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The COVID-19 pandemic has uncovered many mysteries about SARS-CoV-2,

including its potential to trigger abnormal autoimmune responses. Emerging

evidence suggests women may face higher risks from COVID-induced

autoimmunity manifesting as persistent neurological symptoms. Elucidating

the mechanisms underlying this female susceptibility is now imperative. We

synthesize key insights from existing studies on how COVID-19 infection can

lead to immune tolerance loss, enabling autoreactive antibodies and lymphocyte

production. These antibodies and lymphocytes infiltrate the central nervous

system. Female sex hormones like estrogen and X-chromosome mediated

effects likely contribute to dysregulated humoral immunity and cytokine

profiles among women, increasing their predisposition. COVID-19 may also

disrupt the delicate immunological balance of the female microbiome. These

perturbations precipitate damage to neural damage through mechanisms like

demyelination, neuroinflammation, and neurodegeneration – consistent with

the observed neurological sequelae in women. An intentional focus on

elucidating sex differences in COVID-19 pathogenesis is now needed to inform

prognosis assessments and tailored interventions for female patients. From

clinical monitoring to evaluating emerging immunomodulatory therapies, a

nuanced women-centered approach considering the hormonal status and

immunobiology will be vital to ensure equitable outcomes. Overall, deeper

insights into the apparent female specificity of COVID-induced autoimmunity

will accelerate the development of solutions mitigating associated

neurological harm.
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1 Introduction

The COVID-19 pandemic, caused by the novel coronavirus

SARS-CoV-2 has been associated with autoimmune responses in

some patients. Autoimmunity arises when the immune system loses

tolerance to self-antigens and produces autoantibodies attacking

host tissues (1). Both cellular and humoral autoimmune reactions

have been described in COVID-19 patients (2, 3). For example,

anti-interferon autoantibodies capable of impairing antiviral

responses are detected in approximately 10.2% of severe COVID-

19 cases (4). Additionally, SARS-CoV-2 binding to tissue antigens

may induce cross-reactivity of immune cells and subsequent

autoimmune damage in organs like the Livers and nervous

system (5–7). Understanding the autoimmune aspects of COVID-

19 is crucial, as they may exacerbate disease severity and cause

prolonged symptoms in recovered patients.

Emerging evidence suggests that COVID-19 can trigger

autoimmune responses through several mechanisms. Viral

infections often provoke autoimmunity via molecular mimicry,

wherein viral antigens resemble self-antigens (8). SARS-CoV-2

proteins may share sequences or structures with host proteins,

leading to cross-reactivity of antibodies or T cells (5). Additionally,

the severe inflammation and cytokine storm induced by COVID-19

may cause the breakdown of self-tolerance. Elevated levels of

cytokines like IL-6, IL-17, and TNF-a can stimulate auto-reactive

lymphocytes (9–11). SARS-CoV-2 infection can also prompt

neutrophil extracellular trap (NET) formation and release of

danger-associated molecular patterns (DAMPs), further

enhancing immune dysregulation (12, 13). Identifying the

pathways leading to autoimmunity following COVID-19 is

imperative to improve understanding and management of

the disease.

Autoimmune responses have been shown to impact and

damage both the central and peripheral nervous systems.

Autoimmune diseases like multiple sclerosis, Guillain-Barre

syndrome, involve neural inflammation, demyelination, and

neurodegeneration (14, 15). Autoantibodies can also directly

attack neurons and synaptic connections, disrupting neural

signaling (16). Moreover, increasing evidence indicates that acute

infections can also elicit autoantibodies to cause cross-reactivity

against the nervous system (17). Therefore, the autoimmune

reactions associated with COVID-19 infection may similarly lead

to neurological damage. Elucidating how autoimmunity induced by

SARS-CoV-2 affects the nervous system is critical for managing

neurological sequelae.

COVID-19 may disproportionately impact the female nervous

system. While there is no evidence that women infected with SARS-

CoV-2 have higher rates of acute neurological complications like

stroke, female sex has been identified as an independent risk factor

for developing long COVID syndromes (18, 19). Additionally,

neuropsychiatric symptoms such as anxiety and depression are

commonly reported neurological manifestations of long COVID,

with a higher proportion of women experiencing these symptoms

compared to men (19). The mechanisms underlying this female

propensity for neuro-COVID sequelae are still unclear. However,
Frontiers in Immunology 02
sex differences in immune responses and hormonal influences may

contribute to increased susceptibility of the female nervous system

to long-term damage mediated by COVID-19. Moreover,

autoimmune diseases like multiple sclerosis and rheumatoid

arthritis that affect the nervous system are more prevalent in

women (20–22).
2 Autoimmunity and nervous system

Contemporary research has uncovered dynamic interplays

between the central nervous system (CNS) and the immune

system, challenging the erstwhile notion of CNS immune

privilege (23). Specific niches such as the choroid plexus,

meninges, and perivascular spaces, along with the meningeal

lymphatic system and skull microchannels, facilitate ongoing

communication between the brain and the immune system,

essential for CNS maintenance, function, and repair (23, 24). The

blood-brain barrier (BBB), constituted by tightly connected brain

endothelial cells, still plays a crucial role in limiting the entry of

pathogens and activated immune cells into the CNS, thereby

protecting neurons (25). In parallel, intrinsic brain cells like

microglial cells and astrocytes monitor pathogen invasion and tissue

damage, initiating moderate neuroinflammatory responses when

necessary (26). This nuanced immune interaction forms a balanced

immune environment essential for maintaining CNS homeostasis

(27). However, infections have the potential to disrupt the balanced

immune interactionby introducing inflammatory factors fromoutside

the CNS, which might alter the permeability of the BBB, potentially

allowing peripheral immune cells to enter the CNS (28, 29). The influx

of inflammatory cells and cytokines into brain tissue can activate glial

cells and triggerneuroinflammation (28).Thismay lead toautoantigen

exposure and loss of immune tolerance, which in turn produces

autoreactive T cells and antibodies that attack neural tissues.

Particularly, the interaction between SARS-CoV-2 and the CNS

could exacerbate these responses, potentially leading to severe

neurological complications.
2.1 Mechanisms of autoimmunity against
the nervous system

Molecular mimicry, a well-documented mechanism for

infection-induced autoimmunity, arises from amino acid

sequence or structural similarities between pathogen components

and host proteins, leading to cross-reactivity of antibodies and T

cells (8). This has been demonstrated for several neurotropic

viruses, wherein immune cells primed by the virus later

erroneously recognize and attack similar epitopes on nervous

system antigens (30, 31). Analogously, molecular mimicry

between SARS-CoV-2 and neuronal proteins is hypothesized to

facilitate COVID-19 associated autoimmune neuropathology. The

S1 protein of the SARS-CoV-2 spike has been found to share

sequence homology with a number of CNS proteins, though

cross-reactivity remains to be confirmed experimentally (32).
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The severe inflammation and cytokine storm associated with

severe COVID-19 may also promote autoimmune reactivity against

the nervous system. Elevated levels of pro-inflammatory cytokines

like IFN-g, TNF-a, IL-6 and IL-17 can activate self-reactive T cells

and B cells that have escaped tolerance mechanisms (33, 34).

Numerous neurologic autoimmune diseases demonstrate

associations with such pro-inflammatory cytokines. For instance,

IFN-g and IL-17 have been implicated in multiple sclerosis, with

therapeutic blockade of these cytokines conferring benefits (35–37).

Dampening the excessive inflammation in critical COVID-19 cases

may help mitigate collateral autoimmune damage to the

nervous system.

Cross-reactivity of immune cells primed by SARS-CoV-2 with

CNS antigens provides another avenue for COVID-19 associated

autoimmunity. The virus binding to ACE2 receptors on the surface

of nervous system cells may prompt the formation of anti-SARS-

CoV-2 antibodies or T cells capable of recognizing similar host cell

surface features (32). Additionally, damage and release of

sequestered CNS proteins due to viral infection can expose neo-

epitopes and trigger new autoreactive clones (8, 38). For instance,

immune responses targeting the virus nucleocapsid protein were

found to also cross-react with host small nuclear ribonucleoprotein

particles in the brain (39, 40). Identifying such potentially cross-

reactive immune targets would enable a more accurate evaluation of

autoimmune risk following COVID-19.
2.2 Nervous system dysfunction caused by
autoimmunity

Autoimmune reactions can trigger neuroinflammation that

impairs nervous system function. Infiltration of autoreactive T

cells and autoantibodies activating microglia can establish chronic

inflammatory foci in the brain and spinal cord (41). Enhanced levels

of inflammatory cytokines disrupt neuronal signaling and alter

neurotransmitter levels, while also weakening the blood-brain

barrier (42, 43). Similar neuroinflammation is thought to underlie

some neurological symptoms of long COVID, as autoimmunity

triggered by SARS-CoV-2 persists even after viral clearance (44).

Imaging studies in these patients have revealed microstructural

changes in brain regions that regulate emotion, memory and

cognition - aligning with symptoms like brain fog.

Demyelination due to autoimmune targeting of myelin sheaths

is another major mechanism of nervous system damage.

Destruction of myelin insulation around axons by autoantibodies

and autoreactive lymphocytes leads to slow nerve conduction and

neurological deficits (45, 46). Demyelinating diseases like multiple

sclerosis and acute disseminated encephalomyelitis often follow

viral or bacterial infections, via mechanisms like molecular mimicry

(47). Although demyelination has not yet been specifically

examined in neuro-COVID, it represents a plausible pathological

consequence of COVID-19 induced autoimmunity. Demyelinating

autoantibodies or T cells arising from cross-reactivity with SARS-

CoV-2 components could manifest in neurological sequelae like

fatigue, numbness and nerve pain.
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Autoimmune-mediated neurodegeneration is characterized by

progressive loss of neurons and neural networks. The binding of

autoreactive antibodies to neurons, prion-like misfolding of proteins

triggered by autoimmunity, and indirect damage via inflammation

can all promote neurodegeneration (48, 49). Viral infections are often

considered triggers for such pathology, as seen in HIV-associated

dementia and post-encephalitic Parkinsonism (50, 51). Though

not yet conclusively demonstrated, the long-term persistence of

inflammation and autoimmunity associated with COVID-19

raises concerns about the risk of insidious neurodegenerative

changes. Monitoring biomarkers and imaging indicators of

neurodegeneration will be important among recovered COVID-19

patients, especially those reporting neurological complaints.
2.3 Glial cell and vascular damage induced
by autoimmunity

Autoimmune responses triggered by COVID-19 may also

contribute to nervous system injury by targeting glial cells and

blood vessels . Autoantibodies binding astrocytes and

oligodendrocytes can disrupt the homeostasis and function of

these glial cells, which support and interact with neurons (52).

Anti-endothelial cell autoantibodies can promote apoptosis of

vascular endothelial cells lining the blood-brain barrier, leading to

microhemorrhages and facilitating neuroinflammation, and

although this increase is uncommon in infected patients in the

acute phase of COVID-19, it cannot be ruled out in long COVID

(53). A study indicates patients with COVID-19 associated

encephalopathy were found to have autoantibodies binding

components in the brain, though specific targets remain unclear

(54). Further research is still needed to confirm and characterize

autoimmune mediated damage to glial cells, neurons and the

vasculature in SARS-CoV-2 infection. Understanding the

mechanisms of COVID-19 elicited autoimmunity warrants urgent

investigation to guide the management of neurological sequelae.
3 COVID-19, autoimmunity and
female specificity

3.1 Sex differences in COVID-19-induced
autoimmunity

Emerging evidence indicates that women exhibit distinct

autoimmune responses following COVID-19 compared to men.

Female COVID-19 patients were found to have higher frequencies

of various autoantibodies like antiphospholipid antibodies (55).

Furthermore, women tend to have more robust antibody

reactions to the SARS-CoV-2 spike protein antigen compared to

males (21, 56). These early findings suggest that female-specific

factors may promote augmented autoimmunity following COVID-

19 infection. Understanding the mechanisms underlying this sex

bias could have implications for the diagnosis, monitoring, and
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management of neurological sequelae that may persist longer

in women.
3.2 Possible mechanisms of
female specificity

Sex hormones like estrogen, progesterone and testosterone can

modulate immune responses and may contribute to the heightened

autoimmunity seen in female COVID-19 patients. Estrogen tends

to promote more vigorous humoral immunity and antibody

production compared to androgens like testosterone (57). The

cyclic fluctuations in estrogen and progesterone levels over the

menstrual cycle also drive periodic changes in immune activity (58).

Therefore, hormonal differences in females may create a pro-

inflammatory cytokine milieu and enhanced B cell responses

conducive to developing autoreactive antibodies after viral

infections like COVID-19 (21, 22). Further research is required to

delineate the complex interplay between sex hormones and

autoimmunity following SARS-CoV-2 infection.

The increased copy number of X chromosomes in females has

also been implicated in the sexual dimorphism of autoimmunity.

Several immune-related genes are located on the X chromosome,

including TLR7 involved in antiviral responses (59–61). Higher

expression of such genes in females due to X-chromosome

mosaicism may promote stronger inflammatory reactions to

viruses like SARS-CoV-2 (62, 63). Additionally, X chromosome

inactivation is a complex process that generally helps achieve

dosage compensation between XX females and XY males (64, 65).

However, this process is imperfect and can lead to minor differences

in gene expression between sexes (66). These subtle expression

differences likely contribute to increased autoimmunity in females

(66), the potential mechanisms underlying female-specific risks of

COVID-19 induced autoimmunity show in Figure 1. These X-

linked effects likely interact with hormonal influences to create a

female-specific risk profile for developing autoantibodies and

dysregulated immunity after COVID-19 infection.

Differences in the gut and reproductive tract microbiota

between males and females could also help explain the increased

COVID-19 associated autoimmunity in women. The female

microbiome exhibits a greater abundance of certain bacteria that

shape immune function (67). Dysbiosis of the female microbiota is

also associated with higher risks of autoimmunity (68). For

instance, bacterial genera such as Alistipes, Akkermansia,

Eggerthella, Blautia, Pseudoflavonifractor, Anaerotruncus, and

Clostridium, among others, are found to be more prevalent in

females (69). Specifically, Akkermansia muciniphila and

Eggerthella lenta have been implicated in the modulation of

immune responses, with the former potentially having negative

effects on certain neurological/autoimmune diseases like Multiple

Sclerosis (70), and the latter promoting Th17 cell activation, thus

exacerbating colitis and being enriched in various autoimmune

diseases including Inflammatory Bowel Disease (IBD) (71, 72).

Similarly, Anaerotruncus colihominis has been associated with the
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severity of Experimental Autoimmune Encephalomyelitis (EAE) in

mice, a model for Multiple Sclerosis (73). The perturbation of the

delicate balance of microflora by SARS-CoV-2 infection in

susceptible individuals (74, 75), could further exacerbate this

scenario, potentially leading to heightened autoimmune pathology

preferentially in females (74, 76). Further characterization of the

sexual dimorphism in microbiota composition and function could

elucidate the role of the microbiome in the sex-biased autoimmune

outcomes of COVID-19 observed clinically.
3.3 Observed neurological symptoms in
COVID-19 female patients

A recent prospective cohort study of patients with mild

COVID-19 found that female patients reported more neurologic

and neuropsychiatric symptoms, like cognitive deficits, headaches,

and hyposmia compared to males (77). However, the study did not

compare COVID-19 patients to a control group without COVID-

19, thus it remains unclear whether the observed sex differences

represent increased neuro-autoimmunity, specifically caused by

COVID-19 in women (77). Several factors like autoantibody-

mediated microvascular damage may underlie the sex differences

in neurological manifestations of COVID-19 (78), a retrospective

study also found female patients had a higher frequency of certain

neurological post-COVID symptoms, though mechanisms need

further study (79). More research is still needed to elucidate the

pathological mechanisms and determine if female sex is truly a risk

factor for neurological sequelae after COVID-19 infection (77).
4 Perspective and future directions

The apparent female predisposition for neurological

complications and autoimmunity following COVID-19 highlights

the need to incorporate sex-based analyses into ongoing and future

studies. All aspects of COVID-19 research should include female-

specific cohorts to delineate differences in disease course,

pathogenesis, and outcomes between the sexes (80). Mechanistic

studies should aim to uncover the immunological, hormonal,

genetic, and microbial factors driving the distinct female neuro-

COVID manifestations (21). Such research efforts will enable more

precise clinical monitoring, prognostication, and management

tailored to female patients during acute infection and through

long COVID (81). Overall, intentionally embracing female

inclusivity and sex-comparisons in the basic, translational and

clinical science of COVID-19 will ensure equitable biomedical

progress for women.

The sex-specific characteristics of COVID-19 autoimmunity

and neurological sequelae warrant the development of tailored

therapeutic strategies for women. Hormonal modulation to

stabilize immune dysregulation in female patients represents one

approach (82). Personalized immunomodulators based on a

woman’s menstrual cycle stage or menopause status may also
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prove beneficial (83, 84). Additionally, gut microbiome

modification and pre/probiotics could help counteract any

COVID-19 induced dysbiosis known to enable autoimmunity,

which appears to preferentially affect the female microbiota (85,

86). Repurposing approved treatments for autoimmune illnesses

with female predominance may provide faster solutions. Ultimately,

any immunomodulatory or neuroprotective approaches to

managing long COVID should consider female-specific metrics

and mechanisms given the apparent sexual dimorphism of the

underlying pathology.

The care of female COVID-19 patients should account for their

potentially heightened risk of autoimmune-mediated neurological

sequelae (87). Clinicians should maintain a high index of suspicion

for neuropsychiatric symptoms and autoimmunity in women

after COVID-19 (88). Extended monitoring for signs of

neuroinflammation, subclinical autoantibodies and thrombotic

markers may enable earlier intervention (89). Telemedicine can

enhance access to appropriate care while remote patient-reported

tracking of symptoms enables personalized evaluation. Overall, a

nuanced clinical approach conscious of sex differences will be key to

improving long-term outcomes in female COVID-19 survivors.
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5 Conclusion

In summary, COVID-19 can elicit autoimmune responses that

appear to disproportionately affect the female nervous system. The

infection triggers elevated pro-inflammatory cytokines, autoreactive

lymphocytes, and autoantibodies that can bind to or cross-react

with neural antigens (17). Elevated cytokines, autoreactive immune

cells, and autoantibodies triggered by the infection could potentially

bind neurons and glial cel ls , leading to damage like

neuroinflammation and demyelination (90, 91). Female-specific

factors such as hormones, X chromosome effects, and microbiota

composition likely interact to heighten COVID-induced

autoimmunity (22). Elucidating the sex differences in COVID-19

pathogenesis and neurological outcomes remains an urgent

priority. Characterizing the responsible mechanisms will pave the

way for potential immunomodulatory treatments and female-

centered clinical monitoring to improve long-term neural health

after COVID-19.

COVID-19 can trigger autoimmune responses that damage the

nervous system (92). Some early studies have reported more

neurological symptoms in female COVID-19 patients compared
FIGURE 1

Potential mechanisms underlying female-specific risks of COVID-19 induced autoimmunity. COVID-19 infection can lead to loss of immune
tolerance and production of autoreactive immune cells and antibodies through mechanisms like molecular mimicry and cytokine storm. These
aberrant immune responses can target components of the nervous system, including neurons, glial cells, and the blood-brain barrier. The
subsequent autoimmune attack manifests as neuroinflammation, demyelination, and neurodegeneration, potentially increasing the risks of chronic
neurologic conditions like multiple sclerosis. Female COVID-19 patients demonstrate distinct immune dysregulation features such as higher
autoantibody levels, skewed cytokine profiles, and enhanced B cell reactivity. Contributing factors likely involve sex hormones, X chromosome
effects, and microbiome alterations. These specifically predispose women to COVID-induced autoimmunity that damages the nervous system.
Created with BioRender.com.
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to males (93–95). Mechanisms like molecular mimicry and cytokine

stormmayenableCOVID-autoimmunity (32). Female-specific factors

including hormones and X-chromosome effects likely contribute (22).

Understanding female-specific risks is vital to guide monitoring and

therapies for neuro-COVID (96). Overall, the perspective emerging

from early COVID-19 studies indicates that the interplay between

SARS-CoV-2 infection and autoimmunity may pose a particularly

insidious threat to the female nervous system. Further research

intentionally examining female specificity in pathogenesis and

outcomes will be crucial going forward.

Looking ahead, further investigation of sex-specific neurological

effects of COVID-19 is imperative. Longitudinal studies tracking

female patients will uncover the longer-term autoimmune impacts

of the illness. Mechanistic research should delineate the

contributions of hormonal fluctuations, X chromosome effects

and immunological factors underlying the female predisposition

(22). Multidisciplinary collaborations between neuroscientists,

immunologists and clinicians will be key to unraveling the

complex pathogenesis (97). Ultimately, insights from sex-based

analyses can inform prognostic models to identify women at

heightened risk of neurologic sequelae post-COVID. They may

also guide clinical decision-making on the optimal timing and

choice of immunomodulatory interventions to mitigate chronic

neurologic damage in the expanding population of female COVID-

19 survivors. An intentional focus on addressing female-specific

risks will accelerate progress in improving the lives of women

affected by this devastating illness.
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