsia and Clostridium sensu_stricto_1 in the HIV-infected

women may signify compromised metabolism and imbalanced

intestinal homeostasis compared with the HIV-uninfected peers.

In line with the beneficial role of Clostridium species, we found a

negative association of the genus Clostridia_UCG.014 with IFN-g in
Frontiers in Immunology 13
the HIV-uninfected at 6 months postpartum, supporting a role in

attenuating inflammation within the human gut.

More than 50% of the HIV-infected participants in our study

were taking cotrimoxazole prophylaxis following the local and

WHO guidelines (78). In our study, cotrimoxazole prophylaxis

had no significant effects on general descriptors of the gut

microbiota consistent with findings from a study in HIV-

uninfected Ugandan adults and children (79, 80). These findings

were confirmed with antibiotics other than cotrimoxazole in HIV-

infected and HIV-uninfected individuals (69). However, in a study

in African children, significant differences were noted in seven

species of the gut microbiota with lower abundances in the

cotrimoxazole treated group (80).

Assessing the relationship between HIV-associated microbial

dysbiosis and systemic inflammation, we identified significant

correlations between the relative abundance of certain taxa and

plasma inflammatory biomarkers, warranting further investigations.

Our findings were inconsistent with studies in Australian cART-naïve

adults and Italian cART-experienced children where correlation of

gut microbiota with systemic cytokines and microbial translocation

markers was not found (17, 50).
Strengths and limitations of the study

The strengths of our study lie in its comprehensive approach,

encompassing longitudinal assessments of multiple intestinal and

systemic inflammatory biomarkers, as well as the gut microbiota in

HIV-infected and HIV-uninfected controls from the same

community. However, there are limitations that should be

acknowledged. First, because of the inclusion criteria of our study,

we were unable to disentangle the effects of cART and HIV infection,

as all HIV-infected women were receiving cART. Furthermore, the

relatively small sample size hampers the generalizability of our

conclusions, and it is possible that certain associations between

microbial taxa and inflammatory biomarkers may have been

overlooked. We are therefore also underpowered to draw

meaningful conclusions from cART duration and HIV viremia

group comparisons. Moreover, our study exclusively comprised

lactating female participants, with no age-matched non-lactating

controls that may restrict the generalizability of our findings to

other populations. In addition, we did not directly assess microbial

translocation, and measurements of 16S rDNA levels, as previously

done (15) and could be used in follow-up studies. Finally, non-

bacterial infections, such as protozoa, were not tested in our study.
Conclusion

In our study population of HIV-infected lactating women on

cART without AIDS and HIV-related symptoms, many important

parameters of the immune system were not affected by HIV.

However, we identified effects of HIV on gut inflammation,

microbial composition, and translocation as well as some

cytokines, in line with a role of intestinal pathology contributing

to systemic inflammation in HIV.
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SUPPLEMENTARY FIGURE 1

Plasma proinflammatory and vascular injury biomarkers in HIV infected and
HIV uninfected women. Comparison of plasma proinflammatory and vascular

injury biomarkers in HIV-infected vs. HIV uninfected women at 6 weeks

postpartum and 6 months postpartum. Significance after Bonferroni
correction is indicated as non-significant (ns), q<0.05 (*), q< 0.01 (**) or q<

0.001 (***). CRP, c-reactive protein; ICAM, intercellular adhesion molecule;
IL, Interleukin; TNF, tumour necrosis factor; INF-g, interferon gamma; VCAM,

vascular cell adhesion molecule.

SUPPLEMENTARY FIGURE 2

Comparison of pregnancy, 6 weeks and 6 months postpartum gut
microbiota. Alpha diversity comparison in HIV-uninfected women (A) and
HIV-infected women (B). Beta diversity comparison in HIV-uninfected
women (C) and HIV-infected women (D).
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