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Background: Osteosarcoma (OSA), the most common primary

mesenchymal bone tumor, is a health threat to children and adolescents

with a dismal prognosis. While cuproptosis and mitochondria dysfunction

have been demonstrated to exert a crucial role in tumor progression and

development, the mechanisms by which they are regulated in OSA still

await clarification.

Methods: Two independent OSA cohorts containing transcriptome data and

clinical information were collected from public databases. The heterogeneity

of OSAwere evaluated by single cell RNA (scRNA) analysis. To identify a newly

molecular subtype, unsupervised consensus clustering was conducted. Cox

relevant regression methods were utilized to establish a prognostic gene

signature. Wet lab experiments were performed to confirm the effect of

model gene in OSA cells.

Results: We determined 30 distinct cell clusters and assessed OSA

heterogeneity and stemness scRNA analysis. Then, univariate Cox analysis

identified 24 candidate genes which were greatly associated with the

prognosis of OSA. Based on these prognostic genes, we obtained two

molecular subgroups. After conducting step Cox regression, three model

genes were selected to construct a signature showing a favorable

performance to forecast clinical outcome. Our proposed signature could also

evaluate the response to chemotherapy and immunotherapy of OSA cases.

Conclusion: We generated a novel risk model based on cuproptosis and

mitochondria-related genes in OSA with powerful predictive ability in

prognosis and immune landscape.
KEYWORDS

osteosarcoma, cuproptosis, mitochondria dysfunction, prognostic biomarker
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Introduction

Osteosarcoma (OSA) is one of the most predominant primary

neoplasms of malignancy in childhood while also being an

important cause of tumor-related death in adolescence. Early

OSA treatment is mainly limited to local surgical resection

treatment, but therapeutic effects have been dismal (1). With the

popularization of the four major chemotherapeutic agents and the

development of neoadjuvant therapies for OSA, the survival rate of

patients has increased substantially (2). The most significant factors

preventing OSA patients from surviving longer today are tumor

recurrence and metastasis. Highly malignant OSA exhibits

remarkable early lung metastases that progress rapidly in the

absence of treatment (3). Consequently, there is an urgent need

to develop novel biomarkers to block the OSAmetastasis in order to

boost the survival prognosis of patients.

Mitochondria play a crucial role in cancer development by

being involved in energy production, cell metabolism, and cell

signaling. They are essential not only for ATP synthesis but also

for lipid and nucleic acid metabolism as well as tumor development

and metastasis (4). Mitochondria mediate crosstalk between tumor

cells and their microenvironment by activating, interacting with,

and regulating cells within the tumor microenvironment (TME).

Mitochondrial metabolism influences multiple processes that

underpin tumor progression such as proliferation of transformed

cells, resistance to apoptosis, and ability to invade surrounding

tissues (5). In addition to central bioenergetic functions,

mitochondria provide building blocks for tumor anabolism while

controlling redox and calcium homeostasis as well as participating

in transcriptional regulation and governing cell death (6).

Metal ions are essential micronutrients for the human body, but

insufficient or excessive levels of metals will trigger cell death.

Copper is one of the heavy metal ions having an important role

in biological processes such as mitochondrial respiration as well as

antioxidation (7). Tsvetkov et al. identified and defined a novel

regulatory cell death (RCD) modality, cuproptosis, which induces

cell death through copper ion targeting of tricarboxylic acid (TCA)

cycle proteins. Although organisms have a physiological

requirement for copper and copper deficiency disrupts the

function of copper-binding enzymes, excessive copper can also

cause cell death. Excess copper accumulation triggers the

destruction of iron-sulfur cofactors, initiates copper-driven

Fenton reactions, and generates destructive ROS, leading to

oxidative stress and oxidative damage to tumor tissues. Copper

homeostasis is closely related to tumor cell proliferation,

angiogenesis and metastasis. A genome-wide CRISPR-Cas9

technology screened specific metabolic pathways that mediate

copper death (8). The researchers employed two copper ion

carriers, Elisimo and DTC, to separately treat human ovarian

cancer cells, and determined 10 genes that may be associated with

copper death from the common interval between the two. Previous

studies have demonstrated that Elisimo can directly target FDX1

gene which encodes a reductase reducing Cu2+ to the more toxic

Cu+. Similar to the role exerted by FDX1, LIAS, LIPT1 and DLD are
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also involved in protein lipid acylation metabolism (8). Recent

studies have demonstrated a strong link between copper-induced

cell death and tumor (9, 10), suggesting that cuproptosis plays a key

role in cancer progression, but its role in OS is still unknown.

In this project, we developed a robust risk model based on

mitochondria and cuproptosis-related genes. This model could

assess prognosis of OSA cases and predict immune landscape and

drug response, which in turn provide valuable option for clinical

decision-making.
Materials and methods

Data collection and arrangement

The transcriptome expression profiling and clinical data of 84

OSA cases were obtained from the TARGET database. Another

independent OSA cohort with 53 OSA cases (GSE21257) was

accessed from the GEO database. The mRNA expression data of

OSA and normal samples in GSE99671 was downloaded for

identifying differentially expressed genes (DEGs). The

mitochondria-related genes (MRGs) were accessed from the

MitoCarta3.0 database. Cuproptosis-related genes (CRGs) were

identified based on previous reports (8).
Function enrichment analysis

The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment were employed to detect the

function and pathway of candidate genes through the ‘ggplot2’

package (11). The gene set variation analysis (GSVA) was employed

by ‘GSVA’ package (12).
Single-cell RNA (scRNA) analysis

We obtained the scRNA dataset of OSA (GSE152048) from

GEO the database. The normalization and data quality control of

scRNA data were conducted by ‘Seurat’ package (13). The

dimension reduction was performed by ‘RunPCA’ method. The

percentage of CRGs or MRGs in each cell can be obtained by

importing CRGs or MRGs through the ‘PercentageFeatureSet’

function. The ‘FindMarkers’ algorithm was employed to screen

DEGs between different groups of OSA cells. Moreover, we

unearthed the cell communication through R package ‘iTalk’.
Determination of a novel
molecular subgroup

To identify a novel molecular subgroup, unsupervised cluster

analysis was conducted by ‘ConsensusClusterPlus’ package (14).

The ‘K-Means’ function was employed and ‘euclidean’ was used as a
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measure of distance, accompanied by resampling of 80% of the

items and 1000 replications. The optimal k value was generated

based on the proportion of ambiguous clustering (PAC).
Development of the prognostic risk model

The candidate genes from scRNA analysis were included into

univariate Cox analysis to selected prognostic genes for model

construction. Next, the dimension reduction of genes was

conducted by LASSO regression. Finally, the prognostic risk

model was built up by multivariate Cox regression based on the

following formula: Risk value =o
n

i=1
coefi*expression   level   of   genei.

The coef represents the coefficient of each gene calculated by

multivariate Cox analyses. The OSA patients were divided into

high- and low-risk groups according to the median risk value.
Prediction of immunogenomic landscape

CIBERSORT is a gene expression-based deconvolution

algorithm that has been used to assess the percentage of

immunocyte infiltration in patients. It was applied to reveal the

correlation between model genes and the infiltration level of

immune cells in samples (15). The immune activity of OSA

samples in two subgroups was assessed by single sample gene set

enrichment analysis (ssGSEA) method (16).
Prediction of drug sensitivity
and immunotherapy

The drug response of OSA cases were analyzed by the

‘pRRophetic’ package (17) generating IC50 of different drugs. In

addition, we detected the interaction of model genes and three

chemotherapy drugs (Adriamycin, Ifosfamide, Methotrexate) by

MOE software which could conduct molecular docking analysis.

TIDE (http://tide.dfci.harvard.edu/) is a computational tool for

evaluating the possibilities for cancer immune escape based on

the gene expression profiling of patients.
Cell culture and cell transfection

The osteoblast cell line (hFOB1.19) and human OSA cell lines

(HOS, Saos-2 and 143B) were purchased from the Procell Life

Science&Technology Co.,Ltd. (Wuhan, China). The cell lines were

cultured in Dulbecco’s modified Eagle’s medium (DMEM)

containing 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin and were grown in an incubator at 37°C with 5%

CO2. The silencing RNA against PTN (si-PTN) was synthesized

and purchased from TsingkeBiotechnology Co.,Ltd. (Beijing,

China). The sequence of si-PTN is shown in Supplementary

Table 1. Lipofectamine 3000 (Invitrogen) was used for

cell transfection.
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RNA extraction and quantitative real-time
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cell samples by RNAeasy

Reagent (Vazyme, China). Total RNA was amplified by qRT-PCR

by SYBR qPCR Mix (Vazyme, China). The primer of were

synthesized by TsingkeBiotechnology Co.,Ltd. (Beijing, China).

The primer sequences are listed in Supplementary Table 1. All

samples were normalized to GAPDH.
5-ethynyl-2′ -deoxyuridine (EdU) assay

The cells were plated in 96-well plates (5,000 cells per well) with

DMEM containing 10% FBS for 24 h. Following incubation in 50 mM

EdU reagent for 2 h, cells were fixed with 4% paraformaldehyde,

permeated by 0.5% Triton X-100, and stained with Apollo reagent for

30 min. Nuclei were stained with Hoechst 33342, and the cells were

visualized under a fluorescence microscope.
Cell migration assay

A Transwell insert with 8 mm pores (Millipore) was utilized to

evaluate the OSA cell migration. A total of 10000 cells was cultured in

the upper chamber with 200 mL of serum-free DMEM, and 500 mL

of medium containing 10% FBS was added to the lower chamber.

After 24 h incubation, the migrated cells were fixed with 4%

paraformaldehyde and stained by 0.1% crystal violet for 20 min.
Statistical analysis

Bioinformatics analyses were performed using R software.

ANOVA analysis was employed by GraphPad Prism (version

9.0). P values< 0.05 denoted statistically significant differences.
Results

Establishment of single-cell transcriptome
atlas of OSA

We collected adult OSA samples from 11 donors and generated

a single-cell transcriptome atlas of OSA cells. Using unsupervised t-

SNE clustering and principal component analysis (PCA) for

dimension reduction, we identified 30 distinct cell clusters

(Figure 1A). By leveraging a reference dataset from the Human

Primary Cell Atlas, we successfully annotated these cells into 11

different cell types (Figure 1B). Additionally, Figure 1C illustrates

the distribution of these cell clusters across each sample.

Further analysis of gene expression profiles revealed distinct

patterns among the 11 cell clusters. We determined the top five

marker genes specific to each cell cluster and presented their

expression levels through a heat map visualization. Moreover, a
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dot plot was generated to visualize the expression levels of cell type-

specific marker genes (Figures 1D, E). Next, 19 CRGs were input by

the ‘PercentageFeatureSet’ algorithm, and the percentage of CRGs

in each cell was generated. The cells were divided into low and high

cuproptosis cells by their median CRG proportion and were defined

as low and high CRG score (CRGS) groups. Similarly, we obtained

two MRG score (MRGS) groups through the above method
Frontiers in Immunology 04
(Figure 1F). A total of 247 DEGs were obtained between low and

high CRG score (CRGS) groups. Also, we screened out 710 DEGs

between low and high MRG score (MRGS) groups. The 168 DEGs

were shared by the above two DEGs gene sets (Figure 1G).

To gain insights into the biological functions associated with

differentially expressed genes, we performed GO and KEGG

enrichment analyses. The result of GO analysis revealed a
B C

D E

F G

H I

A

FIGURE 1

Identification of cuproptosis and mitochondria-related genes according to single cell sequencing analysis in OSA. (A) Dimensionality reduction and
cluster analysis. (B) tSNE clustering of different cell types. (C) Distribution of 11 cell types. (D) Heatmap showing each cluster and corresponding
gene markers. (E) All subclusters were annotated based on the composition of the marker. (F) The percentage of cuproptosis and mitochondria-
related genes in each cell. The cells were divided into high- and low-cuproptosis or mitochondria cells. (G) Heatmap displaying DEGs between high-
and low-cuproptosis or mitochondria cells. (H, I) GO and KEGG enrichment analyses.
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predominant involvement of these genes in mitochondrial biology

processes, including ATP biosynthetic process, cell growth, cellular

respiration, electron transport chain, osteoblast differentiation, and

oxidative phosphorylation (Figure 1H). The KEGG analysis

demonstrated a close association between upregulated genes and

oxidative phosphorylation, while downregulated genes were

predominantly involved in signaling pathways, including PI3K-

AKT and MAPK (Figure 1I).
Consensus clustering of novel
molecular subtype

With the aim of detecting the prognostic value of 168 DEGs,

univariate Cox analysis was conducted. The results indicated that a

total of 24 DEGs were prognostically relevant in OSA (Figure 2A).

Subsequently, we generated a PPI network based on these 24 genes

(Figure 2B). More specifically, six genes demonstrated upregulated

expression, whereas eight genes exhibited downregulated

expression in malignant tissues (Figure 2C). Based on the

expression levels of these 24 prognostic genes with differential

expression, we performed a consensus clustering analysis to

classify OSA samples. By setting the value of k to 2, which

yielded the highest clustering stability, the combined OSA cohorts

(TARGET cohort and GSE21257 cohort) were divided into two

distinct molecular subtypes: cluster A (n = 85) and cluster B (n = 56)

(Figure 2D). Significant distinctions in gene expression patterns

between cluster A and cluster B were evident in the clustering

heatmap, emphasizing the dissimilarities between the two clusters

(Figure 2E). Moreover, the results of HALLMARK analysis

exhibited substantial enrichment of pathways related to the G2M

checkpoint, oxidative phosphorylation, fatty acid metabolism, and

diverse inflammatory processes in the A subtype (Figure 2F).
Construction of a prognostic model

To develop a prognostic model, we conducted LASSO

regression analysis on a panel of 24 prognostic DEGs in the

training set (TARGET dataset), resulting in the identification of

six candidate genes (Figures 3A, B). Subsequently, through the

utilization of multi-Cox regression analysis, we ascertained three

genes that independently served as prognostic factors, leading to the

development of a reliable prognostic risk model (Figure 3C). The

risk model equation was: (-0.1198 × MDK) + (0.1119 × P4HA1) +

(-0.0923 × PTN). Employing the median risk value as a threshold,

we segregated patients into two cohorts: the high-risk score group

and the low-risk score group. Then, GSE21257 dataset was used to

validate the performance of the model. Analysis of both the training

and testing sets revealed a higher proportion of patient deaths

within the high-risk score group in comparison to the low-risk score

group, indicating a poorer prognosis in the former (Figures 3D, E).

The Kaplan-Meier (K-M) survival curve indicated a substantially

diminished clinical outcome in patients categorized under the high-

risk score group when contrasted with those in the low-risk score

group (Figure 3F).
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To provide a more comprehensive evaluation of the prognostic

significance of the risk model, time-dependent receiver operating

characteristic (ROC) curves were constructed, and the

corresponding area under the curve (AUC) was computed at

different time points. Figure 3G presents the AUC values for the

1-year and 5-year survival rates in the training and testing groups.

Specifically, the training group exhibited AUC values of 0.922 and

0.862, respectively, while the testing group displayed AUC values of

0.689 and 0.792 for the same survival rates.

To examine the impact of gene expression on patient prognosis,

individuals were divided into high and low expression groups based

on the levels of the three key genes, followed by K-M survival

analysis. The results unveiled a noteworthy correlation between the

expression levels of the three key genes and patient survival.

Specifically, individuals with elevated expression of MDK and

PTN displayed a significantly extended median overall survival

(OS) compared to those with lower expression. Conversely, patients

with reduced expression of P4HA1 demonstrated a significantly

prolonged median OS relative to those with higher expression

(Figure 3H). Also, we confirmed the expression patterns of MDK

and P4HA1 in different OSA cell lines by PCR assay. The results

demonstrated that MDK were lowly expressed in OSA cells,

whereas P4HA1 was upregulated in OSA cells (Supplementary

Figure S1).
Evaluation of the relationship between risk
model and clinical features

To evaluate the association between the risk model and clinical

features, we performed univariate and multivariate Cox regression

analyses, incorporating various clinical characteristics, including

age, gender, and metastatic status, along with the prognostic model.

These analyses aimed to assess the independent prognostic value of

the risk model while considering the potential confounding effects

of these clinical factors. The findings consistently demonstrated that

the risk model retained its statistical significance and independence

as a prognostic factor for OSA cases (Figures 4A, B). These results

further validate the clinical utility of the risk model in predicting the

prognosis of OSA patients.

Additionally, we examined the disparities in risk scores among

patients categorized into different subgroups based on clinical

features. Interestingly, no significant differences in risk scores

were observed when stratified by gender, age, and molecular

subtype. However, among OSA patients with metastasis, the risk

scores were higher compared to those without metastasis

(Figure 4C). Furthermore, we grouped OSA patients based on

age, gender, and metastasis status to explore the association

between risk characteristics and prognosis within these clinical

and pathological variables. Importantly, irrespective of age (<18

years old), gender (male, female), and presence of metastasis in

patients with OSA, the low-risk group demonstrated significantly

higher OS rates compared to the high-risk group (Figure 4D). These

findings emphasize the efficacy of the risk score in predicting the

prognosis of OSA cases within specific age groups and with different

metastasis statuses.
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Single cell sequencing analysis

To gain insights into the specific cell types and spatial regions

associated with the three key prognostic genes related to OSA,

further analysis was conducted. The findings indicated that these

three genes were primarily expressed in pericyte cells and

osteoblastic proliferative regions (Figure 5A). To explore the

communication between different cells in the high and low-risk

groups, we employed CellTalker, a tool that evaluates the expression

of known ligand-receptor pairs within and between different cell

populations. The outcomes of the cell interaction analysis unveiled

a more pronounced occurrence of intercellular interactions among

cells in the low-risk group, exhibiting a marked contrast to the high-

risk group. These observations are visually represented in

Figures 5B, C. This finding suggests that the disruption of

harmonious cellular interactions in normal tissues contributes to

the malignant progression and poor prognosis of tumors.
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Immune landscape of the risk signature

The dataset containing information on tumor-infiltrating

immune cells was procured from the TIMER database. Spearman

correlation analysis was employed to examine the correlation

between crucial prognostic-related genes within the OSA tumor

microenvironment (TME) and the abundance of immune cells. The

analysis revealed that the expression of the P4HA1 gene was

inversely correlated with the abundance of Tregs cells, CD8+ T

cells, neutrophils, M1 and M2 macrophages. Conversely, a positive

correlation was observed between the expression of the P4HA1 gene

and the levels of CD4+ T cells and CD4+ T memory cells.

Furthermore, a negative correlation was observed between the

expression of the PTN gene and the abundance of dendritic cells

and M2 macrophages, while a positive correlation was noted with

the levels of plasma cells. Notably, there was no significant

correlation between the expression of the MDK gene and
B

C

D E

F

A

FIGURE 2

Consensus clustering of novel molecular subtype. (A) Univariate analysis for selecting prognostic genes. (B) PPI network of 24 prognostic genes.
(C) Differential expression analysis of 24 prognostic genes. (D) Consensus matrices for k = 2 and cumulative distribution function (CDF) plot for 24
prognostic genes in OSA cases. (E) Heatmap of 24 prognostic genes in the two subtypes. (F) GSVA analysis of biological pathways among two
subclusters. *p< 0.05, **p< 0.01, ***p< 0.001.
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immune cell levels (Figure 6A). The relationship between immune

cell distributions and the risk score in OSA cases was investigated

through correlation analysis. The results demonstrated that CD4+ T

memory cells and dendritic cells demonstrated a positive

association with the risk score, while the risk score showed an

inverse correlation with the abundance of B cells, M1 macrophages,

neutrophils, plasma cells, CD8+ T cells, and Treg cells in individuals

with OSA cases (Figure 6B). The immune score was found to be

lower and the stromal score higher in the high-risk group as

compared to the low-risk group, as determined by the

ESTIMATE analysis (Figure 6C). Further investigation was

conducted to explore the correlation between the risk score and

commonly used immune checkpoint inhibitors (ICIs) in tumors.

The results indicated that higher risk scores were significantly

associated with the downregulation of 14 ICIs, including

TNFSF14, CD274, and CD40 etc. (Figure 6D). Analysis of

immune cell function revealed that high-risk patients exhibited

lower immune function (Figure 6E). Additionally, the TIDE

framework was employed to evaluate the responsiveness of

patients with different risk models to immunotherapy. The high-

risk group exhibited significantly higher TIDE score and TAM-M2

score, along with a significant decrease in T-cell dysfunction, as

indicated in Figure 6F.
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Clinical potency of the risk signature

To gain deeper insights, we conducted further investigations

into the association between risk scores for OSA cases and pivotal

pathways previously implicated in OSA research, as well as signals

linked to positive immune checkpoint blockade (ICB). The study

findings revealed a noteworthy positive correlation between risk

scores and key cancer-promoting pathways such as the MTORC1

signaling pathway, MYC TARGETS, and the oxidative

phosphorylation signaling pathway. Conversely, the risk model

demonstrated a negative correlation with epithelial-mesenchymal

transition (EMT). In the analysis of immune-related pathways, a

significant positive correlation was observed between risk scoring

and various pathways including antigen processing and

presentation machinery (APM) signaling, DNA replication, cell

cycle, homologous recombination, microRNA, mismatch repair,

and nucleotide excision repair, among others (Figure 7A). To

facilitate clinical decision-making, we conducted an analysis to

examine the association between cancer treatment drugs available

in the GDSC database and risk scores. The results unveiled that

patient classified in the low-risk group exhibited heightened

sensitivity to six specific drugs (AT-7519, BMS345541,

GSK1904529A, Imatinib, Ispinesib Mesylate, and KIN001-102).
B C

D

E
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FIGURE 3

Development and verification of the prognostic signature. (A, B) LASSO regression with optimal lambda. (C) Stepwise multivariate Cox regression
analysis. (D, E) Patient status distribution and Mortality rates of two groups. (F) Survival curves of OSA cases in two groups. (G) ROC curve of the
prognostic signature. (H) Prognostic value of three model genes.
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These findings provide evidence that risk score has the potential to

predict the responsiveness of OSA patients to these treatment drugs

(Figure 7B). Given that P4HA1 is a risk factor in OSA, molecular

docking analysis was employed to identify the interaction structure

between P4HA1 and three first-line chemotherapy drugs

(Adriamycin, Ifosfamide, Methotrexate), which might can provide

an important theoretical reference for targeting P4HA1 (Figure 7C).
Frontiers in Immunology 08
Determination of PTN as a novel
suppressor in OSA

PTN was chosen for the next experimental validation. We first

observed that PTN was lowly expressed in OSA cell lines at mRNA

and protein levels (Figures 8A, B). PCR assay exhibited good

transfection efficiency of PTN in HOS and 143B cell lines
B

C

D

A

FIGURE 4

Independent prognosis analysis of the prognostic signature. (A, B) Univariate and multivariate Cox analyses for detecting independence of the
signature. (C) The different levels of the risk regarding age, gender, molecular subtype and metastasis. (D) Survival analysis of different subgroups
(age, gender, and metastasis).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1280945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1280945
(Figure 8C). To detect the proliferation of OSA cells, we conducted

CTG assay and EdU assay. The results revealed that cell viability

was greatly boosted in si-PTN group in HOS cells. (Figures 8D, E).

Moreover, we found that silencing PTN could remarkably facilitate

the migration ability of HOS cells (Figure 8F). The expression levels

of N-cadherin and vimentin were upregulated in si-PTN group,

whereas E-cadherin was downregulated (Figure 8G). Conversely,

the opposite result was observed when PTN was overexpressed in

143B cells (Figures 8D–G).
Discussion

Cuproptosis is a recently discovered form of RCD triggered by

excess Cu2+. It is distinct from other cell death pathways, including

apoptosis and necrosis (18). Current research provides insights into
Frontiers in Immunology 09
prospective clinical therapies via targeting cuproptosis.

Mitochondria are a crucial therapeutic target for tumor since

mitochondrial dysfunction could trigger cellular oxidative stress

leading to cell death (19). A recent study proposes that cuproptosis

is highly related to mitochondrial metabolism and respiration (20).

However, the potential molecular interactions that link copper ion-

mediated cell death, and mitochondria in OSA are still elusive.

The present project successfully generated a prognostic risk

model in OSA based on cuproptosis and mitochondria-associated

signatures. Midkine (MDK) a heparin-binding growth factor

initially identified as a production of retinoid-responsive genes in

the embryonic formation process. MDK expression was found to be

upregulated in numerous human neoplasms (21). It acted as a

cancer driver, facilitating tumor cell proliferation, survival and

metastasis. A number of investigations have reported the ability

of A to act as a prognostic marker for tumors and as a target for
B C

A

FIGURE 5

Single cell sequencing analysis. (A) Cellular location of three model genes. Circos plots show ligand-receptor interactions among different cells from
the high-risk (B) and low-risk (C). Branches connect pairs of interacting cell types and indicate the number of events in the graph.
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management of tumors. Furthermore, MDK also could boost

therapeutic resistance and immune regulation in the TME (22).

MDK can facilitate tumor development through activation of

cancer signaling pathways mediated by receptor-ligand

interactions. As reported by Xia et al., MDK could boost tumor

growth and survival by binding with LKB1 which in turn blocks

activation of AMPK (23).

Polytrophic factor (PTN) is a secreted heparin-binding growth

factor exhibiting important regulatory effects on tumors. As a small

cationic protein, PTN is involved in a variety of biological processes

including cancer cell growth and metastasis (24). PTN and its

receptor RPTPb are unregulated in various tumors. Functional

experiments have revealed that this receptor ligand pair can

modulate the proliferation and migration ability of cancer cells

(25). In addition, M2-like macrophages could facilitate the

malignant behavior of brain tumor by the interaction of PTN and

PTPRZ1 (26).
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P4HA1 gene contains a subset of proline 4-hydroxylase, which

is a pivotal enzyme in collagen synthesis consisting of two identical

alpha and beta subunits (27). P4HA1 has been found to exert a

carcinogenic effect. In esophageal cancer, activation of P4HA1 by

STAT1 transcription could boost cell growth and survival (28, 29).

Zhou et al. demonstrated that elevated expression of P4HA1

indicates dismal prognosis in cases with head and neck cancer

(HNC). P4HA1 could confer ferroptosis resistance to HNC cells

through activation of HMGCS1, suggesting P4HA1 could be a

promising target for the HNC management (30). As revealed by

Eriksson et al., inhibition of P4HA1 expression could inhibited

melanoma tumor metastasis. Mechanistically, silencing A decreases

collagen deposition in the basement membrane of tumor vessels,

contributing to vessel wall rupture and hemorrhage (31).

Next, immunocytic infiltration analysis indicated that risk value

was negatively correlated with the level of infiltration of T cells and

M1 macrophages cells. Previous studies have demonstrated that
B

C D

E F

A

FIGURE 6

Immune landscape of the risk signature. (A) Heatmap demonstrating the association between three genes expression and infiltration level of different
immunocytes. (B) Correlations between risk value and infiltration level of immune cells. (C) Violin plots depict the difference in stromal, immune and
estimate scores between two groups. (D) Boxplots display the expression pattern of immune checkpoints among two groups. (E) GSVA analysis of
immune functions between the two risk subgroups. (F) Prediction of ICB treatment response of OSA based on the TIDE, exclusion, dysfunction, CAF,
MDSC and TAM-M2 scores. *p< 0.05, **p< 0.01, ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1280945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1280945
activated CD8+ T cells potently suppressed OSA proliferation.

Moreover, CD8+ T cells had a positive correlation with a

favorable prognosis in OSA cases. Tang et al. indicated that OSA

cells with elevated levels of T synthase facilitate growth of CD8+ T

cells and block apoptosis to enhance tumor lethality (32).

Macrophages in TME are defined as tumor-associated

macrophages (TAM). Such plastic cells are subdivided into anti-

cancer (M1-like macrophages) and pro-cancer types (M2-like

macrophages). M1-like TAMs repressed OSA cells survival on

activation with IFN-g. On the contrary, higher infiltration of M2-

type TAMs boots OSA migration and invasion and serves as a

marker of dismal prognosis of OSA cases (33).

Type I interferon (IFN) response plays a central part in human

immune surveillance. Type I IFN signaling enables full efficacy of

various anti-cancer drugs, including chemotherapeutic agents. In

addition, upregulation of IFN-stimulated gene (ISG) expression

points to a favorable prognosis for patients with several cancers,
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including melanoma and breast cancer. Recombinant type I IFNs

have been successfully utilized for the therapy of various human

tumors (34, 35). Our data suggested that IFN response is

remarkably enriched in the low-risk group, which confirmed OSA

patients with low-risk value have a better prognosis.

Immunotherapy has played an important role in the treatment

of solid tumours in recent years (36). Therefore, we further analyzed

the likelihood of immune escape in patients by TIDE to assess

whether the patients could benefit from immunotherapy. TIDE is

an algorithm to assess the potentials of tumor immune escape based

on mRNA expression data of tumor cases. This method can also

estimate T-cell dysfunction and immunotherapy resistance based

on extensive clinical data (37, 38). Our results demonstrated that

patients in the high-risk group have an increased TIDE score,

implying that this group is not as sensitive to ICI treatment.

There were several shortcomings in the present research. First,

our nominated was developed by public databases; therefore,
B

C

A

FIGURE 7

Clinical potency of the risk signature. (A) Correlation between the risk score and the hallmark (right) and immunotherapy prediction pathways (left).
(B) Relationships between risk score and chemotherapeutic sensitivity of OSA. (C) Molecular docking depicts the docking position of the P4HA1
active pocket with Adriamycin, Ifosfamide, Methotrexate.
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additional large-scale prospective and multicenter clinical studies

are warranted to validate our data. The role of PTN in OSA was

only detected by in vitro experiments. Further in vivo or molecular

experiments are needed in the future to demonstrate the role

of PTN.
Conclusion

In short, cuproptosis and mitochondria-associated signatures

with significant prognosis value can differentiate between molecular
Frontiers in Immunology 12
subgroups of OSA. A robust risk model based on signature could

evaluate OSA prognosis. Furthermore, the risk score can mirror

tumor immune landscape and predict efficacy of chemotherapy for

OSA patients.
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FIGURE 8

Determination of PTN as a novel suppressor in OSA. (A, B) The expression pattern of PTN at mRNA and protein levels in hFOB 1.19 and three OSA
cell lines. (C) Transfection efficiency was tested by qRT-PCR. (D, E) The effect of PTN on cell viability was detected by CTG assay and EdU assay.
Scale bar, 200 mm. (F) The effect of LCP1 on cell migration was detected using Transwell. Scale bar, 100 mm. (G) WB analysis investigate the
relationship between PTN and EMT biomarker (N-cadherin, E-cadherin and Vimentin). *p< 0.05, **p< 0.01, ***p< 0.001.
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