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Arboviruses are a major threat to public health in tropical regions, encompassing

over 534 distinct species, with 134 capable of causing diseases in humans. These

viruses are transmitted through arthropod vectors that cause symptoms such as

fever, headache, joint pains, and rash, in addition to more serious cases that can

lead to death. Among the arboviruses, dengue virus stands out as the most

prevalent, annually affecting approximately 16.2 million individuals solely in the

Americas. Furthermore, the re-emergence of the Zika virus and the recurrent

outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one

million cases reported annually, underscore the urgency of addressing this public

health challenge. In this manuscript we discuss the epidemiology, viral structure,

pathogenicity and integrated control strategies to combat arboviruses, and the

most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in

addition to presenting future perspectives for the control of arboviruses.

Currently, specific medications for treating arbovirus infections are lacking, and

symptom management remains the primary approach. However, promising

advancements have been made in certain treatments, such as Chloroquine,

Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral

properties against these arboviruses in vitro and in vivo experiments. Additionally,

various strategies within vector control approaches have shown significant

promise in reducing arbovirus transmission rates. These encompass public

education initiatives, targeted insecticide applications, and innovative

approaches like manipulating mosquito bacterial symbionts, such as

Wolbachia. In conclusion, combatting the global threat of arbovirus diseases

needs a comprehensive approach integrating antiviral research, vaccination, and
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vector control. The continued efforts of research communities, alongside

collaborative partnerships with public health authorities, are imperative to

effectively address and mitigate the impact of these arboviral infections on

public health worldwide.
KEYWORDS

arboviruses, tropical regions, climate change, dengue virus, Zika virus, Chikungunya
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1 Introduction

The arbovirus (arthropod-borne viral) diseases have become

serious public health problem with a wide geographic distribution,

mainly in tropical regions (1), due to the presence of competent

vectors (2). These infectious agents predominantly contain

ribonucleic acid (RNA) as their genetic material, with an

exception that is the Asfarviridae family, which have

deoxyribonucleic acid (DNA) as their genetic material (3).

At the moment, there are more than 534 arboviruses identified,

of which approximately 134 cause disease in humans (4). The

families of arboviruses include Flaviviridae, Togaviridae,

Asfarviridae, Orthomyxoviridae, Reoviridae, Rhabdoviridae and

Bunyaviridae (5, 6). Most arboviruses are asymptomatic, but

those of medical interest often cause symptoms (Figure 1) such as

febrile illness, headache, muscle and joint pains. Rash may be

present, as well as petechial rashes. In some cases, arboviruses can

cause encephalitis, hemorrhagic fever, or polyarthralgia (6).

Dengue virus (DENV) is the most prevalent arbovirus

worldwide, found in more than 100 tropical and subtropical

countries (7). According to the World Health Organization

(WHO), it affects approximately 16.2 million people annually

only in the Americas, with more than 500 million people at risk
02
of contracting the disease in this region. As reported by the Pan

American Health Organization (PAHO), in 2022, more than 2.8

million cases were registered in the Americas, with 4,607 of them

being serious cases that caused 1,292 deaths. It is estimated that half

of the world’s population is at risk of contracting the disease (8).

There are four genetically distinct serotypes of DENV that cause

the dengue disease (9). However, in 2013, a fifth serotype was first

detected in the blood of a patient in the state of Sarawak, Malaysia

(10). In endemic countries, there can be co-circulation of more than

one DENV serotype, as well as other arborviruses, all mainly

transmitted by mosquitoes of the Aedes genus (11).

DENV-1 was first isolated in 1943 in Japan and later in 1945 in

Hawaii. Since 1977, some countries in America have reported cases

of DENV-1 (12–14). Over the years, new epidemics have emerged

in several countries, leading to the reporting of other DENV

serotypes. In 1944, DENV-2 was reported in Papua New Guinea

and Indonesia, and in 1953 in Americas. In the 1970s, it started to

spread to countries in Latin America, such as Puerto Rico and Brazil

in 1984. DENV-3 and DENV-4 were first reported in 1953 in the

Philippines and Thailand. The reports of DENV-3 in Brazil started

around 2000s in Rio de Janeiro, and DENV-4 in 1981 (11, 14, 15).

The Zika virus (ZIKV) is another re-emerging flavivirus and

human pathogen, that was first isolated in 1947 in the Zika forest in
FIGURE 1

The arbovirus replication cycle and systematic infection. Arboviruses interact with multiple types of host attachment factors, including molecules
that bind to the viral membrane or virion-associated N-linked carbohydrates. Virions are internalized by clathrin-dependent mechanisms that usurp
host factors involved in the uptake of large macromolecules. Subsequently, viral RNA replication takes place, and infected cells migrate through skin
into blood stream and lymphoid organs, such as lymph nodes, spleen, liver and brain. Host immune response, and each affected organ can trigger
different sinptoms and pathologies.
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Uganda (16). Although the ZIKV has many similarity with other

flavivirus, such as DENV, the ZIKV has an highly variable region

present in its envelope, located close to an important glycosylation

site that contains the amino acid asparagine at position 154

(Asn154) which is associated with its virulence (17). Before 2007,

it was identified as a virus that cause a mild feverish disease in a

small number of humans in Africa and parts of Asia. However,

ZIKV has since spread to several countries, and in 2014, it was

introduced in Brazil and other regions in the Americas (6).

Genomic and phylogenetic analysis of virus isolates indicated the

presence of two distinct lineages, African and Asian, both

originating in East Africa (18). In addition to viral transmission

through the bite of the Aedes mosquitoes, there are other forms,

such as transmission through infected blood transfusion, sexual,

and maternal-fetal transmission (19) which makes it even more

difficult to control.

The chikungunya virus (CHIKV) was initially identified in

patient serum during an epidemic in 1952 in Tanzania, and in

1953, the virus was isolated from Aedes and Culex spp. mosquitoes

(20, 21). Phylogenetic studies show that the circulating strains of

CHIKV have a common ancestor that originated 500 years ago (22).

Currently, there are four identified CHIKV lineages, namely the

Asian (AL), West African (WA), East/Central/South African

(ECSA), and Indian Ocean (IOL) lineages. Among these, two

main strains, responsible for several epidemics in Brazil, are the

ECSA and AL (23, 24).

The ECSA genomic sequences isolated from patients of the

outbreak in ‘La Reunion Island in the Indian Ocean’ showed a

mutation in 90% of the viral sequences of the structural protein E1,

where there was an exchange of the amino acid alanine for valine in

region 226 (A226V) (25, 26). This mutation allowed the adaptation

of a new vector, A. albopictus, which is present in temperate regions,

favoring outbreaks in Italy and France (25, 26). A seroprevalence

analysis between the years 2000-2019 found that the ECSA strain is

the most frequent (27).

Since the first record of CHIKV in 1950s, several epidemics

have emerged in Africa, Asia, Europe, and the Americas. Nowdays,

CHIKV has been found in more than 100 countries (28). According

to the WHO, more than one million cases are reported annually

only in the Americas, with most cases occuring in Brazil (29). In

2016, in the Caribbean and the Americas, 185,000 cases of CHIKV

were reported, with more than 90% of cases in the Americas being

in Brazil (29).

The geographic distribution (Figure 2) of each arbovirus is

related to ecological parameters that define the transmission cycle.

Some factors include patterns of vegetation, temperature, and

typical precipitation, which influence the distribution of the

arthropod vector and the vertebrate host necessary for the

maintenance of the virus. Social, demographic and climate

change, deforestation, population migration, and urbanization in

recent years have also had a strong impact on arbovirus

infections (30).

All these factors increase the possibility of human contact with

vectors, contributing to the increasing transmission of viruses and

the appearance of epidemics around the world. In recent decades,

for example, the reemergence of arboviral infections has been
Frontiers in Immunology 03
observed in numerous countries (Figure 2). The reemergence of

CHIKV in Asia, ZIKV outbreaks in the Americas, as well as West

Nile virus (WNV) and Rift Valley fever virus (RVFV) outbreaks in

Europe, are increasingly frequent (15, 31–33).

Therefore, control and prevention programs for arboviruses are

essential, which must be based on the development of vaccines,

treatment, vector control, and genomic surveillance programs based

on tracking viruses using genomic sequence data as a cross-cutting

activity (34). In this manuscript, we discuss the principal

arboviruses, such as DENV, ZIKV and CHIKV, responsible for

outbreaks in many countries. Furthermore, we address the

perspectives of controlling these diseases.
2 Viral structure and morphogenesis

Flaviviruses like DENV and ZIKV have a spherical and small

composition of viral particles (~50nm in diameter). They contain a

10-11 kb genome and an open reading frame (ORFs) that encodes

three structural proteins: capsid (C), premembrane/membrane

(prM/M), and envelope (E), as well as seven non-structural

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), as

seen in the Figure 3. The structural and non-structural proteins

are important for correct virion assembly, cell receptor binding, and

viral replication (Figure 1) (12, 35). The E protein is an essential

structure responsible for viral attachment and membrane fusion. It

is composed by three domains (E-DI, E-DII, and E-DIII) linked to

the viral membrane by a helical region and two antiparallel

transmembrane segments. The E-DI is responsible for the

structural organization of the envelope, while E-DII allows the

fusion of the virus with the host cell membrane (36, 37), and the E-

DIII is highlighted as the most neutralizing antibody site and allows

the virus to bind to the cell receptor (38, 39). Therefore, the E-DIII

has been used as the best candidate for vaccine development, as well

as for treatment (40).

The viral capsid (C) is a small helical protein with surfaces that

bind to viral nucleic acids or host lipids and directs the

incorporation of the viral genome into the host cells (17). The M

protein originates from the cleavage of the precursor protein prM

(41) and it is essential for the maturation of virions. For example, in

the immature virions, prM prevents structural changes in the E

glycoprotein, which are essential for the correct folding, maturation,

and assembly of E protein during replication (Figure 1) (42).

As illustrated in Figure 3, the alphaviruses like CHIKV form

spherical particles (~70nm in diameter) with icosahedral symmetry

in their capsids. The virions consist of a host-derived lipid bilayer

that is enriched in cholesterol. The lipid envelope contains 240

copies of E1 and E2 heterodimers glycoproteins arranged in a

trimeric format (80 copies) (43, 44). The genome consists of two

ORFs that encode four nonstructural proteins (nsP1-nsP4) and six

structural proteins (Capsid, E3, E2, 6K, E1).

Some receptors involved are the Mxra8, aVb3 integrins, C-type
lectin receptors (CLR), TIM, TAM, AXL and phosphatidylserine

receptor families (T cell immunoglobulin and mucin domain) (45).

Most of the Arbovirus enter the cells by clathrin-mediated

endocytosis (12, 46, 47). In the case of flaviviruses, the viral
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1281667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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polyprotein (NS2-NS3) undergoes cleavage in the endoplasmic

reticulum (ER) by host proteases to produce functional proteins.

The viral genome is synthesized within a viral capsid (C) and

surrounded by a lipid bilayer containing two transmembrane

proteins, envelope (E) and membrane (M). Subsequently, the

particles are released from the ER (Figure 1) (35).

In the case of alphaviruses, the E1 glycoprotein fuses the viral

envelope in the endosome, while E2 interacts with the cell receptor,

triggering endocytosis. The E2 glycoprotein conjugates with E3

glycoprotein (pE2) inside the cell. pE2 undergoes maturation in the

Golgi complex and releases E2 and E3. Cleavage of E3 is crucial for

particle fusion. E3 aids in spicule folding and prevents premature
Frontiers in Immunology 04
glycoprotein activation. 6K is involved in virion formation and

growth (43, 48, 49). Nonstructural proteins play essential roles in

genome replication and transcription, as well as in protecting the

replication complex and genomic RNA from protease degradation

(38). These proteins are translated into two forms: P123, which is

more abundant, and P1234, generated by reading the opal stop

codon at the junction of nsP3 and nsP4. Following cleavage, these

proteins give rise to four distinct proteins: nsP1, nsP2, nsP3, and

nsP4. The nonstructural proteins actively participate in the

replication of the viral genome (50–55).

After attachment to the host cells, mainly innate immune cells,

such as dendritic cells, monocytes, and macrophages, by receptor-
FIGURE 2

The Arbovirus DENV, ZIKV, and CHIKV distribution around the world: The map shows the areas with the distribution of the risk of DENV throughout
the world (A), the areas with the risk of ZIKV (B), and the areas of the risk of CHIKV (C). On (D), the incidence of DENV is shown in the Brazilian
states, (E) ZIKV, and (F) CHIKV.
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mediated endocytosis, the viral RNA replicates. Once infected,

dendritic cells migrate to lymphoid organs, allowing replication

and dissemination to other organs (Figure 1) (56).
3 Pathogenicity of arboviruses and
host immune responses

The arbovirus infects resident skin cells, such as fibroblasts,

macrophages, and dendritic cells, through the bite of an infected

female Aedes spp. mosquito (57). Once the virus is transferred to the

tissues, it initiates the pre-acute phase of infection, characterized by

an inflammatory response, including increased permeability and

chemokine release from resident cells. After viral replication

(Figure 1), it systemically migrates through lymph nodes, joints,

spleen, liver, brain and muscles (58–61). During the initial days of

infection, high titres of the virus can be detected in the blood

(62–65).

The innate immunity plays an important role in controlling

arboviruses in the early stages of infection. As is well known, the

viral RNA is a pathogen-associated molecular patterns (PAMP)

recognized by pattern recognition receptors (PRRs), mainly Toll-

like receptors (TLRs 3, 7 and 8), RIG-I like receptors (RLRs) and

Nod-like receptors (NLRs) (66, 67). As with other viral infections,

type I interferon (IFN-a and IFN-b) acts as the first line of defense
against arboviruses. These interferons stimulate the expression of
Frontiers in Immunology 05
many genes that interupt the virus replication and proliferation (68,

69). The IFNs activate the cells through a signal transducer such as

Janus kinase, which induces the transcription factor JAK-STAT to

produce interferon regulatory factors (IRFs 3, 5 and 7) and

interferon-stimulated genes (ISG), that block viral replication by

triggering an antiviral state in both infected and uninfected cells

(70–72). Secondary infections, however, are known to cause serious

diseases, specifically after a heterotypic infection (73). It is believed

that the phenomenon of antibody-dependent enhancement (ADE)

may cause increased virulence and pathogenicity (74).

The ADE phenomenon occurs when non-neutralizing

antibodies from a previous heterotypic infection create a virus-

antibody complex that is phagocytosed by cells that are generally

not infected, via Fcg receptors and complement receptors present in

permissive cell for ADE, such as dendritic cells, monocytes and

macrophages (75). ADE is primarily mediated by the IgG antibody,

and in some instances, by IgM (76). It is expected to result in an

increase in viral uptake and, therefore, contribute to the replication,

leading to an exacerbated immune response to the infection, and

cytokine storm, with an upregulation of IL-6, TNF-a and IL-10,

whereas IL-12 and IFN-g is downregulated (77).

It is worth mentioning Vo et al. (78) that conducted a study to

investigate the phenomenon of ADE in the context of the four

DENV serotypes by assessing plasma samples from patients with

confirmed DENV-2 infections. Initially, during the early stages of

infection, no significant differences in ADE activity were observed
FIGURE 3

Genomic Organization and Viral Structure of Flavivirus and Alphavirus. Flavivirus comprise a single Open Reading Frame with the genes for the
Structural Proteins followed by the Non-Structural Proteins transcribed and translated and the resulting polyprotein undergoes proteolytic
processing. Alphavirusus are comprised of the genes for the Non-Structural Proteins followed by the Structural Proteins, transcribed from two
distinct ORFs, and each resulting polyprotein undergoes further proteolytical processing. Flavivirus structure have a mature virions with capsid (C)
and membrane (M) covered by 90 dimers of (E) proteins. The E proteins exhibit three domain: E-DI (dark blue), E-DII (light blue) and E-DIII (green)
anchored to the viral membrane (purple). The Alphavirus virion have the envelope glycoproteins in a shape of 240 dr trimer of E1(dark green), E2
(light green) ancored in lipid membrane (M) and the capsid (C) protein (blue). Showing heterodimers interacting with capsid protein.
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among the serotypes. However, intriguing distinctions emerged in

later stages, specifically at 10 and 60 days post-infection

confirmation. ADE activity was found to be notably higher

against DENV-1 when compared to DENV-4 during these later

time points. When analyzing the cumulative ADE activity by

calculating the area under the curve (AUC), it was determined to

be most pronounced against DENV-2, which happened to be the

serotype responsible for the infection in the cohort under

investigation (78).

Moreover, overall it is not new that DENV antibody avidity

shifts from the previous infecting serotype to the current infecting

serotype over time (79). Over time, there is a transition in the

overall avidity of these antibodies, influenced by changing

quantities and qualities. For example, the quantity of afucosylated

Fc-IgG increases during convalescence compared to the acute phase

of primary infections, potentially impacting the occurrence of ADE

(80, 81). Additionally, antibody titers specific to DENV tend to

decrease as time progresses, which may further contribute to the

susceptibility to ADE (82, 83). This is of particular concern since

antibodies targeting specific regions of viral proteins, such as the

fusion loop of the envelope protein (E) and other surface proteins

like (prM), have been identified as factors promoting ADE both in

laboratory settings and animal models (84, 85). Structural aspects of

the virus, including its maturation state, have also been found to

influence ADE. Notably, severe cases of DENV infection can

witness an increase in mortality rates of up to 20% (73).

Another important factor for pathogenicity is the NS1. This

protein is found on the surface of infected cells and circulating viral

particles in the host. The interaction of NS1 with cellular receptors

and viral proteins contributes to viral replication, viable viral

particles, viral persistence, and primarily the activation of immune

system receptors, such as C3, C4, and C5 complement receptors, and

even the membrane attack complex (86). TLR3, present in dendritic

cells and macrophages, is activated via NS1, triggering the expression

of antiviral factors. NS1 also activates TLR2 and TLR6 during DENV

infection, increasing the production of proinflammatory cytokines

like IL-6 and TNF-a (87). The recognition of NS1 by TLR4 causes

the activation of peripheral blood mononuclear cells (PBMCs),

leading to an increase in proinflammatory cytokines that induce

endothelial tissue dysfunction (88). Studies using human endothelial

cell cultures have shown that flavivirus NS1 can cause modulation

and endothelial hyperpermeability in various tissues, favoring

pathogenesis (89).

The most severe dengue clinical syndrome can manifest itself in

the form of shock, including coagulation abnormalities, plasma

leakage, and increased vascular fragility. Fluid loss due to increased

capillary permeability leads to hypovolemic shock and multiorgan

failure (90). Because the clinical diagnosis of these diseases is not

specific (91), due to the wide spectrum of clinical manifestations

and clinical overlap with other circulating arboviruses, molecular

diagnostic techniques are necessary and are the most commonly

used to confirm infection by some flavivirus at the beginning of

symptoms (92, 93).

The presence of viral RNA in the amniotic fluid and placenta

evidences the association of Congenital Zika Syndrome (SCZ) with

neonatal complications, such as congenital microcephaly, optic
Frontiers in Immunology 06
neuropathy, congenital glaucoma, ventriculomegaly and

lissencephaly (94, 95). Beyond neonatal complications, ZIKV

infection in adults is related to Guillain Barré Syndrome (GBS),

an autoimmune disease that attacks neural cells leading to gradual

muscle weakness and even paralysis. Other complications such as

arthralgia and cardiovascular problems have been reported;

however, it is necessary to establish the exact connection (96, 97).

In the chronic phase, CHIKV propagation through the

lymphatic, circulatory, and joint systems (98). The chronic-phase

arthritis and the pro-inflammatory environment are associated, the

persistence of viral RNA in macrophages, muscles and joints may

favor persistent arthritis (99). Unlike other arboviruses, which show

symptoms only in the acute infection phase, more than a third of

CHIKV-caused infections are symptomatic and most patients

experience joint pain years after the onset of the disease (100, 101).
4 Outlook on control
strategies development

It is necessary to understand in detail the Arbovirus’ biology, its

relationship with the vectors, with the host and its history, so that is

possible to develop integrated control strategies in an effective way,

because multiple factors contribute to the emergence of arboviruses.

For instance, population growth in areas with unplanned

urbanization, climate changes, and viral genetic adaptation are

significant contributors (30). Beyond their transmission between

arthropods and humans, these viruses can infect a wide range of

animal species, rendering complete eradication virtually impossible.

Arbovirus infections exhibit diverse clinical presentations, ranging

from mild to severe, and are categorized as either visceral or

neurotropic, with some viruses displaying both characteristics

(102, 103).
4.1 Vaccines

An effective vaccine against DENV must be able to induce a

balanced response against all four DENV serotypes (104). However,

its development is challenging due to the theoretical risk that an

incomplete immunity generated by the vaccine could lead to

increased pathogenesis upon subsequent natural infection, as

discussed earlier with the ADE phenomenon.

Dengvaxia® (Sanofi Pasteur) is a live attenuated tetravalent

vaccine containing chimeras of pre-structural membrane (prM) and

envelope (E) genes from the four DENV types, combined with non-

structural genes from the yellow fever vaccine strain 17D (dengue

chimeric yellow fever – CYD) (105). It has been licensed in several

American countries, including Mexico, Brazil, El Salvador, Costa

Rica, Paraguay, Guatemala, and Peru (106). However, despite being

licensed by ANVISA (The National Health Surveillance Agency) in

2015 (107), Dengvaxia® has raised numerous concerns in the

scientific and health communities, particularly regarding its

potential to predispose people with no prior DENV exposure to

severe diseases. As a result, the vaccine is no longer considered a

viable prevention tool, partly due to its high cost (106).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1281667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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In the Philippines, immunizations with Dengvaxia® were

suspended in 2017 after 14 vaccination-associated child deaths

occurred (108). In Brazil, the vaccine was recommended for

individuals aged 9 to 45 years old, with a documented history of

prior laboratory-confirmed DENV infection (106). In the European

Union and the United States, Dengvaxia® was also licensed for its

use in people aged 9 or older living in DENV endemic areas, but

limited to those who had experienced a previous DENV infection

(109, 110). The Advisory Committee on Immunization Practices

(ACIP) recommended in June 2021 Dengvaxia for routine use in

children aged 9 to 16 years living in endemic areas with laboratory

confirmation of previous DENV infection (111). Low acceptance of

the vaccine is driven by concerns about an increased risk of severe

dengue in vaccinated individuals without prior exposure to DENV.

Recently, the ANVISA approved the QDENGA® vaccine

(TAK-003 – Takeda Pharma) to immunize individuals aged 4 -

60 years, without the need to confirm a previous infection, different

from the Dengvaxia® vaccine. This vaccine, QDENGA®, is based

on a live attenuated DENV-2 virus that serves as the genetic

backbone for the four vaccine viruses, the chimeras (DENV-1,

DENV-3, and DENV-4), which were generated by replacing the

pre-membrane and envelope genes. The QDENGA® vaccine also

received evaluation and a positive recommendation from the

European Health Agency (EMA) under the “EU Medicines for

all” program. Several clinical trials involving more than 20,000

subjects have demonstrated the vaccine’s safety and efficacy against

DENV disease (112–114).

Despite the success of vaccines already licensed for certain

flaviviruses such as Yellow Fever Virus (YFV), and Japanese

Encephalitis Virus (JEV), combating epidemics caused by

emerging flaviviruses poses significant challenges. The primary

challenge stems from the extensive cross-reactivity observed in

flavivirus-immune sera. While neutralization assays help to

understanding antibody responses to both homologous and

heterologous viruses in convalescent sera, the use of sera from

acute infected individuals has been limited (115, 116).

The detection of flavivirus infection using molecular assays is

limited due to the transient nature of viremia, making them

sensitive only for relatively short periods. To develop vaccines

against flaviviruses, new platforms must be explored,

underscoring the necessity for further studies on the biology,

structure, and heterogeneity of vaccine antigens (117).

The accessibility to vaccines also remains a significant challenge

even after their development. This issue is particularly evident in

regions like South America and Africa, where vaccine shortages

have led to a continuous circulation of Yellow Fever Virus (YFV),

prompting research on vaccine economics (118). Furthermore, the

availability of effective vaccines does not always guarantee the

expected impact on global health. An illustrative example was

observed during the SARS-CoV-2 pandemic, where in many

areas, the acceptance of vaccination was lower than anticipated,

necessitating the implementation of public policies to ensure

access and raise awareness about the importance of this

preventive measure.

High safety, immunogenicity, and efficacy are always essential

prerequisites for a vaccine to be embraced by both the public
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and the scientific community. However, a crucial question

remains unanswered: Will these DENV vaccines offer superior

protection to individuals with no prior exposure to DENV

infections? Ensuring a vaccine’s effectiveness without the risk of

sensitizing the population and exposing them to symptomatic or

severe disease upon subsequent natural DENV infection is of

utmost importance. Therefore, addressing these questions is

imperative before we can consider using these vaccines as a

significant tool in the prevention and control of dengue disease

on a public scale.

Currently, no vaccines are available to prevent ZIKV and

CHIKV infections. Nevertheless, several vaccine candidates are in

the developmental pipeline (see Figure 4), with ongoing clinical

trials. These vaccines utilize diverse technologies, encompassing live

attenuated, inactivated virus, mRNA, DNA, recombinant, and

VLP approaches.
4.2 Antivirals therapies

At the present, there are no specific therapy against arbovirus-

causing infections, but some drugs are used to reduce symptoms

(Table 1). Studies using “sofosbuvir” as an antiviral agent has been

shown to inhibit ZIKV replication in hepatic and neural cell

cultures, and also provided protection using animal model such

as mice after being challenged with ZIKV (119). In another study,

the antibiotic azithromycin was analyzed in vitro using glial cells,

and it was capable to reduce viral proliferation (120). Even though

these data are promising, it is known that the ideal drug against

ZIKV should reduce viral load, symptoms, and prevent neurological

complications in the fetus, what these experiments are far from

achieving it (121, 122).

In the case of CHIKV, the treatment of arthralgia often involves

the use of non-steroidal anti-inflammatory drugs, such as ribavirin

and chloroquine. Additionally, the investigation of monoclonal

antibodies as potential therapeutic agents has been explored

(123–125). Passive transfer of immune serum protects against

virus-induced lethality and studies in mice demonstrated a

prophylactic efficacy when it is provided before or immediately

after CHIKV challenge (124). Ribavirin has antiviral activity against

several RNA viruses, and the authors (126, 127) suggest that it has a

beneficial effect in relieving arthralgia and swelling associated with

chronic arthralgia. Chloroquine is another treatment that has been

shown to be effective as it inhibited CHIKV infection in cultured

cells through endosomal acidification, thus interfering with the

activation of Toll-like receptors (TLR), reducing inflammatory

activity (128–130). Niclosamide, a medication used as an

antiparasitic, was able to inhibit in vitro the entry of DENV,

ZIKV, and CHIKV into the cells. This medication also interferes

with endosomal acidification and inhibits membrane fusion

(131, 132).

Isatin and its derivatives are heterocyclic organic compounds.

They have broad applications in the pharmacological field, and

several studies have pointed out their antiviral activities, such as

spiropyrazolopyridone. Bin Zou and colleagues (133) used a viral

infection model in mice with DENV and observed a reduction in
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viremia in the treated mice after oral administration of the drug.

Another isatin derivative, 1-[(2-methylbenzimidazol-1-yl)methyl]-

2-oxo-indolin-3-ylidene]-amino]thiourea (MBZM-N-IBT),

demonstrated antiviral activity against CHIKV by inhibiting the

nsP2 protease activity in vitro and in vivo experiments (134, 135).

Natural compounds belonging to the Flavonoid family, such as

Delphinidin (D) and epigallocatechin gallate (EGCG), possess

antioxidant activities, and according to recent studies, they also

exhibit antiviral functions against some arboviruses, such as DENV,

ZIKV, and CHIKV. Delphinidin likely acts during the interaction of

viral proteins with receptors present in cells; this compound showed

antiviral activity only during the early stages of viral infection tested

in vitro (136). The EGCG was also able to inhibit CHIKV infection

and attchament to cells, as shown by researchers (137) that

transfected HEK cells with lentiviral vectors pseudotyped with

CHIKV envelope proteins and subsequently added EGCG to

assess antiviral effects.
4.3 Vector control strategies

Although there are several important studies in progress, the

absence or limitation of effective therapies and vaccines makes the
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control of circulating mosquitoes vectors a commonly used strategy

to combat arbovirus transmission. Vector control represents a

viable approach to reduce the prevalence of these disease vectors

(Table 1). Arboviruses are distributed worldwide, and their

surveillance has become a crucial tool for detecting and

controlling the circulation of viruses (138). Metatranscriptomics

surveillance programs monitor and test mosquito populations for

arboviruses, as demostrated by The Victorian Arbovirus Disease

Control Program (VADCP) (139). Metatranscriptomics is a novel

RNA sequencing approach used to analyze the RNA present in a

sample. This technique aids in identifying viral mutations and even

tracing the origin of cases. To achieve it, a complex bioinformatic

analysis is required, as demonstrated in a study conducted in

Australia (140). In this study, they analyzed the species of

mosquitoes and the circulating virus to gain valuable insights into

viral dynamics and transmission patterns.

Various methods targeting different stages of the mosquito life

cycle can aid in controlling their population. Implementation of

these strategies involves public education and raising awareness,

encouraging measures like managing and preventing the deposition

of eggs and larvae in water accumulations, tires, plant pots, and

uncovered water tanks. Additionally, the application of insecticides

to eliminate mosquito larvae and adults is crucial (141).
FIGURE 4

Chord Diagram with candidate vaccine in clinical trials to DENV, ZIKV and CHIKV. The chord diagram employed in this study depicts a central circle
representing the target virus of the vaccines, including DENV (dark green), ZIKV (red), and CHIKV (yellow). The diverse segments of the circle are
assigned to distinct vaccine development methodologies: 3 trials on VLP (brown), 5 trials on inactivated virus (gray), 6 trials on recombinant methods
(orange), 1 mRNA trial (yellow), 12 trials on live attenuated (blue), and 1 trials involving DNA (red). The phases of the clinical trials are indicated by
symbols: dash (Phase 1), plus (Phase 2), and star (Phase 3). The vaccines mentioned in the chord diagram are registered in the ClinicalTrials.gov -
National Library of Medicine (U.S.) database.
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Furthermore, the incorporation of antiviral controls within

mosquitoes has shown promise in preventing arbovirus

transmission. Some recent studies have explored the use of

genetically modified mosquitoes with antiviral genes that hinder

viral replication (142).

Mosquitoes present a different defense system compared to

mammals; they lack B and T lymphocytes, do not produce

immunoglobulins, and do not develop specific antigen responses.

However, they do exhibit defense mechanisms found in the innate

immunity of mammals, such as Toll-like pathways, Janus kinase/

signal transducer and activator of transcription (JAK/STAT),

immune deficiency (IMD), and RNA interference (RNAi)

pathways, which interfere with viral gene expression (143).

The Toll-like receptors (TLRs) bind to cytokine receptors like

Spätzle, inducing signal transductions in the cytoplasm, where they

interact with the myeloid differentiation primary response protein

(MyD88)-Tube-Pelle complex, leading to the expression of B cell-

dependent immune response-related NF-kB. The NF-kB expression

can also be stimulated via IMD through the activation of

peptidoglycan-recognition protein receptors PGPR-LC and

PGPR-LG. Activation of the JAK/STAT pathway initiates the

transcription of antiviral cytokines and growth factors.
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Gene regulation is carried out by small non-coding RNAs,

approximately 21-30 nucleotides long, classified as small

interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-

associated interfering RNAs (piRNAs) (144, 145). siRNAs are

double-stranded RNA molecules that target complementary

messenger RNA (mRNA) sequences, subsequently degrading the

gene and suppressing its function. miRNAs act in the post-

transcriptional phase, repressing mRNA translation, while

piRNAs regulate element transposition (144–147).

A better understanding of these insect modulation mechanisms

aids in developing more efficient approaches for arbovirus control.

This includes inhibiting specific genes to reduce virus transmission,

enhancing insect resistance to the virus by using antimicrobial

peptides, and even inhibiting viral replication in mosquitoes to

prevent transmission.

Currently, a cutting-edge methodology for arbovirus control

involves the manipulation of mosquito bacterial symbionts’

microbiota. The composition of the bacterial community can vary

among different mosquito species (141). One notable example is

Wolbachia pipiens, an a-proteobacterium found in a few arthropod

species, which has been extensively researched for insect population

control.Wolbachia is present in various mosquito tissues, including

the Malpighian tubules, muscles, head, glands, and reproductive

organs (148). The technique employed to introduceWolbachia into

insects is termed Insect Lineage Infection by Wolbachia. This

method entails inoculating Wolbachia bacteria into insect eggs

during the embryonic stage, resulting in the establishment of a

persistent infection in the cells.Its effective spread is attributed to its

ability to induce cytoplasmic incompatibility (CI), where mating

between uninfected females and Wolbachia-infected males results

in eggs that fail to develop, leading to the production of only

Wolbachia-infected offspring. Additionally, Wolbachia can cause

reduction of vectorial capacity by decreasing the mosquito’s lifespan

(parthenogenesis) and inducing feminization. Moreover,

Wolbachia inhibits virus replication within the mosquito and

decreases saliva production, affecting feeding capacity during

meals (149–151).

Research conducted in Brazil and Colombia has shown

promising results in vector control, demonstrating that the release

of modified Aedes aegypti mosquitoes containing Wolbachia led to

the suppression of arbovirus transmission and replication.

Consequently, Wolbachia has been proven capable of inhibiting

the replication of DENV, ZIKV, and CHIKV (152–154). The use of

Wolbachia as a vector control agent has been applied in several

countries as part of programs aimed at eliminating arboviruses. One

such example is the “Eliminate Dengue” project, an international

program with the objective of controlling DENV circulation

through Wolbachia infection in Aedes aegypti mosquitoes. This

program has been implemented in countries such as Australia,

Brazil, Indonesia, Vietnam, and Colombia, showing promising

results in reducing DENV transmission rates. The initiative that

combats the spread of arboviruses using Wolbachia is the “World

Mosquito Program” (WMP). These prevention and control

programs, which are based on the introduction of Wolbachia into

insects, represent a promising and innovative approach (155).
TABLE 1 Possible antiviral targets and mosquito control strategies.

IMPLEMENTATION OF PREVENTIVE MEASURES

Antiviral Proactiveness – Pre infection

Strategy Description

Metatranscriptomics surveillance Monitors arboviruses in mosquitoes,
mutations identification

and transmission

Genetically modified mosquitoes The mosquito’s natural defense
mechanisms allow new strategies for

insect resistance to viruses

Mosquito bacterial microbiota Promotes a reduction in the viral
replication capacity of vectors.

Prophylaxis - post infection

Name/Compound Mode of action

Sofosbuvir Inhibits viral replication (ZIKV)

Azithromycin Inhibits viral replication (ZIKV)

Ribavirin Antiviral activity (CHIKV)

Chloroquine Antiviral activity (CHIKV)

Niclosamide Antiviral activity (DENV, ZIKV
and CHIKV)

Spiropyrazolopyridone Antiviral activity (DENV)

1-[(2-methylbenzimidazol-1-yl)
methyl]-2-oxo-indolin-3-ylidene]-

amino] thiourea

Antiviral activity (CHIKV)

Delphinidin Antiviral activity in early stages (DENV
and ZIKV)

Epigallocatechin gallate Inhibits infection and antiviral activity
(DENV and CHIKV)
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5 Conclusion

The reemergence of arbovirus infections has been observed in

several countries. Furthermore, the spread to new geographical

areas is on the rise, underscoring the necessity for the

implementation of effective control and prevention programs.

These programs should be grounded in entomological

surveillance activities and disease monitoring.

While specific pharmaceutical interventions for arbovirus

infections remain elusive, we conclude that encouraging progress

has been made with certain compounds, including Chloroquine,

Niclosamide, and Isatin derivatives. These compounds have

demonstrated substantial antiviral efficacy against these pathogens

in both laboratory and animal studies.

It is crucial to implement strategic vector control measures to

contain arbovirus transmission. These strategies encompass a

range of interventions, as exemplified by the VADCP, along with

educational campaigns to raise public awareness. Notably, advanced

techniques like the manipulation of bacterial symbionts in

mosquitoes, illustrated by the utilization of Wolbachia in

Aedes aegypti mosquitoes, have shown remarkable success in

suppressing the transmission of diseases like DENV across

various nations, which holds potential such as pivotal component

of integrated prevention strategy. By reducing vector competence,

l imit ing vira l repl icat ion, and influencing mosqui to

lifespan, Wolbachia contributes substantially to breaking the

transmission cycle.

As we confront the complex challenges posed by arboviruses, it

becomes evident that a holistic and collaborative approach is

imperative. The integration of advancements in antiviral research,

the development of effective vaccines, innovative vector control

methodologies, and surveillance programs collectively fortify the

global defense. This unified front not only prevents immediate

outbreaks, but also lays the foundation for resilient and adaptative

aproch to combat future arbovirus challegens.
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