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enoxolone drug modulates
IL-17A in COVID-19 patients: a
randomized clinical trial
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Diana Tovar Vivar3, Fermı́n Valenzuela1,
Alejandro Sosa Espinoza4 and Eduardo Emir Cervera Ceballos4*

1Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico, 2Science Faculty, National
Autonomous University of Mexico, Mexico City, Mexico, 3Research and Development Department,
Columbia Laboratories, Mexico City, Mexico, 4National Cancerology Institute, Teaching department,
Mexico, Mexico
Introduction: Glycyrrhizin (GA) and its derivative Enoxolone (18b), isolated from

the Glycyrrhiza glabra plant, are two potential molecules for treating viral

diseases. Both demonstrate to regulate immune system with antiviral and anti-

inflammatory activities, with the latter mainly due to modulation of inflammatory

cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a

nebulized GA/18b drug for treating COVID-19 patients.

Methods: An open label, randomized, placebo-controlled clinical trial was

conducted in Mexico City from January-August 2022 (Registration No.

PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood

samples from patients were regularly collected to evaluate interleukins IL-4, IL-2,

IL-1b, TNF-a, IL-17A, IL-6, IL-10,IFN-g, IL-12, IL-8 and TGF-b1, as well as IgM and

IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A)

and 90/4 mg (dose B).

Results and discussion: Both GA/18b doses modulated inflammatory response

by reducing mainly IL-17A expression, which in turn kept IL-1b, IL-6, IL-8 and

TNF-a interleukins unchanged, indicating significant modulation of key

interleukin levels to prevent exacerbation of the immune response in COVID-

19 patients. Early on, dose A increased IgM, while dose B induced expression of

the antiviral IFN-g. No severe side effects were seen with either dose, indicating

nebulized GA/18b is a safe treatment that could be used for COVID-19 and

potentially other viral infections involving inflammatory response.
KEYWORDS

glycyrrhizin, enoxolone, immunomodulation, SARS-CoV-2 infection, IL-17A interleukin,
inflammatory cytokines, COVID-19, IFN-gamma
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1 Introduction

Since the initial detection of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) in December 2019 in Wuhan, China,

the rapid transmission of novel coronavirus disease 2019 (COVID-

19) has prompted investigations into various drugs for treating this

viral respiratory infection. Despite extensive efforts, a safe and

effective treatment for COVID-19 remains elusive. This

underscores the need for alternative therapeutic agents targeting

SARS-CoV-2 infection. Two promising candidates originating from

the Glycyrrhiza glabra Linn. plant are Glycyrrhizinic acid (GA; CAS

number 1405-86-3) and its derivative Glycyrrhetinic acid, also

known as enoxolone (18b; CAS number 471-53-4). These

molecules have displayed diverse therapeutic potential in SARS-

infected cells and animal models (1).

Notably, both GA and 18b exhibit antiviral properties against

SARS-CoV-2, employing distinct mechanisms to hinder viral entry

and replication within cells (2, 3). For instance, these compounds

can bind to viral proteins. Binding to the SARS-CoV-2 spike protein

inhibits the interaction between the receptor-binding domain

(RBD) and its receptor, angiotensin-converting enzyme 2 (ACE2),

consequently preventing the virus from entering the cell.

Meanwhile, binding to the SARS-CoV-2 main protease (Mpro)

inhibits viral replication and assembly. GA and 18b can also bind to

cell proteins, such as the ACE2 receptor and the type II

transmembrane serine protease (TMPRSS2) (Supplementary

Figure S1). This enzyme is not only a key player in virus entry for

coronaviruses but also for influenza viruses (4–6).

GA and 18b exhibit anti-inflammatory and immune response

effects through the modulation of cytokines, including interferon-g
(IFN-g), tumor necrosis factor-a (TNF-a), interleukins (IL) such as

IL-17, IL-1b, IL-4, IL-5, IL-6, IL-8, IL-10, and IL-12. Additionally,

they affect intercellular adhesion molecules and transcription factors.

This cytokine-mediated modulation may occur through different

mechanisms, such as reducing the activity of the inflammatory

mediator toll-like receptor (TLR), preventing virus binding to the

ACE2 receptor (7), and inhibiting several high mobility group box 1

(HMGB1)-mediated pathological pathways by directly binding to the

HMGB1 protein (Supplementary Figure S1) (2, 8).

Of particular interest, IL-17, a pro-inflammatory cytokine, has

been observed at elevated levels in the peripheral blood of SARS-

CoV-2 infected patients. This cytokine can trigger various

inflammatory cytokines, including IL-6, IL-1b, IL-1, and IL-8 (9,

10). Encouragingly, insights frommultiple clinical trials suggest that

inhibiting IL-17 could hold therapeutic promise for inflammatory

conditions (11).

The anti-inflammatory activity of GA and 18b has also been

demonstrated in the context of respiratory infections caused by other

viruses, such as influenza and respiratory syncytial virus (12, 13). The

therapeutic activities of both GA and 18b suggests their viability as

effective agents for treating respiratory viral infections like COVID-19.

This potential stems from their dual immunomodulatory effect during

the two phases of immune response observed in the course of COVID-

19 disease. The initial phase, occurring during viral incubation, involves

a specific adaptive immune response essential for virus elimination and

the prevention of disease progression to severe stages. The subsequent
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phase is marked by extensive inflammation resulting from a

compromised immune response, leading to elevated inflammatory

cytokines and culminating in a cytokine storm, tissue damage, multi-

organ failure, and eventual immune exhaustion (14, 15).

Both GA and 18b possess therapeutic and pharmacological

attributes, including non-cytotoxicity, non-carcinogenicity, and a

safe dosage range (3). As such, they have been successfully

employed in combination with other compounds for the

treatment of various conditions, such as erythrodermic psoriasis,

hand hyperpigmentation (16), and chronic viral hepatitis in

humans (17). While the potent antiviral and anti-inflammatory

properties of GA and 18b in cellular and animal models are well-

documented (18), their utilization for human respiratory tract

infections remains limited.

Notably, both compounds are components of herbal formulations

containing GA and 18b (as Glycyrrhiza sp. extract), found in

Traditional Chinese Medicines for treating SARS-CoV-2 infection

(19–21). These formulation, however, comprises additional medicinal

plants aside from Glycyrrhiza sp. extract, making it unclear how GA

and 18b individually impact inflammation process. Limited reports

exist concerning the application of GA and 18b to treat SARS-CoV-2

infection in humans. In China, Diammonium Glycyrrhizinate, the

diammonium salt of GA, was orally administered alongside a

corticosteroid to a COVID-19 patient, resulting in alleviation of

severe symptoms within 12 hours (22). Similarly, a European clinical

trial demonstrated curative effects of a vaporizer solution containing

18b and GA, leading to symptom relief within 48 hours in COVID-19

positive subjects with severe symptoms (23). However, these studies

lack assessments of treatment effects on inflammation molecules like

interleukins, essential for comprehending the principal therapeutic

mechanisms of GA and 18b in COVID-19 patients.

Furthermore, the mechanism of action of GA and 18b against

the SARS-CoV-2 virus in humans remains inadequately

understood, and their administration via nebulization has not

been extensively explored. Inhalation-based drug delivery presents

a promising avenue to address a key challenge associated with

hydrophobic molecules like 18b, enhancing solubility and

permeability for improved bioavailability while achieving high

local concentrations in the respiratory system to combat viral

infection without inducing side effects (24). Previous preclinical

in-vitro studies conducted by us demonstrated that GA and 18b are

safe and have a strong capability to inhibit the Spike-ACE2 protein

binding. In-vivo experiments in a murine model showed that low

and high nebulized GA/18b doses do not produce irritation or

damage in the upper and lower airways (24). Therefore, a phase I

trial, authorized by the Mexican regulatory agency (COFEPRIS:

Federal Commission for the Protection against Sanitary Risks),

investigated the effects of a nebulized drug containing GA and 18b
molecules (GA/18b) on healthy subjects, revealing no adverse

effects during administration and follow-up in humans (data not

shown). Based on these preclinical and clinical trials, we proceeded

to assess the tolerability, safety, and efficacy of this nebulized GA/

18b drug in treating COVID-19 patients. This study aims to

evaluate the efficacy of the GA/18b treatment by analyzing the

immune system’s response, including the regulation of cytokines

and SARS-CoV-2 antibodies throughout the disease progression.
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2 Materials and methods

2.1 Study design

This phase 2 study was a randomized, placebo-controlled open

clinical trial conducted in México City from January to August 2022

by SPV TIMSER company, when the main circulating SARS-CoV-2

variant in México was Omicron (25). The trial’s registration with

COFEPRIS is documented as Registration No. PROTAP-CLI-00.

The trial adhered to ethical principles in accordance with the

Declaration of Helsinki and Good Clinical Practice guidelines.

Using G*Power software version 3.1.9.7, a minimum sample

size of 20 patients per group was determined with an a of 0.05.

Sixty-five COVID-19 positive subjects were recruited and

randomized into the following 3 treatment groups: Group A

received dose A of 30/2 mg GA/18b (n=20); Group B received

dose B of 90/4 mg GA/18b (n=22); and the control group received

0.9% saline solution (n=23).

COVID‐19 positive status was confirmed through PCR testing,

with enrolled patients exhibiting mild-moderate disease severity in

accordance with the World Health Organization’s Clinical Guide

for COVID-19 treatment (2021) (26). During a screening visit three

days prior to treatment initiation, subjects meeting key inclusion

criteria were assigned in a 1:1:1 ratio to the three groups. Treatment

lasted for 15 consecutive days (Figure 1). Exclusions were made for

patients failing inclusion criteria, while discontinuations occurred

due to work-related reasons (Supplementary Figure S2). At the

conclusion of the treatment phase, subjects were evaluated again for

an additional 15 days (Figure 1). Throughout the treatment and

follow-up periods, parameters related to safety, tolerability, side

effects, and immune response were assessed.
2.2 Patients and intervention method

Eligible participants encompassed both women and men aged

over 18, with a body mass index between 18 kg/m2 and 40 kg/m2.

All patients provided informed consent and demonstrated
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willingness and capacity to adhere to study procedures and

follow-up requirements. All subjects were confirmed with a

diagnosis of mild-moderate COVID-19 and fulfilled the

comprehensive eligibility criteria outlined in Table 1. Baseline

demographic information, vital signs, and blood chemistry

measurements were acquired for each group on day 0, prior to

commencing treatment (Supplementary Table S1).

The administration of treatment occurred via nebulization

utilizing a NEBUCOR compressor (P-103 model). Patients

inhaled a solution consisting of 1 mL of the drug mixed with 4

mL of 0.9% saline solution (groups A and B), or 5ml of 0.9% saline

solution as specified (control group), for a duration of 18-20

minutes, repeated every 24 hours over a span of 15

consecutive days.
2.3 Laboratory analyses

2.3.1 Safety and tolerability measures
To assess the adverse effects, safety, and tolerability of the GA/

18b drug, we examined biochemical markers related to liver and

kidney function, fluid and electrolyte balance, glucose levels, and

vital signs. Blood samples were collected using 5.6 mL and 4 mL

Vacutainer tubes and stored at -70°C until analysis of parameters at

certified clinical laboratories in Mexico City.

Vital sign parameters were quantified at days 0-16 and day 30,

while laboratory health markers were measured at days 0, 3, 8, 16,

and 30 to identify potential changes throughout the treatment and

follow-up period.

Adverse events (AEs) included electrolyte imbalances or shifts

in blood chemistry parameters, as well as both serious and non-

serious events in accordance with the CTCAE v 5.0 Common

Terminology Criteria for Adverse Events scale. AEs were

documented through exploration, directed questioning, and

assessment of laboratory analyses. Clinical evaluation of AEs,

utilization, and discontinuation of concomitant medications were

recorded from the initial day of treatment through the final day of

the follow-up period.
FIGURE 1

Schematic of the trial design. D0-D30 indicates sample collection days.
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2.3.2 Quantification of interleukins
and antibodies

The assessment of the GA/18b drug’s efficacy against SARS-

CoV-2 infection involved the examination of its influence on

inflammatory and immune responses. Blood samples underwent

centrifugation at 4°C and 4500 r.p.m. for 5 minutes to isolate

plasma, which was promptly stored at -70°C ± 10°C until

processing for the quantification of cytokines and antibodies

against SARS‐CoV‐2 (IgM and IgG) at 0, 3, 5, 8, 11, 16 and 30 days.

Serum levels of cytokines, namely IL-4, IL-2, IL-1b, TNF-a, IL-
17A, IL-6, IL-10, IFN-g, IL-12, IL-8, and TGF-b1, were quantified
utilizing the Immunoassay Legendplex (Biolegend) Kit, adhering to

the manufacturer’s guidelines. The concentration of interleukins

was determined by establishing a standard curve with an R value >

0.95. Antibodies were detected using an ELISA test, following the

method described by Stadlbauer et al. (27).
2.4 Statistical analysis

Categorical variables, including adverse events (AEs),

utilization, and discontinuation of concomitant medicine, were

summarized as percentages within their respective categories.

Biochemical parameters were subjected to multiple analysis. For

the evaluation of interleukin modulation during disease

progression, the relative amount of each interleukin concerning

its baseline value on day 0 was computed for each subject. This data

normalization was conducted to assess the increase or decrease in

the levels of each measured interleukin and identify possible

significant differences between groups. An increase in interleukin
Frontiers in Immunology 04
levels was identified when the relative amount exceeded or equaled

140%, whereas a decrease was established when the relative amount

was 50% or more. To identify significant differences among groups,

a repeated-measures analysis of variance (ANOVA) was employed

to analyze antibody titers and relative interleukin amounts.

Subsequent pairwise comparisons of group means were

performed using Tukey’s multiple range test. Statistical

significance was attributed to values with p ≤ 0.05. To analyze the

influence among the main measured interleukins, a Spearman

correlation analysis was performed on the concentration data of

IL-6, IL-8, IL-1b, and TNF-a in relation to IL-17A for each group.

Correlation coefficients (rs) and significant correlations are

indicated within the text (p < 0.0001***; p < 0.001**; p < 0.01*).

The statistical analyses were conducted using GraphPad Prism 8.0

(GraphPad Software, Inc., CA).
3 Results

3.1 Safety and tolerability

Based on the percentage of subjects reporting AEs, the most

frequent AEs during treatment and follow-up included headache,

myalgia, dizziness, and paresthesia. Nevertheless, none of these AEs

exceeded 8% within any group. Establishing definitive causality

proved challenging due to the overlap of many symptoms with

those of COVID-19, including headache, myalgia, dizziness, and

paresthesia. For instance, myalgia was reported in both control

group and group A subjects at a similar proportion (5.3% of the

total patients). Consequently, AEs were attributed to the GA/18b-
treated subjects and not the control group. These AEs encompassed

dyspnea, scratchy throat, sialorrhea, nausea, tachycardia, diarrhea,

and low back pain. Among these, dyspnea and itchy throat were the

most frequent at 8.8%, while the rest of AEs were each reported by a

single patient (1.8%). Importantly, all reported AEs were classified

as non-serious and mild to moderate intensity. Furthermore, most

of these AEs (sialorrhea, nausea, tachycardia, and diarrhea) were

not reported beyond day 5.
3.2 Effect of GA/18b treatments

Our findings highlight the immunomodulatory effects of the

GA/18b drug, as evidenced through the assessment of interleukins

and SARS-CoV-2 specific antibodies. In general, it has been

reported that interleukins are molecules with high variation in

basal levels due to various subject-specific conditions, such as sex,

comorbidities, initial symptoms that could differ concerning the

onset of the infection, sample collection time, and other factors.

These variables can consequently increase the standard error of the

data (28–31). However, the analysis of interleukins revealed that the

treatments tended to reduce the increase in interleukin levels.

Overall, this phenomenon was observed in the high percentage of

the measured interleukins (82% and 55% in group A and B,

respectively) which levels were decreased compared to the control

group. A particularly significant decrease was observed in IL-17A,
TABLE 1 Inclusion and exclusion criteria for patients.

Inclusion criteria

• Ability to understand and provide informed consent

• Men and women aged 18 years or older, with body mass index between 18-40
kg/m2

• Confirmed diagnosis of COVID-19

• Positive PCR and/or antigen test for SARS-CoV-2 detection within 72 hours
of

screening visit

• Presenting with mild respiratory symptoms requiring medical management at
screening

• Willingness and ability to comply with all the procedures and follow-up of
the study.

Exclusion criteria

• Uncontrolled medical conditions
• Electrocardiogram indicating potentially dangerous cardiac conditions that

could endanger the patient during the study
• Any condition, in the judgment of the principal investigator, that could

compromise patient safety, interfere with treatment evaluation, or impact
study results

• Prior treatment with or consumption of any substances containing GA or 18b
within 1 month before screening

• Medical treatment including hormonal contraceptives, antivirals, and
corticosteroids, except nutritional supplements and medications for chronic
condition control
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IL-2, IL-8, IL-6, and TNF-a interleukins for both groups, as

depicted in Figures 2, 3. Unlike the treated groups, the relative

amount of IL-17A showed a significant increase from day 8 in the

control group. The obtained Spearman’s coefficient demonstrates

positive correlations of IL-17A with IL-8 (rs=0.574***), IL-6

(rs=0.274**), and TNF-a (rs=0.721***) for this group.

Furthermore, it was observed that the administration of GA/

18b doses led to a reduction in the intake of concomitant

medications. This suggests that the GA/18b drug mitigates

symptoms in patients during the 15-day treatment period.

Notably, within the initial 7 days, when COVID-19 symptoms are

most pronounced, nebulized treatment contributed to a decrease in

the number of patients requiring concomitant medications. During

the first nebulization week, discontinuation of concomitant

medication use was observed in 100%, 94%, and 77% of subjects

receiving treatments doses A, B, and control group,

respectively (Table 2).
Frontiers in Immunology 05
3.3 Effect of dose A

Throughout the disease progression, in group A, most of the

interleukins (IL-4, IL-2, IL-1b, IL-6, IL-8, IL-12, IL-10, IL-17A,
TNF-a, and TGF-b1) remained unchanged, as indicated by

Figures 2, 3; Table 3. Dose A had a notable inhibitory effect on

the production of specific interleukins, including IL-6, IL-17A, IL-8,

IL-10, and IL-2, as their levels were significantly reduced compared

to the control group (Figures 2, 3; Table 3). Among these, IL-17A

experienced the most pronounced reduction, with its levels

decreasing by up to 4.4 times, maintaining a consistent relative

value of approximately 100% throughout the disease course

(Figure 2). The recorded Spearman correlation coefficients

between IL-17A and TNF-a (rs = 0.385***) and between IL-17A

and IL-6 (rs = 0.344***) suggest a positive relation between these

interleukins (Supplementary Table S4). Moreover, dose A

demonstrated an influence on antibody levels. The IgG
FIGURE 2

Modulation of serum levels of IL-17A, TNF-a, IL-6, IL-8, and IL-1bfor each group. Mean ± standard error values are reported. Statistically significant
differences compared to control are indicated by *(group A) or + (group B) when p ≤ 0.05. The concentration data, the lower and upper values, and
limits of detection for these interleukins are shown in Supplementary Table S3.
FIGURE 3

Relative serum levels of IL-2 and IFN-g over disease progression. Mean ± standard error values are reported. Statistically significant differences
compared to control are indicated by * (group A) or + (group B) when p ≤ 0.05. The concentration data, the lower and upper values, and limits of
detection for these interleukins are shown in Supplementary Table S3.
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concentration remained similar to that of the control group until

day 5, after which a subsequent significant decline of approximately

1.4-1.6 fold compared to the control group was observed, reaching

around 100%. This suggests a lack of temporal significant

differences. In contrast to what was observed in IgG, treatment

with dose A led to an early and significant surge in IgM levels by day

5 (Figure 4), reaching a relative value of 200%.
3.4 Effect of dose B

The higher dosage led to an elevation in the relative amount of

three interleukins (IL-4, IL-12, and IFN-g) when compared to the

control group, as depicted in Figure 3 and Table 3. However, among

these, only IFN-g exhibited a significant modulation, demonstrating

a remarkable increase to 300% of its relative amount (Figure 3). In

contrast, a level reduction amounting to 55% of the total

interleukins was noted when compared to the control group. This

modulation was particularly significant for IL-17A, IL-6, IL-8, and
Frontiers in Immunology 06
IL-2 (Figures 2, 3). In parallel with observations from dose A, IL-

17A experienced the most substantial reduction among the

interleukins, demonstrating a decrease of up to 4.3 times with

dose B when compared to the control group. Remarkably, IL-17A’s

relative amount remained relatively stable at around 100%

throughout the disease progression (Figure 2). The recorded

Spearman correlation coefficients of IL-17A with TNF-a (rs =

0.798***), IL-6 (rs = 0.366***), and IL-8 (rs = 0.277**) suggest

positive correlations of IL-17A with these interleukins, while the

negative coefficient value for IL-17A with IL-1b (rs = -0.387***)

suggests a negative correlation between these two cytokines

(Supplementary Table S4).Treatment with dose B also elicited

modifications in antibodies. The concentration of IgM closely

resembled that observed in the control group and exhibited

negligible changes over time. While IgG values exhibited a

tendency to rise from day 11 to day 30, they consistently

remained 1-1.4 times lower than those found in the control

group (Figure 4).
4 Discussion

4.1 Safety of Nebulized GA/18b treatment

One of the aims of this study was to evaluate the safety and

tolerability of GA/18b treatments in patients with COVID-19.

Although some side effects were observed in patients treated with

the GA/18b drug, the majority of these symptoms were common

across both the GA/18b treated groups and the control group.

These symptoms were likely attributed to the underlying COVID-

19 symptomatology. Conversely, the infrequent occurrence and

mild intensity of AEs in the GA/18b treated groups, in contrast to

the absence of such AEs in the control group, coupled with the lack
TABLE 2 Use and discontinuation of concomitant medications during
the trial by treatment group.

Groups

Use/discontinuation of
concomitant medicine

Control A B

Use during 0-15 days 95.0 73.6 85.0

Discontinuation on
examination day

0 35.7 17.7

Discontinuation at day 7 76.5 100.0 94.1

Discontinuation after day 7 23.5 0.0 5.9
Discontinuation percentages were calculated based on the total number of subjects using
concomitant medicines. Values are shown as percentages.
TABLE 3 Modulation of relative IL-4, IL-12, TGF-b1, and IL-10 cytokines levels over time.

Cytokines

Days after starting treatment

3 5 8 11 16 30 Group

IL-4

105 ± 10.4 100 ± 12.2 102 ± 8.7 118 ± 16.1 95 ± 11.7 116 ± 15 Control

100 ± 0.4 95 ± 4.8 96 ± 3.5 93 ± 5.4 97 ± 2.0 100 ± 0.37 A

130 ± 29 118 ± 19.9 126 ± 28.5 116 ± 12.5 135 ± 29.9 122 ± 12.2 B

IL-10

106 ± 8.9 103 ± 8.3 108 ± 10.0 116 ± 13.2 114 ± 12.3 125 ± 12.6 Control

96 ± 5.5 110 ± 12.8 89 ± 4.4 97 ± 4.0 103 ± 5.0 96 ± 9.4* A

108 ± 9.3 102 ± 11.8 103 ± 9.1 114 ± 13.2 116 ± 13.2 127 ± 11.8 B

IL-12

106 ± 8.6 105 ± 9.5 117 ± 11.7 124 ± 13.1 121 ± 13.4 133 ± 13.1 Control

101 ± 1.5 102 ± 1.5 92 ± 5.3 92 ± 4.8 100 ± 7.6 130 ± 24.6 A

132 ± 24.9 136 ± 25.9 110 ± 11.3 147 ± 27 134 ± 14.8 140 ± 12.5 B

TGF-b1

104 ± 14.1 130 ± 18.2 116 ± 20.3 121 ± 16.0 131 ± 16.5 134 ± 18.0 Control

106 ± 3.9 97 ± 2.4 94 ± 6.2 107 ± 15.3 92 ± 5.2 93 ± 5.1 A

84 ± 6.1 109 ± 11.6 143 ± 30.1 148 ± 25.6 115 ± 17.6 100 ± 13.2 B
fron
Relative amounts were calculated as a percentage of the baseline value on day 0. Mean ± standard error values are reported for each interleukin. Statistically significant differences compared to the
control group are indicated by an asterisk (*) when p ≤ 0.05.
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of significant changes in biochemical parameters (Supplementary

Table S2), indicate that the administered doses of GA/18b did not

induce severe side effects.

These results can be linked to the chosen doses and

administration method. Specifically, this trial utilized GA doses

below 100 mg/day, a threshold below which GA metabolism is

unlikely to yield severe side effects. Existing literature supports the

safety of long-term dosages of up to 100 mg/day of GA in humans,

devoid of the severe side effects associated with higher doses, such as

hypermineralocorticoid-like effects (32, 33).

On another note, both GA and 18b, when dosed at levels

sufficient to induce therapeutic effects, have demonstrated the

propensity to cause side effects (34). Conversely, low dosages of

these compounds have been successfully employed in conjunction

with other molecules to achieve desired therapeutic effects. For

instance, in a trial targeting COVID-19 subjects, a formulation

containing GA (12.49 mg/day), 18b (2.49 mg/day), Resveratrol
(18.75 mg/day), and Liquorice (424.8 µg/day) was administered

for five days without any reported side effects (23). Hence,

identifying the appropriate doses of GA and 18b that elicit

antiviral and anti-inflammatory effects while maintaining safety

remains a challenge in their application as treatment.

To devise an effective drug based on GA and 18b, nebulization
was employed as the delivery method. This approach not only

enhances the bioavailability of the active compounds but also

achieves high local concentrations in the respiratory system

without provoking severe side effects. This positive outcome can

be attributed to the reduction in GA metabolism to its derivative,

18b, within the gastrointestinal tract when administered via

nebulization rather than orally. This decrease in metabolism

mitigates the deleterious effects associated with the structural

similarity between 18b and corticosteroids (34–36). Mild and

infrequent side effects, such as dyspnea and an itchy throat,

reported in this trial could likely be attributed to the nebulization

therapy itself, as certain aerosols can induce reactive bronchospasm

and increased airway resistance, especially in patients with pre-

existing respiratory conditions like COVID-19 (37).

Therefore, nebulized GA/18b not only achieves a high local

concentration of these compounds, sufficient for a therapeutic effect

in treating SARS-CoV-2 infection, but also prevents severe AEs.
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This underscores the safety of the GA/18b drug for the treatment of

COVID-19 patients and potentially other viral infections as well.
4.2 GA/18b as an
immunomodulator treatment

The nebulization of the GA/18b drug for the treatment of

SARS-CoV-2 infection resulted in the modulation of cytokines

that play a role in the progression of the illness, acting as either

pro-inflammatory or antiviral inducers. Previous studies have

demonstrated that both GA and 18b have the potential to control

cytokine induction in inflammatory processes (5). This effect could

be attributed to their chemical structure, which bears resemblance

to corticosteroids, affording both molecules glucocorticoid-like

properties, including immune modulation and suppression of

inflammation (22). The suppression of the inflammatory response

could probably be attributed to GA and 18b binding to the

extracellular HMGB1 protein, which is released due to the activity

of viral proteins of SARS-CoV-2 (5, 38, 39).

In addition to the modulation of interleukins, we observed

alterations in the levels of SARS-CoV-2 antibodies due to the

treatments. In COVID-19 patients, the lower dose of GA/18b
increased IgM levels and maintained IgG levels with no

significant fluctuations over time. This elevation in IgM levels

might be connected to the aforementioned interleukin

modulation, given that IgM is the initial immunoglobulin to

emerge in the immune response, aiding in the clearance of

pathogens during their early stages. This could potentially lead to

a reduced inflammatory response in subsequent stages of COVID-

19 progression (40).

Discrepancies in IgG levels between the two GA/18b treatment

doses were also observed. The higher dose exhibited a tendency to

elevate IgG levels starting from day 11, in comparison to the lower

dose. Although this pattern was not significant, it was similar to the

reported by Li and Zhou (41) in a mouse model of allergic rhinitis,

where a higher GA dose led to increased IgG levels compared to a

lower GA dose (41, 42). The modulation of inflammatory cytokines

and antibodies by both doses of GA/18b likely contributes to the

improvement in patient health, as evidenced by a majority of
FIGURE 4

Antibody level progression. Mean ± standard error values are reported. Statistically significant differences compared to control are indicated by *
(group A) when p ≤ 0.05.
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subjects discontinuing concomitant medication for COVID-19

symptoms within the initial 7 days of illness.
4.3 The administration of GA/18b
treatments prevents the elevation of IL-17A
and IL-2 interleukins

The modulation of cytokines, particularly IL-17A and IL-2, was

observed in response to GA/18b treatments for SARS-CoV-2

infection. Emerging evidence underscores the vital role of IL-17

in COVID-19 pathogenesis, with its capacity to activate various

pro-inflammatory cytokines like IL-6, IL-1b, IL-1, and IL-8 (9, 10).

Notably, higher levels of IL-17 and Th17 cells (IL-17-producing

cells) have been identified in severely hospitalized COVID-19

patients (43) and those with persistent symptoms (44). To date,

reports of IL-17A levels in COVID-19 patients with mild/moderate

infection are scarce. A recent study demonstrated that IL-17 is also

increased in this severity of illness (45). Additionally, IL-17A

upregulation has been implicated in the exacerbation of

inflammatory conditions caused by other viruses such as

influenza, respiratory syncytial virus, coxsackievirus, and

coronaviruses, which subsequently enhances viral replication (46).

In our study, we observed a substantial induction of IL-17A in

the control group of COVID-19 patients up to day 8, after which the

IL-17A concentration remained significantly elevated compared to

the GA/18b treated groups (Figure 2). This phenomenon could be

attributed to the reported adaptive immunity of COVID-19

patients, whereby their neutrophils promote T-cell differentiation

into Th17 cells (11).

Due to the known capacity of IL-17A to activate various

cytokines and the positive correlation found between IL-17A and

IL-6, IL-8, and TNF-a, the increase in IL-17A could potentially

trigger dysregulated pro-inflammatory responses. This, in turn, may

lead to elevated levels of the inflammatory cytokines IL-6, IL-8, and

TNF-a in patients in the control group. Considering the reported

role of TNF-a in stimulating inflammatory cytokines, it is suggested

that the observed increase in TNF-a over time in non-GA/18b
treated patients could also contribute to the significant increase in

IL-6 and IL-8 release. While the observed increase in IL-1b in the

control group was not statistically significant, it is probable that

TNF-a and IL-17A could influence the increase in this cytokine.

For example, in fibroblast cells, the interaction between IL-17 and

low proportions of TNF-a has been observed to result in a

synergist ic pro-inflammatory effect , s t imulat ing high

concentrations of IL-6, IL-8, and IL-1b (47). Furthermore, the

increased IL-6 production in the control group could enhance the

generation of IL-17-producing Th17 cells (48), as evidence supports

a linkage between IL-17 and IL-6-mediated activity in viral

infections (10, 49). Although correlations between interleukins are

shown in this study, more in-depth studies are necessary for a full

understanding of the influence and interaction of IL-17A with other

inflammatory cytokines in COVID-19 patients.

Conversely, in the GA/18b treated groups, we observed the

attenuation of IL-6, IL-8, and IL-1b, likely resulting from the lower

stimulation of IL-17A and TNF-a. This, in turn, could mitigate
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further pro-inflammatory stages (50). The inhibition of IL-17 could

potentially expedite patient recovery, leading to reduced recovery

time (51–54), which may explain the lower intake of concomitant

medications in the initial days by the GA/18b treated groups. In

fact, in different viral infection models like H1N1 influenza and

respiratory syncytial virus, the knockout of IL-17 in murine models

or the inhibition of IL-17 by monoclonal antibodies in humans has

been linked to improved infection recovery and mitigation of

related sequelae (51–53).

Reduction of IL-17 levels by dose B in SARS-CoV-2 infected

subjects could probably result from two different pathways:

inhibition of the HMGB1-mediated inflammation response, as

GA and 18b can directly bind to HMGB1 (2, 8), and a possible

inhibition of the viral infection in the early stages, attributed to the

antiviral activity produced by early IFN-g release (55). In various

inflammation models, GA has been observed to diminish IL-17

concentrations. For instance, GA exhibits a protective role in

hepatitis by reducing IL-17 production (56) and ameliorates

colitis by attenuating IL-17-producing T-cell responses (39).

Another interleukin significantly influenced by the treatments

was the proinflammatory cytokine IL-2, which participates in T-cell

activation and the production of cytokines TNF-a and IFN-g (57).
Given that TNF-a triggers a range of cytokines and chemokines, the

significant reduction in IL-2 levels in groups A and B suggests that

GA/18b treatments could modulate the levels of inflammatory

interleukins by reducing IL-2-mediated TNF-a. This observation

aligns with findings from an animal model where different

proportions of GA and 18b were found to inhibit IL-2 levels

among other associated cytokines and chemokines (58).

Despite the overall reduction in IL-2 levels due to GA/18b
treatments, it was observed that dose B induced IL-2, compared to

dose A, in the initial 3 days of infection, a period when disease

symptoms are most pronounced. Importantly, this IL-2 induction

did not persist after day 3, possibly allowing for heightened IFN-g
production during the early stages of infection in the dose B-treated

group (59).
4.4 GA/18b doses show different
immunomodulation effects

While the modulation of IL-17A and IL-2 remains a shared

outcome of treatments, important differences in immune system

modulation across doses were observed. In particular, dose A

exhibited a more robust immune system modulation compared to

dose B, observed as non-significant increases in detected

inflammatory interleukins over time. This modulation effect

might be linked to IgM-mediated signaling pathways. The initial

surge in IgM could potentially regulate interleukin concentrations,

preventing cytokine imbalances (40).

Conversely, though IL-10 interleukin levels were comparable

between dose A and B during drug administration, an early and

modest IL-10 increase on day 5 followed by its subsequent

significant reduction was detected in group A (Table 3). This

could potentially function to curb excessive inflammation, as IL-

10 has been reported to suppress the synthesis of proinflammatory
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cytokines in T-cells, activated macrophages, neutrophils, and

monocytes (60–62).

While treatment A tended to maintain interleukin levels

relatively close to baseline (100%) during the course of illness, the

higher GA/18b dose induced an early increase in two cytokines with
reported antiviral activity, namely IFN-g and IL-12 interleukins.

IFN-g’s ability to hinder viral replication and exhibit anti-

inflammatory properties suggests that its elevation induced by

dose B might play a pivotal role in slowing down viral replication,

limiting spread, and mitigating the early-stage inflammation

response to SARS-CoV-2 infection (63). Notably, other studies in

viral infections and asthma have also demonstrated IFN-g
modulation by GA or 18b (8, 64, 65).

The significant induction of IFN-g in the initial days, as

observed in group B, could potentially inhibit Th17 cell formation

(55) and modulate IL-6, IL-8, and IL-12 concentrations (66).

Elevated IFN-g levels might decrease IL-6 and IL-8 (66) while

increasing IL-12 levels, given the IFN-g-IL-12 positive feedback

loop reported to trigger IL-12 production (67, 68). Furthermore, in

peritoneal macrophages, GA has been shown to stimulate IL-12

messenger RNA accumulation and IL-12 protein secretion during

LPS-induced inflammation (67).

As IL-12 plays a vital role in the modulation of cytokines and T

cell subsets (69), the observed early elevation of IL-12, while not

statistically significant, may contribute to regulating the

inflammation process in recipients of the higher dose.

The induction of IFN-g in plasma and other interleukins with

antiviral activity is not commonly observed in patients diagnosed

with moderate-severe COVID-19; instead, they tend to decline in

the early days of infection (63, 65). Thus, the GA/18b-mediated

IFN-g induction, alongside other demonstrated antiviral

mechanisms of GA and 18b, such as the inhibition of key

enzymes for virus replication and entry (Mpro and TMPRSS2

proteins, respectively), particularly during the initial days, could

play a crucial role in reducing SARS-CoV-2 infection and

associated symptoms.
5 Conclusion

In summary, our findings demonstrate that the two examined

doses of nebulized GA/18b exhibit at least two mechanisms of action

against mild-moderate COVID-19. First, it attenuates the

inflammatory cascade, likely by reducing IL-17A which in turn

modulates pro-inflammatory cytokine expression. Second, it

demonstrates potential antiviral activity by promptly inducing IFN-g.
Importantly, the nebulized GA/18b formulation showed a favorable

safety profile, affirming its suitability for treating COVID-19 and other

viral infections characterized by inflammatory response. As far as we

know, this is the first clinical trial investigating immune system

modulation (interleukins and antibodies) in response to GA/18b
treatment in COVID-19 patients. This study demonstrates the

impact of nebulized GA/18b on key interleukins promoting

inflammation. Further investigations in larger cohorts are needed to

fully elucidate the therapeutic mechanisms of GA/18b treatment in

COVID-19. Given the broad spectrum of biological activities GA and
Frontiers in Immunology 09
18b exhibit against respiratory viral infections, these future inquiries

hold potential for specific treatments advancement.
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SUPPLEMENTARY FIGURE 1

General scheme of antiviral and anti-inflammatory mechanisms of GA and

18b during SARS-CoV-2 infection. TLR, Inflammatory mediator toll-like

receptor; ACE, Angiotensin-converting enzyme; ACE2, Angiotensin-
converting enzyme 2; RAS, Renin–angiotensin system; TMPRSS2, Type II

transmembrane serine protease; HMGB1, High mobility group box 1 protein;
Mpro protein, SARS-CoV-2 main protease; ROS, Reactive oxygen species.
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65. Freyle-Román IK, Peña-López BO, Rincón-Orozco B. Importancia de los
Interferones en la respuesta inmune antiviral contra SARS-CoV-2. Salud UIS (2022)
54. doi: 10.18273/saluduis

66. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell
(2021) 184:861–80. doi: 10.1016/j.cell.2021.01.007

67. Dai JH, Iwatani Y, Ishida T, Terunuma H, Kasai H, Iwakula Y, et al. Glycyrrhizin
enhances interleukin-12 production in peritoneal macrophages. Immunology (2001)
103:235–43. doi: 10.1046/j.1365-2567.2001.01224.x

68. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-
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