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Maternal Immune Activation (MIA) has been linked to the pathogenesis of pre-

eclampsia and adverse neurodevelopmental outcomes in the offspring, such as

cognitive deficits, behavioral abnormalities, and mental disorders. Pre-eclampsia

is associated with an activation of the immune system characterized by

persistently elevated levels of proinflammatory cytokines, as well as a decrease

in immunoregulatory factors. The Cholinergic Anti-inflammatory Pathway (CAP)

may play a relevant role in regulating the maternal inflammatory response during

pre-eclampsia and protecting the developing fetus from inflammation-induced

damage. Dysregulation in the CAP has been associated with the clinical evolution

of pre-eclampsia. Some studies suggest that therapeutic stimulation of this

pathway may improve maternal and fetal outcomes in preclinical models of

pre-eclampsia. Modulation of vagal activity influences the CAP, improving

maternal hemodynamics, limiting the inflammatory response, and promoting

the growth of new neurons, which enhances synaptic plasticity and improves

fetal neurodevelopment. Therefore, we postulate that modulation of vagal

activity may improve maternal and fetal outcomes in pre-eclampsia by

targeting underlying immune dysregulation and promoting better fetal

neurodevelopment. In this perspective, we explore the clinical and

experimental evidence of electrical, pharmacological, physical, and biological

stimulation mechanisms capable of inducing therapeutical CAP, which may be

applied in pre-eclampsia to improve the mother’s and offspring’s quality of life.

KEYWORDS

maternal immune activation, pre-eclampsia, cholinergic anti-inflammatory pathway,
neurodevelopmental outcomes, vagus nerve stimulation, quality of life
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1 Introduction

Pre-eclampsia is a condition characterized by hypertension,

inflammation, and organ damage during pregnancy, and it has

been associated with cognitive deficits, behavioral abnormalities,

and neurodevelopmental issues in the offspring (1). Evidence

indicates that the Cholinergic Anti-inflammatory Pathway (CAP)

could significantly impact the development of the fetus and the

newborn exposed to pre-eclampsia by functioning as a

neuroimmunological network that facilitates internal monitoring.

This pathway connects the central nervous system (CNS) through

the vagus nerve, regulating inflammation in the body (2). Previous

research indicates that the downregulation of a7 nicotinic

acetylcholine receptor (a7nAChR) has a significant impact on the

CAP to regulate systemic inflammation, particularly in cases of pre-

eclampsia (3). However, this downregulation and its potential link

to the onset of pre-eclampsia are areas still under investigation.

Similarly, while there is some evidence to suggest that dysregulation

of the CAP may contribute to the development of pre-eclampsia,

further studies are needed to substantiate this claim (4).

This perspective article explores some vagal stimulation

techniques that modulate the CAP and improve outcomes in

preclinical pre-eclampsia models. Particularly, we explored the

potential of modulating vagal activity, including the use of

electrical Vagus Nerve Stimulation (VNS), to enhance maternal

and fetal outcomes by targeting immune dysregulation and

promoting fetal neurodevelopmental alterations caused by

inflammation. This perspective article discusses the role of

inflammatory response in triggering pre-eclampsia and its impact

on neurodevelopment, emphasizing the increased risk of

neurodevelopmental problems and mental disorders in the

offspring. We position the modulation of vagal activity, including

but not limited to VNS, as a promising, safe, and efficient

therapeutic intervention, primarily backed by preclinical findings,

warranting further exploration. This perspective proposes that

modulating vagal activity using electrical, pharmacological,

magnetic, and physical techniques, such as breathing and

respiratory stimulation, might be potential approaches to address

inflammatory dysregulation. It is hypothesized that such techniques

could potentially improve outcomes in pre-eclampsia, minimize

neurodevelopmental damage, and enhance the quality of life for

affected mothers and their offspring (a visual abstract is available as

Supplementary Material).
2 The maternal immune system
in pregnancy: implications
for pre-eclampsia

During pregnancy, the maternal immune system undergoes

essential adaptations to protect both the mother and fetus from

antigenic challenges while maintaining tolerance to the fetal allograft

(5). Evidence has described an association between the balance of

pro- and anti-inflammatory cytokines and placental development

and function (6). Some research suggests that an inflammatory
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response during pregnancy is associated with complications like

pre-eclampsia (7, 8). In animal models of pre-eclampsia, it has

been found an increase in serum concentration of IFN-g, IL-6,
TNF-a, and IL-17, in addition to a decrease in IL-4 and IL-10,

accompanied by placental damage (9–12). Meanwhile, in women

with pre-eclampsia, it has been found an increase in pro-

inflammatory cytokine serum levels such as IL-2, IL-4, IL-6, IL-15,

IL-16, IL-17, IL-22, IL-35, IFN-g, and TNF-a, as well as a decrease in
IL-10 concentration (13–19). Therefore, the IL-2/IL-10 and TNF-

a/IL-10 ratios have been proposed to assess the risk of developing

pre-eclampsia (20). IL-22/CCL22 and IL-2/IL-4 ratios have also been

considered (19). Conversely, some other authors (18, 21) have

reported no changes in pro-inflammatory cytokine levels in pre-

eclampsia. Consequently, it has been proposed that differences in the

inflammatory profile reported in the studies could be explained by the

sample size, the polymorphisms found in the population, and the

sample collection conditions (22). Present findings predominantly

point towards an association between inflammation and pre-

eclampsia, rather than a conclusive cause-and-effect dynamic. This

accentuates the need for more in-depth investigations to elucidate the

relationship between cytokines and pre-eclampsia.

Furthermore, growth restriction has been observed in animal

models of pre-eclampsia (23, 24). Similarly, pre-eclampsia induces

fetal growth restriction in humans, which has been considered a

predictor of maternal and neonatal prognoses (25, 26).

Additionally, prenatal exposure to pre-eclampsia has been

identified as a risk factor for developing type 2 diabetes and

cardiovascular disease (27). Also, in recent years the study of

neurodevelopmental repercussions following prenatal exposure to

pre-eclampsia has gained interest and has been associated with

inflammatory alterations (12, 28).

It has been described that the presence of pro-inflammatory

cytokines during pregnancy due to Maternal Immune Activation

(MIA) affects neurodevelopmental processes in the fetus (29). IL-6

and IL-17 have been highly implicated in causing the priming of

microglia and leukocytes, which increases the risk of developing

neuropsychiatric diseases characterized by inflammatory cytokines

(30–33).

IL-6 has been implicated in altered synaptogenesis in animal

models and impaired functional connectivity in human

frontoparietal networks (8, 34, 35). Conversely, IL-17 and TNF-a
have been implicated in increased Blood-Brain Barrier (BBB)

permeability and damage to the cerebral vasculature, as well as in

neural tube defects (36–38). Finally, increased IFN-g has been

associated with white matter damage in the central nervous

system in preterm neonates (39).
3 Maternal immune activation and the
cholinergic anti-inflammatory
pathway in pre-eclampsia

MIA is a term that refers to an increase in proinflammatory

markers during pregnancy, it is characterized by the activation of

the maternal immune system in response to infectious or infectious-
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like stimuli (40). This activation leads to a series of changes in

cytokine levels and immune responses that can affect the developing

fetus, particularly the central nervous system, and give rise to

adverse phenotypes (41). MIA typically occurs during the middle

to late stages of gestation which are considered a critical period for

brain development. During this time, adverse environmental

conditions can impact neurogenesis (42). Thus, MIA can impact

fetal development and have long-term effects on the offspring,

leading to various neurological disorders. According to relevant

findings, these disorders share genes and molecular mechanisms

and are potentially associated with the abnormal structure and

dysregulation of the amygdala (43). Furthermore, evidence has

shown a link between MIA and increased emotional and

behavioral problems in offspring throughout their childhood and

adolescence. The findings support the idea that MIA can pose a risk

to children’s mental and neurodevelopmental health during

prenatal programming (44).

Several pregnancy complications, such as preterm birth, fetal

growth restriction, and pre-eclampsia, may involve MIA. Pre-

eclampsia is mainly linked to neurodevelopmental problems such

as Autism Spectrum Disorder (ASD) and neurodevelopmental

delay (45). However, it is possible that the inflammatory immune

response seen in preeclamptic women has similar consequences on

microglia, as observed in MIA, and may affect fetal microglia

stability (45). A recent preclinical study revealed that fetal brain

inflammation might be linked to the pathological mechanism

connecting maternal pre-eclampsia and brain dysfunction in

offspring. These findings are intriguing, as they suggest that pre-

eclampsia in mothers might lead to altered inflammatory conditions

in the fetal brain (46).

CAP inhibits the release of pro-inflammatory cytokines. This

process requires the activation of the vagus nerve through a7
receptors (47). Tracey’s research has highlighted the vagally

mediated CAP as an effective means of rapidly reducing

inflammation (48). Relevant preclinical findings suggest that the

activation of the a7nAChR attenuates pre-eclampsia-like

symptoms, and this protective effect is likely the result of

inhibiting inflammation through the NF-kB p65 pathway (49).

According to a pertinent review by Wedn et al., the involvement

of both peripheral and central cholinergic pathways plays a crucial

role in the development and progression of pre-eclampsia.

Interestingly, increasing the CAP could be a potential strategy for

effectively managing pre-eclampsia and protecting against its

associated maternal and fetal complications (50).
4 The impact of pre-eclampsia on
neurodevelopment: insights into
cognitive, behavioral, and mental
disorders in offspring

Neurodevelopmental disorders are an issue that, according to

research, may be related to insults during maternal pregnancy (51).

Therefore, maternal health care during this period is crucial, as it is

vital for both the mother's and the offspring's health (52). The
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inflammatory process and MIA caused by pre-eclampsia in the

mother can affect both the mother's well-being and potentially lead

to short, medium, and long-term problems in the neurodevelopment

of the offspring (1, 53, 54). This association can generate an impact on

the neurological basis of the offspring in the acquisition, retention, or

application of specific skills or sets of information, as well as in

memory, perception, language, problem-solving, executive function

control, or social interaction; which produces a deficit in personal,

social, academic, or occupational development (55). Several reports

have found a significant association between pre-eclampsia and an

increased risk of neurodevelopmental problems in offspring and

mental disorders (56). In a recent study, researchers found that

children born to mothers with pre-eclampsia were at higher risk of

developmental delays, including cognitive, motor, and language

difficulties (57), an increased risk of loss of cognitive functioning

(58–60), Attention Deficit-Hyperactivity Disorder or ADHD (1, 28,

60–62), (1, 60, 61, 63), schizophrenia (28, 61), and epilepsy (1, 60, 61).

The aforementioned clinical conditions may be associated with

functional and neurochemical changes described in the offspring of

mothers with pre-eclampsia, such as altered dopamine levels, a

neurotransmitter involved in learning and reward in specific brain

regions (58, 64, 65), and the regulation of oxidative stress in the

developing brain (61). The underlying mechanisms of this

association are not yet fully understood. However, it is thought to

involve disrupting normal fetal brain development due to impaired

blood flow and oxygen supply. Preclinical studies have shown that

pre-eclampsia can cause changes in the fetal brain’s structure and

function, leading to altered behavior and cognitive deficits (4).

On the other hand, cardiovascular and metabolic diseases have

been associated with the late-life outcomes of preeclamptic

offspring (66). Furthermore, some neurodevelopmental and

psychiatric disorders, such as ADHD and disruptive behavioral

disorders, were significantly observed as early as six years after birth

in the offspring of mothers with pre-eclampsia and perinatal

complications in Finland (67). These findings have been reported

in Taiwan, where not only ADHD was significantly increased, but

also ASD and intellectual disability (60). Also, these psychiatric

disorders cause significant distress in parents and children, resulting

in disproportionate expenses during the assessment and treatment

of these conditions. Further, the economic impact of these

situations can be seen in the financial dependence of young adults

with childhood ADHD (68).
5 Modulation of vagal nerve
activity and potential
applications in pregnancy

Electrical Vagus Nerve Stimulation (VNS) is a contemporary

method that applies electrical pulses to the vagus nerve. This affects

both upward- and downward-projecting nerve fibers, influencing the

brainstem and internal organs. It plays a role in modulating autonomic

functions as well as neuroendocrine and neuroimmunological systems

(69). Vagal efferent fibers, which are prevalent in internal organs,

facilitate communication between the nervous and immune systems,
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primarily via the CAP. The VNS has been used for over 20 years, but

there is limited information on its safety during pregnancy. Voinescuo

and Meador analyzed data from the International Registry of

Antiepileptic Drugs and Pregnancy (EURAP) to assess pregnancy

outcomes in 26 pregnancies among 25 women with epilepsy who

used implanted VNS device during pregnancy. The sample size was too

small to draw firm conclusions on the safety of implanted vagus nerve

stimulators in pregnancy, but the study adds to the literature and

encourages further research to improve the evidence for managing

women with epilepsy during pregnancy (70). Preclinical relevant

evidence has studied the effect of VNS during pregnancy and its

underlying mechanisms in pre-eclampsia. Pregnant rats were used as a

model, and implanted VNS therapy was found to decrease systolic

blood pressure and urinary protein levels while mitigating abnormal

pregnancy outcomes. VNS also reduced the inflammatory response by

decreasing cytokine levels in the maternal serum, increasing the

expression of placental a7nAChR and effectively inhibited placental

NF-kB p65 activation. The study suggests thatmaternal VNS treatment

is safe and protective in a pregnant rat model (71).

Transcutaneous auricular vagus nerve stimulation (taVNS), a

non-invasive alternative to implanted VNS, has garnered

substantial research interest due to its comparable benefits (72).

Recognized as a potentially safe and feasible treatment, it is

imperative for upcoming research on taVNS to meticulously

evaluate any adverse events (73). Moreover, there is evidence

indicating that taVNS can amplify cardiac vagal activity, reflected

by heart rate variability (HRV) (74). Consequently, we speculate

that, unlike the invasive implanted VNS, taVNS might serve as a

pivotal tool in future studies on preeclamptic women to potentially

alleviate their symptoms and possibly mitigate neurodevelopmental

damage in their offspring.

In addition to the electrical VNS, other molecules may stimulate

the CAP, such as extracellular monomeric ubiquitin (mUB) or

pyridostigmine, a carbamate inhibitor of acetylcholinesterase whose

administration can increase the concentration of circulating

acetylcholine, presents an extensive range of safety in

recommended doses (30-60 mg every 4-8 h) since the drug does

not cross the placenta in significant amounts (75). However, its

consumption may induce mainly intestinal side effects in patients

(76). The clinical relevance of increasing the circulating cholinergic

tone in an individual is that a high vagal tone favors the decreased

serum levels of inflammatory molecules such as TNF-a, as well as
cortisol and epinephrine (76), a very significant positive fact of this

therapeutic strategy was observed when pyridostigmine was

administered in patients affected by COVID-19 in which its

administration increases the survival levels in patients (77). An

even more novel option is the use of mUB, which is a small (8.6

kDa) and heat-stable protein higly-conserved in all eukaryotic cells

(78). A large body of evidence shows in vitro and in vivo that pure

mUB administration induces immunomodulatory effects, including

decreasing macrophage and lymphocyte cellular functions, such as

chemotaxis, proliferation, and cytokine secretion (78, 79). It is

suggested that these immunomodulatory effects induced by mUB

result from partial blockade of the CXCR4/CXCL12 axis. CXCR4 is

constitutively expressed in the membrane of leukocytes in
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monomeric or dimeric form; it is associated with G proteins a
and bg subunits, b-arrestin, and JAK/STAT, and its activation

favors chemotaxis, cell proliferation, and other cell activation

phenomena (78).

mUB has been described as the main component of a Dialyzable

Leukocyte Extract (DLE) (71). Interestingly, this complex drug

induces a decrease in circulating levels of proinflammatory

cytokines (TNF-a, IL-6), cortisol, and catecholamines when orally

administered in major depression patients (72) as well as in murine

(73) and canine infectious models (74, 75). Interestingly, the DLE

and mUB alone increase the percent of survival of HSV-1-infected

mice (80). This body of evidence suggests that the biological effects

of the DLE in infectious models could be partially attributed to

mUB, its main component.

Finally, the utilization of relaxation methods involves various

mind-body techniques, including breathing training, progressive

relaxation, and guided imagery, as supported by Geranmayeh et al.

(81). Deep breathing-based yoga, a commonly practiced approach (82),

has shown evidence of stimulating the vagus nerve, activating the

parasympathetic nervous system and enhancing HRV. Moreover, the

Food and Drug Administration (FDA) has approved magnetic

stimulation of the vagus nerve to treat epilepsy and depression (83),

demonstrating the potential of modulating vagal nerve activity through

safe and established practices.
6 Perspective

Based on insights garnered from various studies, we propose

that the modulation of vagal activity might offer a beneficial avenue

for improving maternal and fetal outcomes in cases of pre-

eclampsia. Pre-eclampsia, known for its links to unfavorable

neurodevelopmental results in offspring, stems from a potential

dysregulation within the Cholinergic Anti-inflammatory Pathway

(CAP) and Maternal Immune Activation (MIA). There have been

encouraging observations of reduced inflammation through

electrical (VNS), physical, magnetic, and pharmacological

methodologies that modulate the CAP. Such interventions may

potentially improve maternal hemodynamics and bolster fetal

neurodevelopment (as seen in Table 1 and Figure 1).

Furthermore, exploring other molecular agents, such as

extracellular monomeric ubiquitin (mUB) or pyridostigmine, to

modulate the CAP seems promising. These strategies might address

immune system imbalances, thus enhancing the quality of life for

mothers dealing with pre-eclampsia. As a result, these experimental

insights pave the way for the proposition that stimulating the CAP

in pre-eclampsia offers a novel therapeutic tactic to mitigate the

neurodevelopmental challenges posed by the condition. However, it

is imperative to emphasize the necessity for additional research,

particularly those studies backed by robust scientific evidence. This

is crucial to ascertain the efficacy and safety of techniques to

modulate vagal activity, especially when considering its

application in pregnant women. As with any potential therapeutic

approach, the weight of the evidence will guide its widespread

acceptance and application in the clinical realm.
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TABLE 1 Modulation of vagal nerve activity through electrical, pharmacological, physical, and magnetic stimulation.

Treatment Mechanism of action Dose Safety

Electrical
Vagus Nerve
Stimulation
(VNS)

Initially associated with increased extracellular
norepinephrine in epilepsy, VNS has been
found to raise free GABA levels in the
cerebrospinal fluid (84)

0.75-3.5 mA (85, 86) Implanted vagus nerve stimulator shows a low risk of fetal
malformation and does not affect downstream target organs.
Favorable evidence outweighs adverse evidence, suggesting that
implanted VNS devices may be safe during pregnancy (86)

Oral
extracellular
monomeric
ubiquitin
(mUB)

Mild agonist of the CXCR4 receptor
expressed on the vagal nerve in the stomach
(87)

1.003 µg/dose (80) Is a self-protein with no primary toxicity, and there are no
reports of toxic effects from its consumption

Pyridostigmine A carbamate inhibitor of acetylcholinesterase
(75)

30-60 mg every 4-8 h (75) The drug does not cross the placenta in significant amounts
(75)

Respiratory
stimulation

Increased vagal tone is linked to slow, deep
breathing with higher tidal volume, whereas
irregular, shallow, and fast breathing is
associated with increased sympathetic tone
(82)

At least 6 hours of continuous
positive airway pressure (CPAP)
(88)

CPAP use during pregnancy may lower blood pressure and
reduce the risk of pre-eclampsia. No severe side effects or
complications were reported in any study (89)

Transcranial
magnetic
stimulation
(TMS)

TMS activates descending fibers, causing
electrical impulses to travel through the spinal
cord and to the peripheral nerve, resulting in
muscle twitching (83)

5 to 25 Hz (90) It is safe and well-tolerated, making it a potential additional
treatment for depression in pregnant patients. There is no
evidence suggesting that TMS poses a risk to the fetus when
administered to the mother during pregnancy (91)

Breathing
techniques

It increases endorphin hormone secretion,
reduces adrenaline and cortisol levels, and
lowers heart rate and blood pressure in
pregnant women (81)

Jacobson’s progressive muscle
relaxation technique was used
twice a week for six weeks.
Sessions lasted about 45 minutes
(92)

Breathing techniques and relaxation are safe and harmless
complementary treatments during pregnancy (81)
F
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FIGURE 1

The inflammatory response during pregnancy can initiate complications, such as pre-eclampsia. Elevated pro-inflammatory cytokines, including
interleukin-6 (IL-6), IL-17, tumor necrosis factor-alpha (TNF-a), and interferon-gamma (IFN-g), are linked to this phenomenon. These pro-
inflammatory cytokines may primarily mediate Maternal Immune Activation (MIA) during pregnancy and could impact fetal neurodevelopmental
processes. The pathogenesis of pre-eclampsia might involve the disruption of the Cholinergic Anti-inflammatory Pathway (CAP) and fetal
neuroinflammation. Pre-eclampsia has been associated with adverse neurodevelopmental outcomes in the offspring, such as cognitive deficits,
behavioral abnormalities, mental disorders, neurodevelopmental issues, Autism Spectrum Disorder (ASD), Attention Deficit-Hyperactivity Disorder
(ADHD), and others. Potential strategies to enhance maternal and fetal outcomes in pre-eclampsia involve modulating vagal nerve activity. This
modulation can be achieved through techniques like Electrical Vagus Nerve Stimulation (VNS), pharmacological interventions (oral extracellular
monomeric ubiquitin or mUB, and pyridostigmine), physical approaches (respiratory stimulation and breathing techniques), and Transcranial
Magnetic Stimulation (TMS) in preeclamptic pregnant women.
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magnetic stimulation during pregnancy. Arch Womens Ment Health (2014) 17:311–5.
doi: 10.1007/s00737-013-0397-0

91. Pridmore S, Turnier-Shea Y, Rybak M, Pridmore W. Transcranial Magnetic
Stimulation (TMS) during pregnancy: a fetal risk factor. Australas Psychiatry (2021)
29:226–9. doi: 10.1177/1039856221992636

92. Ghorbannejad S, MehdizadehTourzani Z, Kabir K, Yazdkhasti M. The
effectiveness of Jacobson’s progressive muscle relaxation technique on maternal, fetal
and neonatal outcomes in women with non-severe preeclampsia: a randomized clinical
trial. Heliyon (2022) 8:e09709. doi: 10.1016/j.heliyon.2022.e09709
frontiersin.org

https://doi.org/10.1371/journal.pone.0105328
https://doi.org/10.1186/s10020-022-00553-x
https://doi.org/10.1189/jlb.0510316
https://doi.org/10.1155/2016/4190390
https://doi.org/10.3389/fphar.2020.569039
https://doi.org/10.12968/bjom.2019.27.9.572
https://doi.org/10.1016/j.mehy.2009.03.007
https://doi.org/10.1038/npp.2009.87
https://doi.org/10.3889/oamjms.2017.056
https://doi.org/10.1016/j.eplepsyres.2019.106186
https://doi.org/10.1016/j.eplepsyres.2021.106671
https://doi.org/10.1016/j.eplepsyres.2021.106671
https://doi.org/10.1111/j.1460-9568.2008.06058.x
https://doi.org/10.18565/aig.2018.10.52-58
https://doi.org/10.1111/ajo.13654
https://doi.org/10.1007/s00737-013-0397-0
https://doi.org/10.1177/1039856221992636
https://doi.org/10.1016/j.heliyon.2022.e09709
https://doi.org/10.3389/fimmu.2023.1280334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Modulation of vagal activity may help reduce neurodevelopmental damage in the offspring of mothers with pre-eclampsia
	1 Introduction
	2 The maternal immune system in pregnancy: implications for pre-eclampsia
	3 Maternal immune activation and the cholinergic anti-inflammatory pathway in pre-eclampsia
	4 The impact of pre-eclampsia on neurodevelopment: insights into cognitive, behavioral, and mental disorders in offspring
	5 Modulation of vagal nerve activity and potential applications in pregnancy
	6 Perspective
	Author contributions
	Funding
	Supplementary material
	References


