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Introduction: Acute myeloid leukemia (AML) is a type of blood cancer that is

identified by the unrestricted growth of immature myeloid cells within the bone

marrow. Despite therapeutic advances, AML prognosis remains highly variable,

and there is a lack of biomarkers for customizing treatment. RNA N6-

methyladenosine (m6A) modification is a reversible and dynamic process that

plays a critical role in cancer progression and drug resistance.

Methods: To investigate them6Amodification patterns in AML and their potential

clinical significance, we used the AUCell method to describe the m6A

modification activity of cells in AML patients based on 23 m6A modification

enzymes and further integrated with bulk RNA-seq data.

Results: We found that m6A modification was more effective in leukemic cells

than in immune cells and induced significant changes in gene expression in

leukemic cells rather than immune cells. Furthermore, network analysis revealed

a correlation between transcription factor activation and the m6A modification

status in leukemia cells, while active m6A-modified immune cells exhibited a

higher interaction density in their gene regulatory networks. Hierarchical

clustering based on m6A-related genes identified three distinct AML subtypes.

The immune dysregulation subtype, characterized by RUNX1 mutation and

KMT2A copy number variation, was associated with a worse prognosis and

exhibited a specific gene expression pattern with high expression level of

IGF2BP3 and FMR1, and low expression level of ELAVL1 and YTHDF2. Notably,
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patients with the immune dysregulation subtype were sensitive to

immunotherapy and chemotherapy.

Discussion: Collectively, our findings suggest that m6A modification could be a

potential therapeutic target for AML, and the identified subtypes could guide

personalized therapy.
KEYWORDS

acute myeloid leukemia, N6-methyladenosine modification, subtype, single-cell
transcriptome, tumor microenvironment
1 Introduction

Acute myeloid leukemia (AML) represents an infrequent

hematologic malignancy distinguished by the aberrant expansion

of precursor cells in the myeloid lineage, resulting in a perturbed

differentiation process. In recent decades, allogeneic hematopoietic

stem cell transplantation (allo-HSCT) has emerged as a pivotal

therapeutic intervention, substantially enhancing the overall

survival of eligible AML patients (1). However, the effectiveness

of AML treatment and the issue of relapse continue to pose

significant clinical challenges. Until recently, there has been a

considerable gap in meeting the treatment needs of AML patients.

RNA methylation, particularly N6-methyladenosine (m6A)

methylation, constitutes the prevalent intramolecular modification

observed within eukaryotic mRNA molecules. Such modification is

involved in regulating various aspects of RNA, including splicing,

stability, localization, and translation (2, 3). In recent times, m6A

modifications have not solely surfaced as a novel stratum of

epigenetic control within the realm of cancer; they have also

exhibited substantial therapeutic promise for addressing diverse

forms of malignancies (3–6). Notably, current studies have

highlighted the potential of m6A modifications in elucidating the

pathogenesis and therapeutic aspects of AML. Specifically, the m6A

methyltransferases METTL3 and METTL14 can control and/or

maintain myeloid leukemia cells (7–9). The m6A readers

IGF2BP2 and IGF2BP3 promote AML development in an m6A-

dependent behavior by controlling the expression level of critical

genes in the glutamine metabolism pathways (10, 11). The RNA-

binding protein YBX1 plays a pivotal role in sustaining myeloid

leukemia cells through an m6A-dependent mechanism, wherein it

regulates the stability of BCL (12). FTO plays an oncogenic role in

AML as an m6A RNA demethylase. Small molecule inhibitors that

target FTO have the potential to be used in the treatment of AML

(13, 14). These findings provide valuable insights into the crucial

and intricate involvement of m6A modification and its regulators in

AML, highlighting a promising avenue for AML treatment.

In this study, we identified two distinct patterns of m6A

modification intensity based on the m6A activity score. We found
02
that high-intensity modes significantly impact the prognosis of AML.

Additionally, we conducted a comprehensive analysis of the role of

m6A modification in AML subtypes, including their genomic

alterations, tumor immune microenvironment, and immunotherapy

implications. This examination notably enriches our comprehension

of the molecular processes that contribute to m6A modification’s role

in the development of AML and its impact on the effectiveness of drug

treatments. Overall, our findings provide a solid foundation for the

development of m6A modification-targeting therapies for AML and

suggest that this approach could be an effective and specific strategy

for cancer treatment.
2 Materials and methods

2.1 Data download and processing

We got patient data for acute myeloid leukemia (AML) from the

TCGA (The Cancer Genome Atlas) database, which was downloaded

from the following source: https://xena.ucsc.edu/. RNAseq data from

a total of 151 samples were re-analyzed. Clinical survival information

was obtained for 132 patients and somatic mutation information was

obtained for 143 patients. To verify, we conducted searches in the

GEO database using the keywords ‘acute myelogenous leukemia’ and

‘LAML’ to identify relevant datasets. Specifically, we included datasets

in our analysis if they met the following criteria: (1) Adequate sample

size (n > 200). (2) Using RNA-seq instead of microarrays. (3) Count

matrix is provided for further analysis. GSE106291 (n = 250) and

GSE146173 (n = 246) were selected to further analysis (15, 16). We

utilized the dataset GSE178926, which comprises targeted immune

gene expression profiles derived from pre-treatment bone marrow

samples of acute myeloid leukemia patients undergoing treatment

with pembrolizumab and the hypomethylating agent azacytidine

(ClinicalTrials.gov Identifier: NCT02845297) as described by

Rutella et al. in 2022 (17), for the purpose of immunotherapy

prediction. Single-cell RNA sequencing (scRNA-seq) data from 12

patients diagnosed with acute myeloid leukemia (AML) were

obtained from the dataset provided by van Galen et al. (18).
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2.2 Re-analysis of scRNA-seq

The single-cell RNA sequencing (scRNA-seq) count data

underwent normalization using the ‘Seurat’ R package (19),

followed by log-transformation with an offset value of 1 and

subsequent scaling. We discerned genes displaying significant

variability through the utilization of the ‘FindVariableFeatures’

function, wherein the ‘vst.method’ parameter was configured as

‘vst’. We conducted Principal Component Analysis (PCA) on the

highly variable genes, utilizing the top 30 principal components for

subsequent analyses. Cell type annotation was obtained from Zeng

et al. (20). In order to represent the outcomes visually, we employed

t-distributed stochastic neighbor embedding (t-SNE) to reduce the

complexity of the dataset. The RunTSNE function was used to

generate a 2-dimensional t-SNE plot based on the top 30 principal

components. The resulting t-SNE plot was then used to visualize the

clustering results. Subsequently, we employed the ‘FindAllMarkers’

function to identify cluster-specific markers, with the ‘method’

parameter set to ‘MAST’ (21).
2.3 m6A modification activity score

Weobtained 23 m6Amodification enzymes (FTO, CBLL1, FMR1,

HNRNPC, HNRNPA2B, IGF2BP1, IGF2BP2, ELAVL1, IGF2BP3,

ALKBH5, LRPPRC, METTL3, METTL14, RBM15, RBM15B,

VIRMA, WTAP, YTHDF1, YTHDF2, YTHDC1, YTHDC2,

YTHDF3, ZC3H13) and scored their m6A modification activity

using the AUCell R package (22). The enzymes were used as a gene

set to calculate the area under the curve (AUC) value. This value was

used to rank gene expression for each cell, reflecting the proportion of

highly expressed genes in the gene set for that cell. To identify the

active gene set, we used the “AUCell_exploreThresholds” function to

calculate the threshold value (0.048). Using the AUC scores of each

cell, we colored the cell clustering UMAP embedding to show which

cells were active.
2.4 Regulon analysis and
signature enrichment

To assess the activity of transcription factor (TF) regulons in the

context of single-cell RNA sequencing (scRNA-seq) data, we

conducted a regulon analysis employing the SCENIC framework.

Following the guidelines outlined by Van de Sande et al., we

leveraged the Docker image of pySCENIC and utilized

logarithmically transformed expression counts obtained from

AML cells for input data (23). The identification of putative

transcription factors (TFs) was carried out with default

parameters and a compiled list of human TFs from Lambert et al.

(24). To refine potential TF-target interactions within each regulon,

we incorporated CisTarget, which entailed the utilization of

established human TF motifs databases annotated at intervals of
Frontiers in Immunology 03
500 base pairs, 5 kilobases (kb), and 10 kb from transcriptional start

sites. Additionally, a drop-out masking strategy was applied during

this refinement process. Subsequently, the enrichment of these

refined TF regulons was assessed using AUCell, and enrichment

scores were scaled for visualization purposes.
2.5 GRN construction

We generated gene regulatory networks (GRNs) for both m6A-

active and m6A-inactive cell populations using the R package

bigSCale2 (25, 26). To do so, we first separated the m6A-active

and m6A-inactive cells and generated a cell count matrix for each

m6A modification state using Seurat’s GetAssayData function. We

then filtered the resulting matrices to remove genes with ensemble

identifiers and passed them to bigSCale2 to construct the networks.

The networks were generated under the “normal” clustering

parameter, with an edge cutoff set to the top 0.9 quantile for

correlation coefficient. We visualized the networks using the R

package igraph, and each network’s layout was derived from the

Fruchterman-Reingold algorithm.
2.6 Construction of cell-specificity
m6A related signature

The single-cell approach enables a detailed exploration of the

m6A modification model. We employed a likelihood-ratio test to

establish a m6A-related gene signature for each cell-type-specific

cluster. This entailed identifying differentially expressed genes

between cells exhibiting m6A activity and those that are m6A

inactive within each cluster. We focused on identifying m6A

related genes based on the size of effect value (log2FC). The m6A-

related genes within the various cell types were identified using the

following criteria: |log2FC| > 0.25, percentage of cells (pct) < 0.1,

and p-value < 0.05. We prefer to obtain m6A-related genes specific

to each cell type, we therefore used and evaluated the cell specificity

of m6A-related genes. Cell-specific genes within the different cell

types were identified using the following criteria: log2FC > 0.25,

percentage of cells (pct) < 0.1, and p-value < 0.01. Cell-specificity

m6A related signature emphasizes strict cell specificity and

comprehensive m6A modification profile, we thus relaxed the

screening criteria for m6A-related genes and limited the screening

criteria for cell markers.
2.7 Reanalysis of bulk RNA-seq

DEseq2 software was used to detect Differentially expressed

genes (DEGs). Count matrix was scaled by variance-stabilizing

transformation. We identified differentially expressed genes

(DEGs) among the three subtypes using a threshold of |

log2FC| ≥ 1 and a false discovery rate (FDR) ≤ 0.01.

Subsequently, we conducted Gene Ontology (GO) analysis and
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Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis,

visualizing the results through Metascape. Furthermore,

Molecular Signatures Database V7.4 of hallmark gene sets were

used for GSEA by the R package ClusterProfiler.
2.8 Clustering, ESTIMATE, and ssGSEA

For TCGA-LAML, we integrated m6A related genes from five

types of blood cancer cells and further identified the genes that

determine survival status by Cox regression. We conducted

hierarchical clustering analysis using the ‘ConsensusClusterPlus’

package (R implementation, K = 3) based on the 40-genes (Cox

regression p-value < 0.05) from cell-specificity m6A Related

Signature. We utilized ESTIMATE to assess the stromal score,

immune score, ESTIMATE score, and tumor purity for each

LAML sample (27). The ssGSEA was conducted to determine the

enrichment levels of immune-related pathways in each sample.
2.9 Comparing tumor
immune microenvironment

We conducted a systematic ssGSEA analysis to assess the

activation levels of 17 immune pathways, as defined by ImmPort

(28). Additionally, we quantified the expression levels of 78

immunomodulators based on a prior study, with the aim of

exploring the immune microenvironment in LAML. To discern

differences in immune signatures, including immune pathways and

immunomodulators, among LAML subtypes, we employed both the

Kruskal-Wallis test and the Wilcoxon rank-sum test.
2.10 Survival analysis

We defined overall survival (OS) as the duration between

diagnosis and either death or last follow-up. We evaluated the

differences in OS within subtypes in each cohort using Mantel-Cox

log-rank tests, implemented using the R package ‘survival’. Kaplan-

Meier plots were generated using the R package ‘survminer’ to

visualize the survival curves for each cluster. We also derived

univariate and pairwise hazard ratios (HRs) for each cluster using

Cox proportional hazards regression.
2.11 Construction of composite
machine learning model

The genes that satisfy the two conditions are used to build the

machine learning (ML) model: 1. m6A related genes; 2. FDR<0.01 in

the difference analysis of the three subtypes. We employed a

systematic machine learning (ML)-based framework to construct

subtype prediction models. The process involved several key steps:

1. Data Preprocessing: This step encompassed imputing missing
Frontiers in Immunology 04
values and scaling continuous features. Continuous features were

standardized to have a zero mean and unit variance. 2. Data

Splitting: Following preprocessing, we divided the data into two

sets, a training dataset for model development, and a validation

dataset for assessing model accuracy. The data split was random

and maintained a ratio of 7:3. 3. Model Development: For each of

the five ML algorithms (random forests, support vector machines,

naïve Bayes, K-nearest neighbors, and neural networks), we

developed optimal models using the training dataset. 4.

Validation: To ensure robustness, we required consistent results

from at least three models for each sample. All of the

aforementioned modeling steps were implemented using R

(version: 4.1.2).
2.12 Genomic analysis

We conducted Copy Number Alteration (CNA) analysis using

GISTIC2.0 on the TCGA LAML cohort. We examined variations in

amplification or deletion events at the gene level across the three

subtypes. To visualize the Copy Number Variation (CNV) data, we

utilized the ‘ComplexHeatmap’ package in R, creating a waterfall

plot. Additionally, we calculated the Tumor Mutation Burden

(TMB) by determining the number of mutations per patient.
2.13 Immunotherapy response
score generation

Immunotherapy signature feature selection was performed

using differentially expressed genes between CR (Complete

Remission) and NR (Non-Responders) samples in the GSE178926

dataset. Sample identity information was established based on

Rutella et al. study (17). We selected genes based on their

association with CR compared to NR samples, utilizing Elastic

Net penalized logistic regression (glmft algorithm, glmnet package)

with alpha = 0.6 and lambda = 0.06 to accommodate the high degree

of correlation observed among some genes. We opted for Leave-

One-Out Cross-Validation (LOOCV) to maximize our training set

for validation, especially given our small dataset size (n = 33), as

LOOCV exhibits low bias.
2.14 Chemotherapeutic
response prediction

Chemotherapeutic response predictive model is based on the

Cancer Genome Project (CGP) data from the Genomics of Drug

Sensitivity in Cancer (GDSC) project, using gene expression and

drug sensitivity data from cancer cell lines. The R package

“pRRophetic” utilized ridge regression to estimate the half-

maximal inhibitory concentration (IC50) for each sample (29).

Model training was performed using blood-type cell lines through

10-fold cross-validation based on the GDSC’s training set. A total of
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45 cell lines derived from hematological cancers were utilized. To

mitigate batch effects, we employed the ‘combat’ algorithm with

default settings and considered only tissue types labeled as ‘blood’

Duplicate gene expression data were averaged.
2.15 Statistical analyses

The statistical analyses were conducted utilizing R software,

version 4.1.2. The comparison of two groups was established via

Wilcoxon-rank sum test, while analysis of more than three groups

was accomplished through execution of Kruskal-Wallis test. The

benchmark for significance was established with p-value, wherein a
Frontiers in Immunology 05
level of 0.05 or lower was deemed significant, while a level of 0.01 or

lower was deemed extremely significant.
3 Results

3.1 Reanalysis of scRNA-seq data identifies
active and inactive m6A methylation cells
in AML

we conducted a comprehensive reanalysis of scRNA-seq data

obtained from 13,653 cells from 12 patients diagnosed with AML

(GSE116256) (18, 20). Cell identity information was established
A B

D

E

C

FIGURE 1

Identification of active and inactive m6A methylation cells in AML. (A) Score of 23 m6A modification activity. The threshold was chosen as 0.048 and
the m6A modification score of 8,465 cells exceeded the threshold value (The dotted lines overlaying each distribution represent Gaussian fits to the
distribution data.). (B) The volcano plot illustrates the differential expression of genes between m6A modification-active cells and m6A modification-
inactive cells. (C) GO gene set enrichment analysis results were shown as lollipop plot where on x-axis, -log of FDR adjusted p-value for GO terms
were shown. (D) Barplot of significantly activated pathways in the m6A-active (blue) and m6A-inactive (green) cells. (E) Stacked barplots showing the
frequencies of m6A-active and m6A-inactive cells in 14 cell types (p-value > 0.05: ns, p-value < 0.05: *, 0.05 < p-value < 0.01:**, 0.01 < p-value <
0.001:***, 0.001 < p-value < 0.0001:****).
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based on prior studies encompassing five leukemic cell types (LSPC,

ProMono-like, Mono-like, GMP-like and cDC-like) and seven non-

leukemic immune cell types (B, T, natural killer, plasma,

monocytes, CTL and cDCs) (Supplementary Figure 1A). Our

study examined 23 key genes (see method) involved in the m6A

modification process in AML cells. There is no evidence of cell-

specific expression for these genes (Supplementary Figure 1B). We

used AUCell to score m6A sets within individual cells to further

understand m6A activity. The AUC values across all cells showed

two peaks, with 8465 cells showing relatively higher AUC values

when the AUC threshold was set to 0.048 (Figure 1A). Next, we

categorized AML cells into two distinct groups based on their m6A

modification: m6A active (AUC value > 0.048) vs. m6A inactive

(AUC value ≤ 0.048). We performed differential gene analysis on

cells with varying m6A activity and observed 59 significantly

upregulated genes and 46 significantly downregulated genes

(|log2FC| > 0.25 and p-value < 0.01, Figure 1B). Furthermore, we

performed pathway enrichment analysis on these genes, revealing

their impact on myeloid leukocyte cytokine production, mRNA

metabolism, and immune effector functions (Figure 1C). We found

that the Hallmark gene set, which is comprised of a broad range of

biological processes, provided a more comprehensive

representation of differences between m6A-active and m6A-

inactive cells (Figure 1D). Finally, we found that a higher

proportion of leukemic cells (c2 = 88.81, p-value = 4.34e−21,

Supplementary Figure 1C), such as LSPCs, Mono-like, ProMono-

like, GMP-like and cDC-like blasts were identified as m6A-active

cells than immune cells (c2 = 422.95, p-value = 8.17e−84,

Figure 1E). This suggests that m6A modification activity may play

a critical role in regulating a wide range of biological processes and

underscores the importance of considering the overall functional

landscape of cellular processes when studying the effects of

m6A modification.
3.2 Effects of m6A modification status on
gene regulatory networks and biological
processes in leukemic cells

We identified leukemic cells, including LSPCs, cDC-like, GMP-

like, Mono-like and ProMono-like blasts, which exhibited the most

significant impact on m6A modification, as evidenced by the

observation of more up- and down-regulated genes in their active

and inactive states compared to other cell types (Figure 2A). To fully

appreciate the complexity of m6A modification, it is essential to

complement gene expression analysis with an understanding of the

underlying gene regulatory network. In this regard, we have

constructed regulatory networks for leukemic and immune cells

with distinct m6A modification patterns using SCENIC, a

transcription factor-based gene regulatory network. Compared

with immune cells, leukemia cells showed greater differences in

transcription factor activity between m6A-active and m6A-inactive

cells (Figure 2B). Some transcription factors have higher activity

in leukemic cells with active m6A modification, such as

BATF, GABPA, E2F8, E2F2, E2F3, E2F7, ELF1, YY1, HOXA9

(30–35) (Supplementary Figure 1D, Supplementary Table 1).
Frontiers in Immunology 06
The transcription factors ELF1, YY1, and E2F are key regulatory

elements with a ubiquitous impact across diverse cell types, exerting

a significant influence on the modulation of gene expression

changes associated with M6A modifications (Figure 2C;

Supplementary Figures 1D, E). Tumor necrosis factor a-inducible
protein 8 (TNFAIP8) is a novel anti-apoptotic molecule that plays a

role in AML chemoresistance (31, 36). ELF1 was reported to be

responsible for the upregulation of TNFAIP8 expression in human

AML patients (31). YY1 has been reported to bind to the promoter

region of METTL3 and promote its expression, resulting in

increased AML cell proliferation (34). E2F transcription factor 1

(E2F1) was reported to be involved in AML cell differentiation

recently (35).

To identify the unique m6A-related genes in each of these cell

types, we developed a three-step workflow (Supplementary

Figure 1F). Firstly, we obtained the marker genes for each cell

type, which enabled us to accurately classify the cells. Secondly, we

performed differential expression analysis between m6A active and

inactive cells in each cell type. Finally, we obtained a list of unique

m6A-related genes for each cell type by overlapping the two sets of

genes. We performed pathway enrichment analysis of the identified

m6A-related genes for each cell type, which revealed their biological

significance. In cDC-like blasts, m6A modification affected

pathways related to antigen processing and presentation and 3’-

UTR-mediated mRNA stabilization (Figure 2D). In GMP-like

blasts, m6A modification affected pathways related to negative

regulation of mRNA metabolic process and maintenance of DNA

methylation (Figure 2D). In LSPCs, m6A modification affected

pathways related to DNA topological change and mRNA

methylation (Figure 2D). In ProMono-like blasts, m6A

modification impacted pathways related to negative regulation of

mRNA metabolic process and mRNA modification (Figure 2D). In

Mono-like blasts, m6A modification affected pathways related to

RNA metabolic process and transport (Supplementary Figure 1G).

These findings provide insights into the distinct roles of m6A

modification in different cell types and highlight the importance

of this epigenetic mechanism in regulating cellular function and its

relationship to AML progression.
3.3 The impact of m6A modification on
gene regulatory networks in AML

To better understand how leukemia cell or immune cell global

regulatory networks are altered in m6A modification pattern, a gene

regulatory network (GRN) reasoning methodology called bigSCale

(25, 26) was implemented to m6A-active or m6A-inactive cells

(Supplementary Table 2). In leukemic cells, the m6A-active and

m6A-inactive GRN exhibited the similar densities (Figure 3A). To

assess the biological relevance of the differences between m6A-active

and m6A-inactive networks in leukemic cells, the major

distinguishing variables PageRank delineating their topology were

investigated. We distinguished the top 5 influencer genes ranked by

PageRank, as a proxy for a gene’s influence on the network. Many of

these genes have been previously linked to AML pathology, such as

CDK1 and CKS1B (37, 38) (Figure 3A). As an illustration, two
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genes, CDK1 and CKS1B, known for their involvement in G1/S and

G2/M phase transitions of the eukaryotic cell cycle, exhibited no

significant differential expression (p-value > 0.05) but concurrently

showed increased centrality measures (as depicted in Figure 3A).

This finding is particularly intriguing, given that leukemic cells,
Frontiers in Immunology 07
despite being the most deregulated cell type in the initial AML

analysis, did not originally highlight the significance of CDK1 and

CKS1B in this context. In each LPSCs, cell cycle distribution was

determined by Zeng et al. (20). Cycling LSPCs exhibited greater

m6A modification activity (Supplementary Figure 1H). However, in
A B

D

C

FIGURE 2

Effect of m6A modification status on transcriptional regulatory networks and pathway enrichment in four types of leukemia cells (A) Bubble plot
showing the genes that were differentially expressed between m6A-active and m6A-inactive in each cell type. Node sizes correspond to -log10 of
FDR adjusted p-value. (B) The volcano plots of differential transcription factor activity analysis of single-cell RNA sequencing data performed on each
cell type comparing m6A-active cells vs. m6A-inactive cells. (C) Regulatory networks of transcription factors in four major types of leukemia cells
(cDC-like, GMP-like, LSPCs and ProMono-like). (D) Pathway enrichment network of four major types of leukemia cells.
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immune cells, the topology of the m6A-active GRN showed a

relatively higher density in active cells compared with inactive

cells, as reflected by gene-gene relationships and modularity

(Figure 3B). Overall, our findings suggest that m6A modification

pattern in leukemia cells or immune cells may have different effects

on GRN topology, which could provide important insights into the

pathological mechanisms of diseases.
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3.4 Classification of AML subtypes using
the m6A-related genes in leukemia cells

We integrated the unique m6A-related genes of cDC-like blasts,

GMP-like blasts, LSPCs, Mono-like blasts and ProMono-like blasts,

and performed a consensus clustering analysis on TCGA LAML

samples (Supplementary Table 3, see method). Our clustering
A

B

FIGURE 3

Gene regulatory network of m6A-inactive and m6A-active cells in leukemic cells and immune cells. (A) Gene regulatory network of m6A-inactive and
m6A-active cells in leukemic cells (inactive: Cutoff = 0.9, Node = 284, Edge = 883; active: Cutoff = 0.9, Node = 256, Edge = 873). (B) Gene
regulatory network of m6A-inactive and m6A-active cells in immune cells (inactive: Cutoff = 0.9, Node = 146, Edge = 260; active: Cutoff = 0.9,
Node = 2036, Edge = 11078).
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analysis revealed three distinct subtypes with high consistency and

robustness, which were identified based on the cumulative

distribution function (CDF) of the consensus matrix (Figure 4A).

Subsequently, we conducted survival analysis on these subtypes
Frontiers in Immunology 09
using Kaplan-Meier curves and found significant differences in OS

between the subtypes (Figure 4B). We performed differential gene

expression analysis on each subtype and identified pathways that

were significantly enriched (Figure 4C). The first subtype,
A B

D

E F G

C

FIGURE 4

Classification of AML subtypes using the m6A-related genes in leukemia cells by K-means analysis. (A) K = 3 was identified as the optimal value for
consensus clustering. (B) Kaplan-Meier curves of overall survival (OS) among the three subtypes in the TCGA LAML cohort. (C) The enrichment
statistics of ssGSEA signaling pathways of immune dysregulation subtype, hormone regulation subtype and cellular adaptation subtype. (D) The
expression levels of m6A-associated genes of immune dysregulation subtype, hormone regulation subtype and cellular adaptation subtype.
(E) Sankey plot showing the correlation between the classification of AML subtypes using the m6A-related genes and French-American-British
classification of acute myeloid leukemia. (F) The survival curve demonstrates the prognostic outcomes of FAB classification from TCGA-LAML.
(G) Kaplan-Meier curves of OS among the three subtypes in two other GEO datasets (GSE146173 and GSE106291).
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characterized by the poorest survival, demonstrated significant

enrichment in immune system processes such as negative

regulation of immune system processes, innate immune response,

and adaptive immune response, in addition to pathways related to

cell activation, cytokine stimulus, and inflammatory response.

Based on these findings, we defined this subtype as the immune

dysregulation (ID) subtype (Figure 4C). The second subtype, with

intermediate survival, exhibited significant enrichment in pathways

related to ovulation, response to xenobiotic stimulus, and

neutrophil-mediated immunity, along with pathways related to

chemotaxis, blood circulation, and hormone processing. We

defined this subtype as the hormone regulation (HR) subtype

(Figure 4C). The third subtype, which had the best survival,

demonstrated significant enrichment in pathways related to cell

morphogenesis, extracellular matrix organization, and lipid

transport, as well as pathways related to cell junction organization

and signaling by VEGF. Based on these findings, we have defined a

new subtype, called the cellular adaptation (CA) subtype

(Figure 4C; Supplementary Table 4).

To comprehensively characterize the landscape of m6A

modifications across subtypes, we have examined the expression

levels of m6A-associated genes. Our analysis revealed that each

subtype exhibits a distinctive m6A expression profile, suggestive of

subtype-specific regulation of m6A modification (Figure 4D). For

example, the immune dysregulation subtype was characterized by

high expression of IGF2BP3, IGF2BP2, and FMR1, and low

expression of ELAVL1, FTO, and METTL14 (Figure 4D). We

further investigated the correlation between AML subtype

classification using m6A-related genes and the French-American-

British (FAB) classification AML (39). The classification obtained

from m6A-related genes, although not specifically correlated with

FAB classifications, demonstrates a robust prognostic diagnostic

capability (Figures 4E, F). The three subtypes are characterized from

different aspects, including m6A gene expression, m6A modification

activity of leukemic cells, and subtype distribution. To examine the

robustness of our subtype identification, we have developed a

composite machine-learning classifier based on m6A-related genes

and the DEGs among the three subtypes (see method,

Supplementary Table 5). We further validated the stability and

reproducibility of the three subtypes in two additional GEO

datasets, providing strong evidence of their statistical robustness

(Figure 4G; Supplementary Figure 2; Supplementary Tables 6, 7).
3.5 Comparison of genomic alterations of
the three AML subtypes

We utilized oncoplot to assess the genomic alterations in all

subtypes of the TCGA LAML cohort (Figures 5A, B). Our analysis

revealed that RUNX1, DNMT3A, and IDH2 mutations were most

frequently observed in the immune dysregulation subtype, while

being least prevalent in the other two subtypes (Figure 5B).

Additionally, TTN, MUC16, KIT, ZFHX4, and FCGBP mutations

were mainly observed in the cellular adaptation subtype
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(Figure 5B). Although the TMB of the immune dysregulation

subtype was found to be higher than the remaining two subtypes,

the difference was not statistically significant (Figure 5C). Similarly,

the Burden of Copy Number gain was higher in the cellular

adaptation subtype compared to the other two subtypes, whereas

the Burden of Copy Number Loss was higher in the immune

dysregulation subtype than in the other two subtypes; however,

these differences failed to achieve statistical significance

(Figure 5D). Notably, the copy number variation in KMT2A was

specifically present in the immune dysregulation subtype

(Figure 5E), highlighting the potential role of this gene in driving

immune dysregulation in AML.
3.6 The three AML subtypes exhibited
different immune statuses

The immune differences in the three subtypes of AML were

explored through a comprehensive analysis of the immune

microenvironment. We employed the ESTIMATE algorithm to

calculate immune scores, revealing that patients in the immune

dysregulation subtype exhibited significantly higher ESTIMATE

scores compared to those in the other two subtypes (Figure 6A).

However, the prognosis of the cellular adaptation subtype was

found to be better than that of the other two subtypes, despite its

higher immune score. Further, the activation states of immune-

related pathways also were measured (Figure 6B). Several pathways

crucial for immune function activation, including ‘Antigen

processing and presentation,’ ‘NK cell cytotoxicity,’ and the ‘TCR

signaling pathway,’ consistently exhibited upregulation in

both the immune dysregulation subtype and the cellular

adaptation subtype. Consistent with the ESTIMATE algorithm,

all immune pathways within the tumor microenvironment

get the highest activation level in the immune dysregulation

subtype. We conducted a more detailed examination of the

expression levels of 78 immunomodulators in each subtype (as

shown in Figure 6C). Notably, the majority of differentially

expressed immunomodulators exhibited the highest levels in both

the immune dysregulation subtype and the cellular adaptation

subtype. This includes key genes related to antigen presentation

(HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-

DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-

DRB5, MICA and MICB). The total expressions of 78

immunomodulators were also the highest in the immune

dysregulation subtype. However, it must be emphasized that

unlike the cellular adaptation subtype, the suppressor proteins,

such as CD274, CD276, PDCD1LG2, BTN3A1, BTN3A2, SLAMF7

and C10orf54 in the immune dysregulation subtype are also

activated (Figures 6C, D; Supplementary Figure 3A). This is

particularly remarkable because there was a significant difference

in survival risk between the two subtypes (Figures 4B, F), but the

immune dysregulation subtype and the cell adaptation subtype

exhibits highly active immune functions. This compelled us to

further analyze the key differences that determine the survival risk
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in these two subtypes and conducted pathway enrichment analysis

on the top 100 differentially expressed genes in each subgroup. As

expected, the immune dysregulation subtype not only exhibited

highly activated immune responses, but also highly enriched

pathways involved in negative regulation of immune responses

(Figure 6E). Further GSEA confirmed our findings: in the immune
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dysregulation subtype, immune response and immune response

processes were negatively regulated (Figure 6F), while the cell

adaptation subtype exhibited enrichment in pathways related to

DNA synthesis and protein synthesis (Figure 6G).

As a result, the clinical prognosis and biological characteristics

of each subtype in two GEO cohorts closely resembled those of
A

B D

E

C

FIGURE 5

Comparison of genomic alterations of the three AML subtypes. (A) The genomic alterations among the three subtypes of the TCGA LAML cohort.
(B) Mutation percentage of mostly mutated genes. (C) Tumor mutant burden difference among the three subtypes in the TCGA LAML cohort.
(D) The Burden of Copy Number gain and the Burden of Copy Number Loss among the three subtypes in the TCGA LAML cohort. (E) Distinct Copy
number alterations (CNA) profile among the three subtypes.
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thecorresponding subtypes identified in the TCGA LAML cohort

(see Supplementary Figures 3A, B). Furthermore, akin to the

TCGA LAML cohort, the levels of immune pathway activation

and expression of immunomodulators were highest in the
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immune dysregulation subtype, reinforcing the robust and

reliable nature of our identification of immune features

among the three LAML subtypes (see Supplementary

Figures 3A, B).
A B
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C

FIGURE 6

The three AML subtypes exhibited different immune statuses. (A) The ESTIMATE scores among the three subtypes in the TCGA LAML cohort. (B) The
activation degree of 17 immune pathways in each tumor sample among the three subtypes. (C) The expression levels of 78 immunomodulators
among the three subtypes. (D) Boxplot showing the activation status of suppressor proteins in different subtypes. (E) The pathway enrichment
analysis on the top 100 differentially expressed genes in CA and ID subgroup. (F, G) GSEA results showing the activated signaling pathways in ID and
CA subgroup. p-value > 0.05: ns, p-value < 0.05:*, 0.05 < p-value < 0.01: **, 0.01<p-value<0.001:***.
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3.7 The three AML subtypes exhibited
different drug resistance

To further investigate whether the immune dysregulation

subtype had a better response rate to immune checkpoint

blockade, we conducted a reprofiling of primary bone marrow
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(BM) samples obtained from 33 adult patients diagnosed with

either newly diagnosed or relapsed/refractory AML who

underwent treatment with AZA+Pembro (Azacitidine in

Combination with Pembrolizumab, ClinicalTria ls .gov

NCT02845297). We investigated differentially expressed genes

(DEGs) at the baseline between patients who eventually achieved
A B
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C

FIGURE 7

The three AML subtypes exhibited different drug resistance. (A) Features selected by Elastic-Net regression to differentiate between CR and NR
samples. (B) ROC curves for the performance of GSE178926 cohort in predicting immunotherapy response. (C) Differentially expressed genes
between CR and NR samples in GSE178926 cohort (Response score is the immunotherapy response score calculated by the elastic network model).
(D) Boxplot showing the AZA+Pembro response score of the TCGA LAML cohort and (E, F) two GEO cohorts. (G) The heatmap showing the
sensitivity of the three AML subtypes to different compounds. (H, I) Sensitivity of the three AML subtypes to Pazopanib, Dasatinib.
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Complete Remission (CR) and those who did not respond (NR). To

precisely delineate immunotherapy responses distinguishing CR

and NR samples in an unbiased manner, we conducted further

refinement of the gene list between CR and NR samples. We

employed Elastic Net penalized logistic regression (as shown in

Figure 7A) to ensure the inclusion of only the most significant genes

in the model, while also accounting for the high degree of

correlation observed among certain immunotherapy responses.

Collapsing our immunotherapy signature into a gene-weighted

response score, we confirmed its ability to distinguish CR from

NR samples through ROC analysis in the cohort (Figures 7B, C).

Fortunately, the immune dysregulation subtype is more sensitive to

AZA+Pembro therapy compared to other subtypes. (Figure 7D).

This conclusion was validated in the other two publicly available

GEO datasets, confirming that the immune dysregulation subtype is

more sensitive to AZA+Pembro therapy compared to other

subtypes (Figures 7E, F). Further, we employed molecular

subtyping to stratify patients for precision medicine. To assess

whether the three AML subtypes exhibited varying sensitivities to

different drug profiles, we utilized the Genomics of Drug Sensitivity

in Cancer (GDSC) database. Our findings revealed that different

AML subtypes displayed sensitivity to distinct compounds,

reinforcing the significance of molecular subtyping. (Figure 7G).

We found that the Immune dysregulation patients were more

sensitive to Pazopanib and Dasatinib (Figures 7H, I), and more

tolerance to Vorinostat, Metformin, AZD6244 and Nutlin-3a etc.

(Figure 7G). To investigate whether the drug sensitive result of the

three subtypes of AML were repeatable in other datasets, we did a

similar analysis on two GEO cohorts. As a result, the chemotherapy

response of each subtype in two GEO cohorts were the same as the

corresponding subtype identified in the TCGA LAML cohort

(Supplementary Figure 4, Supplementary Tables 8, 9).
4 Discussion

Numerous investigations have firmly established the critical role

of m6A modification in the etiology of AML and have identified

singular molecular subtypes of AML based on changes in the m6A

modifying enzymes (40, 41). Despite these advances, most of these

studies focused on the bulk tissues, while largely neglecting the

relevance of the cell hierarchy to AML initiation and progression

(42). Neglecting the heterogeneity of m6A modification at the cell

level may impair our understanding of fundamental mechanisms

underlying AML, given that cellular properties significantly shape

the microenvironment and ultimately determine the disease

outcome (18, 20). In order to bridge this gap in knowledge, we

undertook this investigation to incorporate information on m6A

modification status and cell-level features in AML with prudence.

Several methods, including principal component analysis

(PCA), single-sample gene set enrichment analysis (ssGSEA), and

gene set variation analysis (43) (GSVA) are commonly used in bulk

RNA-seq analysis to define the activation level of biological

processes. These methods have also been applied extensively to

investigate m6A modification activity in AML patients (44, 45).
Frontiers in Immunology 14
However, due to the significant sparsity issues in single-cell

sequencing data, these conventional methods may not be well-

suited for single-cell data analysis (46). Additionally, the 23 m6A

modifying enzymes differ from conventional biological process gene

sets as they consist of three types of enzymes: writers, readers and

erasers, each performing a distinct function (47). These enzymes

can form numerous combinations to participate in the m6A

modification process in cells (48). Therefore, we used AUCell (22)

to determine the m6A modification activity of each cell, taking into

account the characteristics of single-cell data and the properties of

m6A modifying enzymes. We categorized each cell into an active or

inactive group based on its m6A modification activity. Notably, our

results showed that m6A modification was more active in AML cells

than in non-leukemic immune cells, highlighting the potential role

of m6A modification in AML pathogenesis.

Transcription factor regulatory networks within cells are

frequently constructed, offering an exciting opportunity for high-

resolution identification of distinct transcriptional states and

transitions, such as the m6A modification status (22). In a recent

study, Zeng et al. employed the SCENIC network to delineate a

subset of cells characterized by activation of CDK6 and E2F3,

subsequently categorizing them as leukemia cells associated with

cell cycle initiation (20). Subsequently, Guo et al. conducted VIPER

to elucidate the transcription factor (TF) activity in AML progenitor

cells (44). Our investigation aimed to elucidate the impact of

differential m6A activity on regulatory networks. Notably, our

findings demonstrated that m6A modifications exert a more

pronounced effect on the transcription factor regulatory network

within leukemia cells, with transcription factors in m6A-active

leukemia cells exhibiting more conspicuous transcriptional

regulatory activity. However, it is noteworthy that there is no

significant correlation between transcription factor regulatory

activity and m6A modification activity in immune cells.

Specifically, TFs such as YY1, E2F1, and E2F8 were found to be

closely associated with m6A activity within leukemia cells. Extensive

evidence supports the role of YY1 and E2F1 in the regulation of cell

differentiation and proliferation (34, 35). Additionally, we

considered the topological changes in gene regulatory networks,

which may reflect the complexity of intracellular gene expression

(26). Importantly, AML cells with active m6A modifications and

those with inactive m6A modifications exhibited similar gene-gene

interaction densities. In contrast, gene interaction networks in non-

AML immune cells were significantly influenced by m6A

modifications. This suggests that m6A modifications in AML cells

may impair their ability to coordinate gene networks effectively.

Numerous previous studies have established the significant

influence of m6A modification on the prognosis of patients with

AML(48). Nevertheless, the precise mechanism underlying this

effect has not been thoroughly investigated. In this study, we

present an innovative hypothesis suggesting that m6A

modification primarily affects leukemic cells, thereby altering the

prognostic status of AML patients. Our analysis revealed the

existence of a high-risk subtype of AML termed “immune

dysregulated subtype,” which exhibits RUNX1 mutations and

KMT2A copy number variations (49, 50). Notably, our findings
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shed light on AML molecular pathogenesis and may offer crucial

implications for personalized therapeutic strategies. To this end, we

aim to determine the altered immune status and sensitivity to

immunotherapy of this high-risk subtype. After identifying this

high-risk subtype, our goal is to determine its altered immune status

and sensitivity to immunotherapy. It is important to note that this

subtype is active in the immune system and has shown sensitivity to

immunotherapy. Our analysis revealed that Pazopanib and

Dasatinib are highly sensitive to this subtype, and potential

therapies for treating AML using these drugs have been reported

in the literature (49, 51). This information on immunotherapy can

be used to support clinical treatment and diagnosis.

Our study was the first to demonstrate the m6A modification

information in AML at the single-cell level. We found that the m6A

modification status of leukemic cells are strongly correlated with

patient prognosis. By combining m6A modification information

and cellular information, we identified a high-risk subtype and

elucidated its clinical features. Furthermore, our study developed a

high-precision machine learning composite model that integrates

multiple mainstream machine learning algorithms. The robustness

of our findings has been validated through one-by-one

confirmation in a mainstream cohort. Nevertheless, we do

acknowledge certain limitations of our study. In our study, we

employed AUCell to assess the activation status of m6A-related

genes based on their expression rank. This approach allowed us to

form sets of genes that could potentially act in coordination to

mediate m6A modifications. However, it is important to note that

m6A enzymes often function in a collaborative and interdependent

manner, and pinpointing precise coordination mechanisms can be

challenging (48). Additionally, distinguishing between immune

cells and leukemia cells in bulk RNA-seq data can be challenging

because these cell types may share common biological processes or

differential gene expression profiles (20).
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SUPPLEMENTARY FIGURE 1

Effect of m6A modification status on active and inactive m6A methylated cells in

AML. (A) t-SNE visualization of 13,653 single-cell transcriptomes (points), with

similar cells positioned closer together. Cell type annotation were obtained from
Zeng et al. (20). (B) Heatmap showing the expression of 23 selected cell-type-

specific genes (rows) across 13,653 single cells ordered by cell-type annotations
as shown in A (columns). (C) The stacked bar chart displays the proportions of

m6A modification-active and inactive cells in leukemia and immune cells. (D)
Line plots show the number of cell types of transcription factors with significantly

different activity between m6A-active cells and m6A-inactive cells in immune
cells (blue) and leukemic cells (orange). (E) The network plot shows the

regulatory relationship between transcription factors and differentially

expressed genes (m6A-active cells vs. m6A-inactive cells) in Mono-like blasts.
(F) The workflow shows the screening process of cell-specific m6A-related

genes. (G) The network plot shows the pathways the pathways enriched by
Mono-like blasts-specific m6A-related genes. (H) Boxplot shows the m6A

modification activity of LSPCs in the three states (Quiescent, Primed, Cycle).

SUPPLEMENTARY FIGURE 2

The Robustness of composite machine learning classification models for the
identification of subtypes in the GEO dataset. Kaplan-Meier curves of overall

survival (OS) among the three subtypes classified by different machine learning
models in the GSE106291 cohort (up) and the GSE146173 cohort (down).

SUPPLEMENTARY FIGURE 3

Identification of immune features of the three AML subtypes in the GEO

dataset. (A) The ESTIMATE scores and the activation degree of 17 immune
pathways among the three subtypes in the GSE106291 cohort and GSE146173

cohort. (B) The expression levels of 78 immunomodulators among the three
subtypes in the GSE106291 cohort and GSE146173 cohort.

SUPPLEMENTARY FIGURE 4

The sensitivity of the three AML subtypes to different compounds in the GEO

dataset. (A) The heatmap showing the sensitivity of the three AML subtypes to
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different compounds (GSE106291). (B) Sensitivity of the three AML subtypes
to Pazopanib, Dasatinib (GSE106291). (C) The heatmap showing the sensitivity

of the three AML subtypes to different compounds (GSE146173). (D)
Sensitivity of the three AML subtypes to Pazopanib, Dasatinib (GSE146173).

SUPPLEMENTARY TABLE 1

Results of differential transcription factor activity analysis.

SUPPLEMENTARY TABLE 2

Results of BigScale2-based gene regulatory network analysis.

SUPPLEMENTARY TABLE 3

Cell-specific m6A-associated gene set.

SUPPLEMENTARY TABLE 4

The classification information of the TCGA.

SUPPLEMENTARY TABLE 5

Gene set used to construct models that identify molecular subtypes.

SUPPLEMENTARY TABLE 6

Accuracy statistics for multiple machine learning models.

SUPPLEMENTARY TABLE 7

The classification information of the validation set.

SUPPLEMENTARY TABLE 8

Results of drug susceptibility prediction.

SUPPLEMENTARY TABLE 9

IC50 range table for each cell line corresponding to the drug.

SUPPLEMENTARY FILE 1

Count matrix of AML patients from TCGA database.

SUPPLEMENTARY FILE 2

Count matrix of AML patients from GSE106291 database.

SUPPLEMENTARY FILE 3

Count matrix of AML patients from GSE146173 database.
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