
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Petr O. Ilyinskii,
Selecta Biosciences, United States

REVIEWED BY

Kouyuki Hirayasu,
Kanazawa University, Japan
Xun Gui,
Mabwell (Shanghai) Bioscience Co., Ltd.,
China
Rachel Louise Allen,
St George’s, University of London,
United Kingdom

*CORRESPONDENCE

Ali Roghanian

A.Roghanian@soton.ac.uk;

aroghani@mit.edu

†
PRESENT ADDRESS

Charys Papagregoriou,
The Centre for the Study of
Haematological and other Malignancies,
Nicosia, Cyprus

‡These authors have contributed equally to
this work

RECEIVED 25 August 2023
ACCEPTED 20 September 2023

PUBLISHED 13 November 2023

CITATION

Redondo-Garcı́a S, Barritt C,
Papagregoriou C, Yeboah M, Frendeus B,
Cragg MS and Roghanian A (2023) Human
leukocyte immunoglobulin-like receptors
in health and disease.
Front. Immunol. 14:1282874.
doi: 10.3389/fimmu.2023.1282874

COPYRIGHT

© 2023 Redondo-Garcı́a, Barritt,
Papagregoriou, Yeboah, Frendeus, Cragg and
Roghanian. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 13 November 2023

DOI 10.3389/fimmu.2023.1282874
Human leukocyte
immunoglobulin-like receptors
in health and disease

Silvia Redondo-Garcı́a1‡, Christopher Barritt1,2,3‡,
Charys Papagregoriou1†‡, Muchaala Yeboah1, Björn Frendeus1,4,
Mark S. Cragg1,5 and Ali Roghanian1,5*

1Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of
Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom,
2Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom, 3School
of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom, 4BioInvent
International AB, Lund, Sweden, 5Institute for Life Sciences, University of Southampton,
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Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11

innate immunomodulatory receptors, primarily expressed on lymphoid and

myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending

on their associated signalling domains (D). With the exception of the soluble

LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit

immune responses and mediate tolerance. Abnormal expression and function

of LILRs is associated with a range of pathologies, including immune insufficiency

(infection and malignancy) and overt immune responses (autoimmunity and

alloresponses), suggesting LILRs may be excellent candidates for targeted

immunotherapies. This review will discuss the biology and clinical relevance of

this extensive family of immune receptors and will summarise the recent

developments in targeting LILRs in disease settings, such as cancer, with an

update on the clinical trials investigating the therapeutic targeting of

these receptors.
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1 Introduction

The human immune system is composed of a network of complex effector cells, organs

and tissues, all of which are tightly regulated to maintain immune homeostasis (1). One

axis of immune regulation is through the dynamic integration of signals from the myriad of

leukocyte activating and inhibitory cell surface receptors (1, 2).

Inhibitory receptors have recently been in the spotlight due to the development of

immune checkpoint inhibitors for cancer immunotherapy. Current immunotherapies

directed against the inhibitory receptors, such as programmed cell death protein 1 (PD-

1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have shown efficacy in
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various types of cancers that were previously untreatable (3). In

addition, CTLA-4 Ig (abatacept) is being used to treat a number of

autoimmune conditions, such as rheumatoid arthritis (RA) and

type 1 diabetes (4). A variety of other cell-surface receptors are

implicated in the regulation of the immune system and are

potential targets for immunotherapy. One such family of

receptors are the human LILRs, which play key roles in a wide

range of immunological processes. Their ligation through

interaction with endogenous or exogenous ligands can reprogram

leukocytes and alter their functions (5, 6). Given their central roles

in immunoregulation, LILRs are implicated in several pathologies.

Hence, their targeting provides an attractive approach for the

treatment of human disease.

This review will discuss LILR biology, immune responses

mediated by each LILR, and their contribution to human health

and disease. Furthermore, it will discuss the potential of targeting

LILRs in treating a broad-spectrum of disorders, ranging from

cancer to autoimmunity with reference to ongoing clinical trials.
2 LILR family

LILRs are a family of immune receptors with immunomodulatory

roles in innate and adaptive immunity. The LILR gene family were

independently discovered by different investigators around the same

time (7). LILRs were originally identified in 1997 by the Colonna

laboratory (8), followed by the Cosman laboratory (9). Due to their

discovery by different investigators, these genes were assigned several

different names (e.g., ILT, LIR, MIR, CD85). LILR is the current

standardised nomenclature for this receptor family, which was

approved by the HUGO gene nomenclature committee in 2015 (10).

LILRs are classified into two subfamilies: activating (LILRA) and

inhibitory (LILRB).
2.1 Genetics, expression and structure
of LILRs

LILRs are type 1 transmembrane glycoproteins structurally and

functionally similar to killer cell Ig-like receptors (KIR) expressed

on natural killer (NK) cells and some subsets of T lymphocytes (11,

12). LILR genes are located adjacent to the KIRs within the

leukocyte receptor complex on chromosome 19 at 19q13.4,

encoding for 11 functional genes and two pseudogenes (13, 14).

The LILR gene cluster is believed to have originated from an

activating founder gene, which after gene duplications gave rise to

the current family and organisation (12). The LILR region consists

of around 497 kb, divided into telomeric (~211 kb) and centromeric

(~154 kb) regions, separated by a central region (~132 kb) (12).

There are multiple polymorphisms in the receptor binding site of

the LILRs (13, 15–20). In particular, LILRB3 and LILRA6 are

considered as highly polymorphic and are found as different

allelic variants, while LILRA3 and LILRA6 show copy number

variations (13, 15–20). Interestingly, LILRA3 shows an extremely

high allele frequency of deletion in the Japanese population (21). In
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addition, although the LILR region in humans is relatively stable, a

haplotype lacking LILRA3 due to a 6.7 kb deletion exists (12).

LILRs are primarily expressed on myeloid antigen-presenting

cells (APC), such as monocytes and dendritic cells (DC), but also on

granulocytes, NK cells, T and B lymphocytes, hematopoietic stem

cells (22, 23), and non-immune cells, such as endothelial cells and

neurons (12, 19) (Figures 1, 2). LILRs are membrane-bound

receptors, except for LILRA3. However, all LILRs also exist in

soluble form as a result of alternative splicing (11, 19, 24). In

addition, extracellular Ig-like domains of LILRB1, LILRB2, LILRB4,

LILRA1, LILRA3 and LILRA5 are found in human sera or the

supernatants of leukocytes (11, 25–29). These soluble LILR variants

may act as decoy receptors, as demonstrated for LILRB1 (26).

The family have 2-4 C2-type Ig-like domains in their extracellular

domains. However, their different cytoplasmic tails transduce either

activating or inhibitory signalling (14). Apart from LILRA3 that only

exists as a soluble form, the other five activating receptors (LILRA1,

LILRA2, LILRA4, LILRA5 and LILRA6) have a shorter cytoplasmic

tail and a positively charged arginine residue in the transmembrane

domain (Figure 1). As a result, LILRAs transduce signals through an

association with immunoreceptor tyrosine-based activation motif

(ITAM)-containing high affinity IgE Fc epsilon receptor type I g
chain (FceRIg) (30) (Figure 3). In contrast, the five inhibitory

receptors (LILRB1-5) signal through their immunoreceptor

tyrosine-based inhibitory motifs (ITIM) (14, 30) (Figure 2).

Together, LILRs fine-tune the immune response according to

relevant local stimuli. Their dysfunction is therefore associated with

pathologies ranging from autoimmunity to immunosuppression.

The crystal structure of a number of LILRs have been resolved.

A partial structure of LILRB1 (distal D1 and D2) was resolved at

2.1Å resolution, confirming an Ig-like structure for both

extracellular domains. It comprises b-sheets with fused helical

regions, with a similar LILRB1 folding arrangement to that of the

homologous KIR molecules (31). Nam et al. resolved the two

membrane-proximal domains (D3 and D4) of LILRB1, as

structurally similar to D1 and D2 (32). Based on the LILRB1

crystal structure model, Willcox et al. resolved LILRB2 by

homology modelling to 1.8Å resolution (33). The folding of

LILRB2 was predicted to be similar to LILRB1 apart from fewer

a-helical structures (33). At the ligand binding interface, limited

plasticity and flexibility were reported for both receptors due to the

angles between the domains and the staggered assembly of the Ig-

like domains (34). Willcox and colleagues further reported the

crystal structure of the extracellular D1 and D2 of LILRB1 (35). The

LILRB4 ectodomain was resolved at 1.7Å, depicting two Ig-like

domains, similar in structure to the other LILR members. Although,

LILRB4 D2 is similar to D4 of other LILRs, it contains helices that

have not been reported before for this family. Reduced interdomain

contact sites were also observed at the D1-D2 interface, which was

associated with an obtuse interdomain angle of 107° (36). The

crystal structure of LILRA2 indicated shifts in the amino acid

residues that determine binding to human leukocyte antigen

(HLA), explaining why it does not bind to HLA (37). The crystal

structure of LILRA5 has also been reported (38), but the structures

of other LILRs have not yet been determined.
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The putative murine orthologues of LILRs are the paired Ig-like

receptors (PIR), which possess six Ig-like domains and, similar to

LILRs, are activating (PIR-A) or inhibitory (PIR-B) (19, 39, 40).

PIR-B is the human ortholog of LILRB2-3, while glycoprotein 49B1

(gp49B1) is an orthologue of LILRB4 (41). Similar to LILRs, PIR

genes are located within the leukocyte receptor complex on

chromosome 7 (39). Resembling its human counterparts, PIR-A

associates non-covalently with the ITAM-bearing FcgR adaptor

molecule to transduce signals (42), while PIR-B contains 4 ITIMs

in its cytoplasmic tail and binds to mouse major histocompatibility

complex class I (39). These paired receptors are expressed on B cells,

DCs, monocytes, macrophages, neutrophils, eosinophils, mast cells

and megakaryocytes (42–47). These similarities in genomic

location, expression profiles, structure and ligand affinity have

identified PIR-A/B as the murine orthologues of human LILRs

(19, 39, 40, 42). However, PIRs exhibit low overall homology to

human LILRBs ranging from 45% to 54% as well as a wider tissue

expression and greater regulatory effects than LILRs. Consequently,

knowledge of PIRs (and gp49B1) may be limited when

extrapolating to LILR biology.
2.2 LILR ligands

LILRs were initially characterised as HLA class I (HLA I)

binding molecules. Later studies demonstrated that LILRs can be
Frontiers in Immunology 03
classed into two groups based on their ligands. Group 1 LILRs

(LILRA1, LILRA2, LILRA3, LILRB1 and LILRB2) contain highly

conserved HLA I binding sites, enabling the interaction with

classical and non-classical HLA I or HLA I-like proteins. In

contrast, group 2 LILRs (LILRA4, LILRA5, LILRA6, LILRB3,

LILRB4 and LILRB5) interact with HLA I/b2-microglobulin

(b2m) independent ligands (35). In this second group, LILRB5 is

an exception since it interacts with angiopoietin-like proteins

(ANGPTL) but also binds to HLA I heavy chains (12). Ligand

profiles and known immunoregulatory functions of LILRs are

summarised in Table 1 and Figures 1, 2.

Structural analysis of LILRB1-HLA I interaction has revealed

that LILRB1 interacts with the highly conserved a3 b2m domains of

HLA I, unlike T cell receptors (TCR) which bind to a1 and a2
domains, indicating they may bind simultaneously and

demonstrating that LILRB1 may have a wider number of binding

partners (35, 48). The interactions between LILRBs and HLA I may

provide an inhibitory balancing force preventing immune

activation to self and termination of immune responses.

The highest affinity LILR ligand is the non-classical HLA I

molecule HLA-G, found in several forms including in disulphide-

linked dimer or b2m-free isoforms. HLA-G interacts with LILRB1

and LILRB2 with different affinities (114, 205). LILRB1 lacks the

reactivity to b2m-free HLA-G or HLA-B27, while LILRB2 interacts

with the b2m-free form of HLA-B27 (48). Although LILRB2

exhibits overlapping HLA I recognition to LILRB1, it dominantly
FIGURE 1

Leukocyte expression and ligand profiles of LILRAs. LILRAs have 2 to 4 extracellular lg-like domains, a transmembrane domain with a positively
charged arginine residue and a truncated intracellular tail.
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recognises the hydrophobic site of HLA-G D3 (48, 205). LILRB1

was shown to bind to HLA-G with 3 fold higher affinity compared

to other HLA I molecules (150). In normal physiology HLA-G is

expressed on foetal placental trophoblasts, enabling the invasion of

the placental decidua during implantation and facilitating maternal

tolerance to the semi-allogenic foetus (206). Enhanced expression of

HLA-G contributes to the pathogenesis of viral infections and

cancer by downregulating immune responses (207–213). Both

HLA-G expression and dimerisation upregulate expression of

LILRBs and inhibit T cell activity in vitro (214, 215).

Additionally, LILRB1 binds to various pathogens, including,

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli),

opsonised dengue virus, cytomegalovirus (CMV), calcium-binding

proteins S100A8 and A9 and repetitive interspersed family of

polypeptides (RIFIN) (9, 19, 23, 94–98). LILRB2 binds to

ANGPTLs (similar to LILRB3 and LILRB5), HLA I-like proteins,

Nogo66, complement split products (CSP), oligomeric b-amyloid,

UL18, RTN4, MAG, OMgp, RIFIN and SEMA4A in activated CD4+

T cells (11, 14, 19, 41, 92, 146–149). LILRB3 is the least studied

LILRB and its natural ligands have not been fully elucidated.

Although, regarded as an orphan receptor, recent findings suggest

that LILRB3 interacts with ANGPTL2 and 5, complement

components, and cytokeratin-associated proteins exposed on
Frontiers in Immunology 04
necrotic tumour cells and bacteria such as S. aureus (6, 23, 89, 92,

98, 146, 148). Hence, LILRB3 engagement by ligands expressed on

necrotic cancer cells or pathogens may subvert immune responses.

Recently, apolipoprotein (APOE) 4 was reported as a putative

LILRB3 ligand, which is recognised by the D2/D4 regions LILRB3

(175). LILRB4 has been described to bind to APOE (185), ALCAM/

CD166 (186), galectin-8 (188), CNTFR (23, 41, 92) and fibronectin

(93, 187), while LILRB5 binds to ANGPTLs, HLA-B7 and HLA-B27

heavy chains and Bacillus Calmette-Guérin (146, 204).

The ligands for LILRAs are less characterised and may function

as an autoregulatory mechanism for cell activation. They include

HLA molecules for LILRA1, LILRA2 and LILRA3 (29, 48, 57, 64).

Similar to LILRB5, LILRA1 binds to Bacillus Calmette-Guérin and

also toMycobacterium bovis (49). Moreover, LILRA2 was shown to

recognise IgG and IgM cleaved by proteases secreted by

microorganisms such as Mycoplasma hyorhinis, Legionella (L.)

pneumophila, Streptococcus pneumonia and Candida albicans.

Interestingly, stimulation of primary monocytes via LILRA2

inhibited L. pneumophila growth (55). LILRA3 binds to Nogo66

(65), while LILRA4 binds to the bone marrow stromal cell antigen 2

(BST2) (79). However, there are no described ligands for LILRA5.

Finally, LILRA6 is known to bind to cytokeratin 8 in necrotic

glandular epithelial cells, similar to LILRB3 (89).
FIGURE 2

Leukocyte expression and ligand profiles of LILRBs. LILRBs have 2 to 4 extracellular lg-like domains and their cytoplasmic regions are composed of
long ITIM-containing motifs exhibiting their inhibitory nature.
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TABLE 1 Overview of the expression, ligands and physiological functions of LILRs in health and disease.

Receptor Other
Names

Expression Ligands Physiological
Functions

Human Cancers Other conditions

LILRA1 LIR-6,
CD85i

Monocytes, macrophages, B cell
and mast cell progenitors (11, 12)

HLA-B27 (48),
HLA-C free
heavy chain
(29)
Bacillus
Calmette-
Guérin and
Mycobacterium
bovis (49)

– – HIV (50, 51)
Allotransplantation (52)

LILRA2 LIR-7,
ILT1,
CD85h

Monocytes, macrophages, DCs,
NK cells (30), basophils (53),
eosinophils (54), neutrophils
(55), T cells (14, 56), and mast
cell progenitors (12)

Soluble HLA I
(57)
Microbially-
cleaved IgG
and IgM at N-
terminus (55)

Ca+ influx in
monocytes, pro-
inflammatory
cytokines release
and degranulation
of granulocytes (54,
58)
Inhibition of
monocyte
differentiation to
DCs and Ag
presentation (59)
Neutrophil and
monocyte activation
(55)

Oestrogen receptor+ breast
cancer (60)

Leprosy (59, 61), bacterial
infection (55),
Salmonellosis (56) and
HIV (50, 51)
SLE, microscopic
polyangiitis (62) and RA
(63)

(Continued)
F
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FIGURE 3

LILR signalling pathways. LILRA intracellular domain interacts with the dimeric FceRIg-chain comprised of cytoplasmic ITAM motifs. Phosphorylation
of ITAM-bearing tyrosine residues by Src family kinases recruits Syk that mediates activating signalling cascades. Upon LILRB ligation, activated Lyn
phosphorylates their ITIM domains, engaging phosphatases, which in turn abrogate activating signalling cascades essential for effector cell
maturation and function.
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TABLE 1 Continued

Receptor Other
Names

Expression Ligands Physiological
Functions

Human Cancers Other conditions

LILRA3 LIR-4,
ILT6,
CD85e,
HM43,
HM31

Monocytes, secreted in soluble
form only (9, 15, 30), NK cells, B
cells (14) and neutrophils (12)

HLA-C free
heavy chain
(29), HLA-
A*0201, HLA-
G1 (64)
Nogo66 (65)

Release of pro-
inflammatory
cytokines and
indirect activation
of T and NK cells
(66)

Non-Hodgkin lymphoma
(66) and prostate cancer
(67)

SS (68–70), SLE (69, 71),
RA (25, 72, 73), MS (68,
74–76), ankylosing
spondylitis, intestinal
bowel disease (12) and
AOSD (77)

LILRA4 ILT7,
CD85g

Plasmacytoid DCs (78) BST2 (79)
Non HLA (80)

Inhibition of pDCs
(Ca+ influx and IFN
production) (80, 81)

PDA (82) CLE (83–85), COVID-19
(86)

LILRA5 LIR-9,
ILT11,
CD85f

Monocytes and neutrophils (28) – Macrophage
activation, calcium
flux regulation and
production of pro-
inflammatory
cytokines (87)

– RA (63)
Allotransplantation (52)

LILRA6 ILT8,
CD85b

Monocytes at mRNA level (88) Cytokeratin-8
on necrotic
glandular
epithelial cells
(89)

Macrophage
activation, calcium
flux regulation and
production of pro-
inflammatory
cytokines (87)

High-grade serous ovarian
cancer (20)

Atopic dermatitis (12)
Allotransplantation (52)

LILRB1 LIR-1,
ILT2,
CD85j,
MIR7

Monocytes, macrophages, DCs,
T, B and NK cells (30),
eosinophils (54), osteoclasts (90),
placental mesenchyme (91),
neutrophils, mast cell progenitors
(12) and basophils (6, 41, 92, 93)

HLA-A, HLA-
B, HLA-G (48),
HLA-F (94)
Homolog of
HMCV UL18
protein (9)
S100A8/9 (95)
RIFIN (96)
Dengue virus
product (97), S.
aureus and E.
coli (98)

T cell inhibition,
reduction of antigen
recognition and
release of anti-
inflammatory
cytokines (27, 99–
105)
B cell cycle arrest
and inhibition (106,
107)
DC inhibition (108,
109).
NK cell cytotoxicity
inhibition (110–
113)
Induction of
tolerogenic DCs (27,
108, 114, 115)
Macrophage
differentiation and
phagocytosis
abrogation (116,
117)

CLL (112), glioma (118),
AML (119), Burkitt’s
lymphoma (107), gastric
(120), lung (6, 121), renal
(6), head and neck (6),
esophagus (6), colon (6),
liver (122, 123), breast
(124), ovarian (125) and
prostate (126) cancers

Bacterial infection (98),
pulmonary tuberculosis
(127), HIV (51, 95, 128–
130), CMV (131, 132),
Dengue virus (97), malaria
(96, 133, 134), Zika (135),
Epstein-Barr virus (136,
137) and chronic hepatitis
B infection (138)
MS (139), HT and GD
(140), SLE (141–143),
ankylosing spondylitis (12)
and RA (17)
Allotransplantation (52)
and pregnancy (12, 92)

LILRB2 LIR-2,
ILT4,
CD85d,
MIR10

Monocytes, macrophages, DCs
(30), basophils (53), eosinophils
(54), neutrophils (144),
osteoclasts (90), placental
vascular smooth muscle (91),
platelets (145), neural cells, ab
oligomers, HSCs, endothelial
cells, mast cell progenitors (12,
14, 41, 93), NK and T cells (41,
92)

HLA-A, HLA-
B, HLA-G (48),
HLA-F (94)
ANGPTL 2 and
5 (146, 147)
Cd1d, Cd1c,
Nogo66, CSP,
oligomeric b-
amyloid (19,
148)
UL18 (11)
RTN4, MAG,
OMgp (14, 41)
RIFIN (92)
SEMA4A (on
activated CD4+

T cells) (149)

Induction of
tolerogenic DCs and
Tregs (27, 115, 150–
158)
Platelets inhibition
(145)
Activation and Th2
differentiation of
CD4+ T cells (149)
Supress monocyte-
mediate pro-
inflammatory
response (97)
Inhibition of
monocyte
differentiation into
DCs (159)
Impairment of
neutrophil

Hepatocellular carcinoma
(82), PDA (82), AML
(119), breast (162), lung
(82, 121), colorectal (82,
163–165) and prostate
(126) cancer

Pulmonary tuberculosis
(166), Salmonellosis (56,
167), sepsis (144, 168),
HIV (50, 128, 169, 170)
and Zika (135)
Alzheimer’s disease (160,
171, 172) and RA (63)
Allotransplantation (52,
173) and pregnancy (12,
92)

(Continued)
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2.3 LILR signalling

LILRs signal via their associated ITAMs or ITIMs (Figure 3). As

described above, LILRAs possess a transmembrane domain with a

positively charged arginine and their short cytoplasmic domain has

no kinase or docking motifs (30, 58, 81, 87). The arginine residue in

LILRA2, LILRA4 and LILRA5 associate with a charged residue on

FceRIg (58, 81, 87). Upon receptor crosslinking, Src kinases are

activated and phosphorylate the ITAM tyrosine residues, which
Frontiers in Immunology 07
allows the phosphorylation of Src homology 2 domain (SH2) on Syk

and ZAP70 tyrosine kinases (216) (Figure 3). ITAM-mediated

signalling propagates the nuclear translocation of nuclear factor

(NF)-kB and nuclear factor of activated T cells (NFAT),

phosphoinositide (PI) 3-kinase (PI3K) activation, which activates

membrane-bound serine/threonine-specific protein kinases (AKT

and BTK), as well as interacting with Ras to activate the Ras/Raf

pathway. As a result, ligation of LILRAs propagates the

proliferation, maturation and survival of immune cells (217, 218)
TABLE 1 Continued

Receptor Other
Names

Expression Ligands Physiological
Functions

Human Cancers Other conditions

phagocytosis (144)
Macrophage
differentiation and
phagocytosis
abrogation (116,
117, 160, 161)

LILRB3 LIR-3,
ILT5,
CD85a,
HL9

Monocytes, macrophages, DCs
(30), basophils (53), eosinophils
(54), osteoclasts (90), neutrophils
(23), B cells (174) and mast cell
progenitors (12, 14, 92)

HLA I (a3
domain) (92)
ANGPTL2 and
5 (146)
Cytokeratin-8
on necrotic
glandular
epithelial cells
(89)
Complement
components
(148)
S. aureus (6)
APOE4 (175)

Inhibition of
basophil
degranulation (53)
Abrogation of IgA-
mediated neutrophil
phagocytosis,
microbial
destruction, and
release of reactive
oxygen species
(176)
Induction of
immunosuppressive
myeloid cells and
inhibition of T cells
(177)

AML (178) and colorectal
cancer (179)

Bacterial infection (98,
176)
RA (63) and TA (180)
Allotransplantation (52,
181)

LILRB4 LIR-5,
ILT3,
CD85k,
HM18

Monocytes, macrophages, DCs
(30) osteoclasts (90), plasma cells,
plasmoblasts (182), progenitor
mast cells, microglia and
endothelial cells (14, 23, 41, 93),
T cells and neutrophils (6, 92,
183, 184)

APOE (185)
ALCAM/
CD166 (186)
CNTFR (23, 41,
92)
Fibronectin (14,
93, 187)
Galectin-8
(188)

Induction of
tolerogenic DCs and
Tregs (27, 115, 150–
158)
Inhibition of
cytokine
production,
activation and
phagocytic activity
of monocytes (14,
177, 189)
Inhibition of T cell
activity (185, 190)

CLL, AML (119, 185, 191,
192), multiple myeloma
(193), hepatocellular
carcinoma (122),
melanoma (158),
pancreatic (158), gastric
(120), colorectal (194)
(158) and lung (195, 196)
cancer

Salmonellosis (56, 167)
and COVID-19 (197, 198)
MS (199, 200) and SLE
(201)
Allotransplantation (52,
173)

LILRB5 LIR-8,
CD85c

Mast cells (intracellularly only)
(202), monocytes, macrophages
(14), T cells (6, 203), neutrophils,
NK cells (23, 93), DCs and
osteoclasts (41, 92)

HLA-B7 and
HLA-B27
heavy chains
(204)
ANGPTL2 and
5 (146)
Bacillus
Calmette-
Guérin (203)

– – –

LILRP1 ILT9,
CD85l

LILRP2 ILT10,
CD85m
AML, Acute Myeloid Leukaemia; AOSD, Adult-onset Still’s disease; CLE, Cutaneous Lupus Erythematous; CLL, Chronic Lymphocytic Leukaemia; CMV, Cytomegalovirus; COVID-19,
coronavirus 19; GD, Graves’ Disease; HIV, Human immunodeficiency virus; HT, Hashimoto’s Thyroiditis; MS, Multiple Sclerosis; PDA, pancreatic ductal adenocarcinoma; RA, Rheumatoid
Arthritis; SLE, Systemic Lupus Erythematosus; SS, Schrodinger’s Syndrome; TA, Takayasu’s Arteritis; -, Unknown.
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(Figure 3). The signalling mechanisms of LILRA1 and LILRA6

remain to be identified, although the structural similarity with the

other LILRAs suggests that they also signal though FceRIg.
LILRBs impose their inhibitory signalling through ITIMs (30,

190). Upon receptor binding with the ligand, the Src-family protein

Lyn becomes autophosphorylated, phosphorylating ITIM tyrosine

residues. In turn, SH2 containing protein tyrosine phosphatases

SHP-1 and SHP-2 are recruited to the phosphorylated sites. These

phosphatases proceed to negatively regulate Syk and PI3K cell

signalling (30). Consequently, downstream signalling pathways

such as MAPK, JNK, Ras/ERK, NFAT and NF-kB are abrogated.

This leads to attenuation of cytokine secretion and effector cell

maturation, survival and function (218) (Figure 3). As an example,

upon co-ligation of FcgRI with LILRB1/LILRB2, FcgR-mediated

PTK-dependent signalling is abrogated (54, 116). Nevertheless, how

multiple ligands and activating and inhibitory LILRs act in concert

to modulate immune responses need further investigation.
2.4 LILR functions in leukocytes

LILR functions have been primarily studied in terms of

regulatory mechanisms exerted by LILRBs and, as such, little is

known about the activating roles of LILRAs. Dividing the functions

of LILRs as either activating or inhibitory, based on the presence of

ITAMs or ITIMs may be too simplistic (219, 220). There have been

suggestions that under certain conditions ITIM-bearing receptors

can enhance leukocyte functions and ITAM-bearing receptors may

inhibit the immune system (81, 217, 219–223). Based on the broad

expression of LILRs across an array of immune cells and non-

immune cells, their roles in controlling both innate and adaptive

immunity are divided into leukocyte subsets herein, and the

functional role of LILRs is discussed with regard to immune

activation and tolerance (Table 1, Figure 4).

2.4.1 Granulocytes
LILRAs are abundantly expressed on monocytes with some

expression on granulocytes. LILRA crosslinking leads to cell

activation resulting in calcium influx, selective cytokine release

and degranulation (28, 53, 54, 58, 87). LILRA2, the most studied

LILRA to date, as well as LILRA5, are implicated in stimulating

degranulation and release of pro-inflammatory cytokines, such as

IL-1b, IL-12 and tumour necrosis factor (TNF)-a and other factors

involved in the early phases of eosinophils- and basophils-mediated

inflammatory responses (54, 224). Microbially-cleaved Ig products

activate primary human neutrophils via LILRA2 (55).

LILRB2, LILRB3 and LILRB5 are involved in regulating

neutrophil activation and function (19, 23). LILRB2 is expressed

on the surface of neutrophils as well as within the granules, inhibits

their phagocytic capacity and leads to exocytosis of LILRB2 to the

cell surface (144). This phenomenon of increased expression of

inhibitory receptors upon activation may provide an inhibitory

feedback loop (144). LILRB3 was recently found to be highly

expressed on resting neutrophils and secreted upon their
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activation. Prolonged ligation of LILRB3 abrogated IgA-mediated

neutrophil effector functions such as phagocytosis, microbial

destruction and release of reactive oxygen species, suggesting that

LILRB3 could be a novel checkpoint inhibitor on neutrophils (176).

Similarly, co-ligation of PIR-B with FceRI is able to abrogate IgE-

mediated mast cell activation and serotonin secretion (42). A

murine homologue of LILRB4, gp49B, is also expressed in mouse

neutrophils and plays a regulatory role in lipopolysaccharide (LPS)-

induced adhesion and microangiopathy (183, 184).

2.4.2 Antigen-presenting cells
The expression of LILRs varies on macrophages and DCs at

different maturation phases. DCs and macrophages detect surface

microbial molecules through their pattern-recognition receptors,

such as Toll-like receptors (TLR). However, APCs are also able to

adopt a tolerogenic phenotype and orchestrate immune tolerance

(150–153). Although LILRAs induce immune effector function,

they can be inhibitory when ligated concurrently with an

unrelated activating receptor on APCs (56, 217). Upon ligation of

LILRA2 on monocytes, TLR-mediated antimicrobial activity was

reduced by increased production of IL-10 (61). Furthermore,

activation of LILRA2 on monocytes impaired their GM-CSF-

mediated differentiation into immature DCs and supressed

antigen (Ag) presentation and adaptive T cell response (59). In

addition, LILRs can mediate cytokine secretion and affect the

expression of co-stimulatory receptors on professional APCs.

Accordingly, ligation of LILRA3 on monocytes and B cells

increases the secretion of pro-inflammatory cytokines and

indirectly induces proliferation of NK cells and CD8+ T cells (66).

Similarly, LILRA2 ligation on monocytes is able to regulate TLR4

(56). Interestingly, both LILRA2 and LILRA3 inhibit LPS-mediated

secretion of TNF-a by monocytes (63, 210). In addition, while

treatment of monocytes with IL-10 and interferon (IFN)-g increases
secretion of soluble LILRA3, TNF-a reduces its expression (25,

225). Although less studied, LILRA4 inhibits the secretion of

inflammatory cytokines by plasmacytoid DCs (pDC) (80).

Furthermore, crosslinking of LILRA5 and LILRA6 on monocytes

induces tyrosine kinase phosphorylation, which in turn mediates

calcium flux and secretion of pro‐inflammatory cytokines (IL‐1b,
TNF‐a, IL‐6), suggesting a potential role in inflammation.

However, their underlying functions alongside LILRA1 remain

unknown (87).

LILRBs can detect soluble factors including CSPs in response to

microbial infections through classical lectin or alternative pathways

of complement activation. Moreover, interaction of LILRB2 and

C4d can suppress monocyte-mediated pro-inflammatory responses

(97) and promote endocytosis of C4d (148). Tolerogenic APCs are

unable to activate T cells, and they alternatively induce Ag-specific

regulatory T (Treg) cells (153). Ligation of LILRB1 on monocytes

during differentiation into DCs renders them tolerogenic (tDC),

which in turn become resistant to LPS stimulation and unable to

activate autologous T cells (27, 108, 114, 115). It also leads to

increased expression of the NF-kB inhibitor ABIN1, key in

maintaining functional DCs (226). Moreover, LILRB1 signalling
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inhibits DC activation mediated by OSCAR, which activates DCs

via the FcRg chain (108, 109). Banchereau et al. (227) showed that

human Langerhans cells which do not express LILRBs were able to

efficiently prime cytotoxic CD8+ T cells, whereas LILRB1- and

LILRB2-expressing dermal CD14+ DCs were less efficient at

priming cytotoxic T cells. Blockade of LILRB1/LILRB2 on dermal

DCs enhanced T cell cytotoxicity (227). Similarly, tDCs exhibit high

expression of LILRB2 and LILRB4, playing an essential role in tDC

activity (27, 115, 150–153). Co-culture of T cells with an APC line
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transfected to express LILRB2 and LILRB4 extracellular domains

demonstrated that only LILRB2 relies on its intracellular signalling

to induce Tregs, whereas the extracellular Ig-like domains of

LILRB4 and soluble LILRB4 were able to induce Tregs

irrespective of their signalling potential (154, 155). Moreover,

LILRB4 silencing in DCs promotes the release of pro-

inflammatory cytokines and consequently the proliferation and

migration of T cells (156). LILRB4 ligation on APCs leads to the

upregulation of the co-stimulatory molecule CD86 (167), unlike
B C

A

FIGURE 4

Representative functions of LILRs in innate and adaptive immunity. (A) Innate immunity: LILRB1 is expressed on NK cells, and therefore may be
involved in missing self, whereby the receptor recognises HLA I molecules on target cells, and those that do not express HLA I are destroyed. In
neutrophils, LILRAs, such as LILRA2 and LILRA5, stimulate degranulation and pro-inflammatory cytokines release, while LILRBs, such as LILRB3, have
the opposite effect and block their phagocytic activity. Moreover, the paired-receptors LILRA6 and LILRB3 recognise bacterially-infected cells.
Interaction between LILRBs, such as LILRB1, with HLA I abrogates FcgR-mediated phagocytic function of macrophages. In addition, LILRAs, such as
LILRA3, LILRA5 and LILRA6 promote the secretion of pro-inflammatory cytokines. However, this secretion is suppressed by LILRBs. (B) Humoral
immunity: LILRB1 inhibits B cell responses in a T cell-independent manner. TGF-b1 and IL-10 induce follicular dendritic cells (DC) and follicular
helper T cells (TFH) to secrete HLA-G. HLA-G binds to LILRB1 on the surface of germinal centre B cells resulting in a down-regulation of chemokine
receptors CXCR4 and CXCR5 and inhibiting B cell trafficking. This interaction also inhibits differentiation into antibody-secreting plasma cells and
memory B cells. Moreover, LILRB1 regulates B cell responses in a T cell-dependent manner. B cells can present antigen to T cells. LILRB1-HLA-G
interaction can prevent antigen presentation and inhibits B cell proliferation by causing cell cycle arrest in the G0/G1 phase by disrupting the mTOR
pathway mediated by SHP-2. (C) Cellular immunity: Ligation of LILRBs during DC development renders DCs tolerogenic by increasing the threshold
of activation. Normal DCs have low levels of LILRBs. In contrast, tolerogenic DCs that express increased levels of LILRBs, promote anti-inflammatory
cytokines release, CD4+ helper T cells activation and their conversion into Tregs. Conversely, LILRAs activate DCs towards a cytotoxic phenotype,
inducing the secretion of pro-inflammatory cytokines that induce NK and CD8+ T cells activation.
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LILRB2 which leads to its downregulation, indicating that LILRB2

and LILRB4 limit T cell responses via distinct mechanisms (150,

168, 169). In addition, LILRB2 and LILRB4 promote the

differentiation of suppressor T cells (152, 155–158), and LILRB4

interacts with receptors on T cells and antagonises CD8+ T cells to

promote the development of Tregs (154, 228). This suggests LILRB4

functions as an inducer of immune tolerance, while LILRB2 affects

APC function and secondary co-stimulation via distinct

mechanisms (150, 168, 169). Similarly, in PIR-B-/- mice humoral

T helper (Th) 2 responses are enhanced in response to T-dependent

Ags due to impaired DC maturation compared to wildtype

mice (229).

LILRB2-HLA-G interaction inhibits the differentiation of

monocytes to DCs and maturation via IL-6 and STAT3 signalling

(159). Moreover, LILRB4-/- DCs stimulated via LPS-mediated TLR

signalling exhibit increased pro-inflammatory cytokine/chemokine

synthesis and secretion (156). Under physiological conditions,

LILRB1 and LILRB4 are downregulated upon DC activation. This

loss of inhibitory receptors may be essential for the maturation of

DCs (230). Stimulation of DCs maturing in vitro with

immunosuppressive agents, such as niflumic acid, IL-10, IFN-a
and IFN-b, leads to the development of tDCs with increased

LILRB2 and LILRB4 expression (27, 128, 151, 199, 231). Aspirin

and 1,25-dihydroxyvitamin D3 (vitamin D) render DCs tolerogenic

that are unable to stimulate T cells, only upon upregulation of

LILRB4 (199, 232, 233).

LILRBs, therefore, act as myeloid checkpoint receptors to limit

overt immune responses. LILRB1 ligation on tumour-associated

macrophages (TAM) was shown to abrogate phagocytosis of HLA

I+ tumours, which could be ablated with LILRB1 monoclonal

antibodies (mAbs) (117). Similarly, combining LILRB2 and PD-1

blockade mediated E. coli phagocytic removal, which was associated

with suppressed SHP1/2 phosphorylation, promoting pro-

inflammatory macrophage activity (160). LILRB2 blocking

reprograms macrophages to a more pro-inflammatory state and

enhances the activation of T cells, increasing the efficiency of anti-

PD-1 therapy (161). LILRB1 and LILRB2 co-ligation with FcgRI on
monocytes mediates SHP-1 activation, abrogating downstream

phosphorylation and intracellular calcium mobilisation (116).

Ligation of LILRB3 on monocytes induces immunosuppressive

myeloid cells, which inhibit T cell responses in vitro, and inhibit

allograft rejection in humanised mice (177). Furthermore, LILRB4

activation results in recruitment of phosphatases that contribute to

the dephosphorylation of FcgRI-activated tyrosine kinases and

inhibition of FcgR-mediated phagocytosis (189).

Soluble isoforms of LILRBs (sLILRB), generated by alternative

mRNA splicing, can also regulate immune responses. Jones et al.

showed that sLILRB1 can compete with membrane-bound LILRB1

for binding to their natural ligands. This suggests that sLILRBs may

act as decoy receptors in modulating immune effector functions

(26). Similarly, recombinant sLILRB2 is able to restore the

proliferation of T cells rendered inactive by tDCs (27). Notably,

mature DCs treated with IL-10 abrogate shedding of sLILRB2, while

increasing the expression of the surface-bound LILRB2 (27).
Frontiers in Immunology 10
2.4.3 NK cells
NK cells are cytotoxic against cells deficient for surface HLA I.

Control of NK cell activation is regulated by activating and

inhibitory receptors. Like KIRs, some LILRs can recognise HLA I

molecules and influence NK cell effector functions. LILRB1 inhibits

NK cell cytotoxicity as a result of HLA I interaction, which inhibits

FcgRIIIA-dependent lysis of target cells (110). HLA-G-mediated

LILRB1 ligation on NK cells inhibits activation, polarisation of lytic

granules and IFN-g production (111). LILRB1 blockade augments

NK cell activation and proliferation and is associated with IL-2

production by CD4+ T cells (112). In addition, LILRB1 can regulate

initial ligand recognition by abrogating the adhesion of NK cells to

target cells (113).

2.4.4 T cells
LILRB1 is the main LILR found on T cells, however, its

expression is variable among CD8+ and CD4+ T cells, as not all T

cells express LILRB1 (27, 99–104). LILRB1 abrogates TCR signalling

by dephosphorylating the TCR-z chain of ITAM domains, which in

turn suppress downstream signal transduction mediated by ZAP70

and linker for activation of T cells (105). LILRB1-mediated inhibition

of T cells is characterised by a reduction in Ag recognition, CD3-

mediated clonal expansion, proliferation, chemotaxis, resistance to

TLR stimulation and a shift in the cytokine profile in favour of anti-

inflammatory cytokines (27, 99–104). As CD8+ T cells mature, they

acquire cytotoxic potential with an increase in perforin within the

cell; LILRB1 expression increases in parallel, possibly to protect self

(136). Crosslinking of surface LILRB1 or CTLA-4 on T cells leads to

inhibition of Ag-specific CD4+ T cell proliferation, and IL-13, IFN-g
and IL-2 release, as well as an increase in TGF-b and IL-10 secretion

(99). Apart from mediating inhibitory signals to T cells (111, 234),

both surface-bound and soluble forms of LILRB1 and LILRB2 limit

activating signals by antagonising the HLA I-CD8 interactions (228).

Moreover, LILRB2 is expressed in CD4+ T cells and regulates Th2

differentiation (149). Also, LILRB4 has been found expressed on T

cells, and it suppresses T cell activity mediated by APOE/the

intracellular domain of LILRB4/SHP-2/NF-kB/urokinase receptor/

arginase-1 (ARG1) axis (185, 190). Finally, there are contradictory

reports on whether T cells express LILRB5 or not, which may be due

to the nature of the reagents and assay conditions used by the

investigators (203, 204). Additionally, LILRA2 has been found on T

cells at low levels (56), and regulates T cells indirectly by modulating

the behavior of other cells, such as APCs (59).

2.4.5 B cells
Some LILRs are expressed by B cells but they primarily impact B

cell responses by modifying APC and T cell responses (235).

Transcripts of LILRA1, LILRA3 and LILRB3 are found in B cells,

and LILRB4 is present in plasmablasts (11, 174, 182). However, only

LILRB1 has a clear role in B cells. HLA-G binding to LILRB1 on B

cells inhibits both T cell-dependent and -independent activation of

naïve and memory B cells (106). Furthermore, LILRB1 interaction

with HLA-G leads to B cell G0/G1 cell cycle arrest as a result of

mTOR/AKT and PKC pathway modification (106). LILRB1-ligated B
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cells exhibit reduced Ig secretion and increased secretion of anti-

inflammatory cytokines (106, 107).
2.5 The clinical relevance of LILRs

2.5.1 Infection
Apart from the pivotal roles of LILRs in maintaining immune

homeostasis, they can mediate pathogenesis during bacterial, viral

and parasitic infections, as extensively reviewed elsewhere (49).

Below is a summary of their key roles in infection.

2.5.1.1 Bacterial infections

Mycobacterium leprae infection mediates strong Th1 cell-

mediated immune responses, to give rise to the tuberculoid form

of leprae. In contrast, lepromatous leprosy infection involves higher

bacterial load, dominance in Th2 cytokine secretion and strong

humoral immune responses (61). LILRB3, LILRB5 and especially

the activating LILRA2, are overexpressed in skin biopsies from

patients with lepromatous leprosy, which is associated with

inhibition of TLR-mediated microbial killing, secretion of type 2

cytokines with an increase in IL-10:IL-12 ratio (61). Genetic

profiling and immune labelling of skin lesions of these two forms

has revealed a substantial regulation of LILRA2 on the disseminated

lepromatous leprosy lesions over the limited tuberculoid form. Pre-

treatment with LILRA2 antibodies reduces TLR-mediated

antimicrobial activity (59, 61). In the case of Mycobacterium

tuberculosis, its major niche to persist are macrophages and

myeloid-derived suppressor cells (MDSCs). Blocking LILRB2

reprograms myeloid cells to be more pro-inflammatory and

enhances the killing of intracellular Mycobacterium tuberculosis

(166). Moreover, patients with active pulmonary tuberculosis have a

higher frequency of LILRB1+ CD56dim FcgRIIIA+ NK cells, which

correlates with disease severity (127). Conversely, recent data

implicates LILRA2 in pathogen sensing and activation of innate

immunity against microbial pathogens via the recognition of

cleaved IgM and IgG products by proteases from S. pneumonia,

Legionella pneumophila, Mycoplasma hyorhinis and Candida

albicans (55). Neutrophils and monocytes expressing LILRA2 are

activated by these cleaved Igs, enhancing immune responses against

these bacteria (55).

Infection with Salmonella typhimurium can modulate APCs,

especially macrophages and DCs. Exposure of APCs to Salmonella

mediates upregulation of LILRB2 and LILRB4 and downregulation

of LILRA2. This tuning in the balance of the LILR family members

suppresses innate immune responses by increasing the IL-10:IL-12

ratio (56, 167). Mouse fibroblast cells generated to express PIR-B,

LILRB1 or LILRB3 are all able to recognise Gram positive S. aureus,

while LILRB1 is also able to bind E. coli (98). LILRB3 was recently

reported to inhibit neutrophil effector functions and microbial

killing, whereby ligation of LILRB3 abrogated IgA-mediated

phagocytic uptake, reactive oxygen species generation and

microbial killing of S. capitis (176).

The key pathogenic element of sepsis is systemic inflammation.

However, most patients suffer signs of severe immunosuppression
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and fail to address the primary bacterial infection. Immune

dysregulation during sepsis is associated with increased LILRB2

expression on monocytes and organ dysfunction (168). LILRB2+

monocytes express lower levels of CD86 and have an increase in IL-

10:IL-12 cytokine ratio (168). In addition, LILRB2 upregulation

found on healthy donor-derived activated neutrophils is impaired

in septic patients with a consequent inhibition of their phagocytic

function, proposing LILRB2 as a therapeutic target to prevent

neutrophil dysfunction and exacerbated inflammation (144).

Additionally, the antibiotic amoxicillin binds to HLA I, increasing

NK cells cytolysis due to the inhibition of LILRB1 binding (236).

PIR-A and PIR-B are able to recognise cell wall components of

both Gram positive and negative bacteria (98). Wildtype mice

exhibit greater mortality than PIR-B-/- mice upon S. aureus

infection. Stimulation of macrophages from PIR-B-/- mice with S.

aureus results in increased levels of TLR-induced inflammatory

cytokines IL-6 and IL-1b, compared to wildtype macrophages

(237). Moreover, PIR-B is upregulated on macrophages after LPS

treatment and negatively regulates the secretion of pro-

inflammatory cytokines during E. coli infection (238).

Bacterial infections result in overexpression of most of the

LILRBs, modulating leukocytes to a more anti-inflammatory state

and blocking their effector properties. In contrast, LILRAs have an

opposite role, depending on the type of infection.

2.5.1.2 Viral infections

Viruses interact with LILRs to suppress antiviral responses (9).

The CMV gene product UL18 binds to LILRB1 on DCs rendering

them resistant to maturation signals and unable to activate naïve T

cells (115, 239), potentially so that CMV-infected cells can avoid

elimination (9, 240). Analysis of memory T cells from CMV

patients found high LILRB1 expression, with levels appearing to

increase over time (241). Additionally, lung transplant recipients

with elevated levels of LILRB1 on lymphocytes are at increased

likelihood of CMV infection (131). However, investigations into the

role of the UL18-LILRB1 interaction on T cells has yielded

contradictory results. One study found that LILRB1 on cytotoxic

T cells mediates lysis of virally-infected cells expressing UL18

independently of TCR, while cells infected with human CMV

defective for UL18 were not lysed (132). In contrast, others have

demonstrated that UL18 protects infected cells from LILRB1+ NK

cell cytolysis. This protection was abrogated if cells were infected

with CMV containing an UL18 mutant. In addition, UL18 mediated

the activation of LILRB1- NK cells, which can mask LILRB1+ NK

cell inhibition (242). Moreover, LILRB1 is highly expressed on viral-

specific CD8+ T cells in Epstein-Barr virus-infected individuals

(136, 137). LILRB1 expression is elevated on viral-specific CD8+ T

and NK cells and interacts with viral products to downregulate

immunity (129, 136, 137). NK cell activity was impaired in patients

with chronic hepatitis B. Circulating CD56dim FcgRIIIA+ NK cells

had increased LILRB1 in immunotolerant patients, which positively

correlated with their serum viral load. Interestingly, LILRB1+

CD56dim NK cells were reduced with antiviral therapy, and

LILRB1 blockade increased their cytotoxicity (138).
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The interaction between LILRs and HIV infection is emerging

as an important determinant of HIV progression (50). Upon HIV

infection, DC dysfunction correlates with the upregulation of

LILRB1 and LILRB2 (128) and downregulation of LILRA1 and

LILRA2 (50, 51). In these patients, LILRB1 is upregulated on CD8+

T and NK cells, while LILRB2 expression is increased on

myelomonocytic cells due to the increase in IL-10. These

monocytes are defective in Ag presentation, which in turn

abrogates the antiviral T cell responses and CD4+ T cell

proliferation (128). These results indicate that the presence of

high IL-10 levels in the sera of HIV+ patients impede Ag

presentation of APCs by increasing LILRB2 expression. More

recently, LILRB2 affinity for HLA I molecules was shown to

positively correlate to the viral load in the majority of untreated

HIV-1 patients. DCs in this cohort of patients were shown to have

impaired Ag presentation ability as a result of LILRB2 crosslinking

by HLA I molecules (170). In contrast, LILRBs can also enhance

APC activity to stimulate T cells from HIV-1 elite controllers (51).

These DCs express elevated levels of LILRB1 and LILRB3, blockade

of which diminishes the enhanced Ag presenting properties (51).

This enhanced T cell stimulating ability is contrary to other in vitro

studies, which demonstrate that LILRB1 reduces the capability of

DCs to stimulate T cells (115, 239). The interactions between LILRs

on immune cells and HLA I expressed on HIV-infected cells is

important to the response against infection (50). Specific HIV

escape mutations when loaded as epitopes on HLA I diminish

recognition by TCRs and enhance binding to LILRB2, resulting in

the development of tolerogenic myelomonocytic cells (50, 169).

Moreover, HLA-G is elevated in sera, and on monocytes and T cells

of HIV-infected individuals (209, 243, 244). LILRB1 has been found

overexpressed on NK cells after HIV-1 infection and these LILRB1+

NK cells control virus replication in DCs (130). However, the same

laboratory has demonstrated that the inflammatory protein S100A9

expressed on HIV-infected DCs interacts with LILRB1 on NK cells

and reduces DC cytotoxicity despite increased TNF-a secretion

(95). These discrepancies potentially relate to different virality and

stage of the disease (129).

pDCs are the only cell type known to express LILRA4 and are

important in innate responses to viruses and tumours, producing

significant quantities of IFNs following TLR7 and TLR9 ligation

(78, 79, 81, 245). Indeed, LILRA4 is used as a marker of pDC

subpopulations in coronavirus-19 (COVID-19)-infected patients

(246), an APC subset that is reduced in severe cases (86). The

only known ligand for LILRA4 is BST2, which prevents prolonged

IFN production and assures TLR response by pDCs. BST2

expression is stimulated on a variety of cells by IFN and TLR7/9

ligands and is elevated during HIV infection (79, 247). The ability of

IFN to induce BST2, which in turn interacts with LILRA4 to

downregulate the IFN-producing pDCs, may serve as a negative

feedback loop limiting IFN production (79).

Dengue virus is able to facilitate infection of myeloid cells by

using antibody opsonisation to bind to activating FcgRs (97).

Crosslinking of activating FcgRs leads to the induction of type-1

IFNs though Syk signalling, responses potentially deleterious to the

internalised virus. To avoid this, viral proteins co-ligate LILRB1 on

myeloid cells, which recruit phosphatases to inhibit Syk, preventing
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productive signalling. However, the ligand of LILRB1 on dengue

virus remains unknown (97). In COVID-19 patients, LILRB4

expression is linked to disease severity and associates with a

strong expansion of MDSCs and poor T cell responses, increasing

immunosuppression (197, 198). Similarly, polymorphisms in

LILRB1 and HLA-G are linked to higher risk of Zika virus

transmission from mother to foetus, while certain polymorphisms

in LILRB2 have a protective function (135).

Interestingly, the D3-4 region of PIR-B has been recently

described to bind reovirus, allowing infection and producing

serotype-dependent neuropathogenesis in infected mice (248).

2.5.1.3 Parasitic infections

Infection with the parasite Plasmodium falciparum, which

develops into malaria, is associated with inflammatory cytokine

production. LILRB1 has been shown to be upregulated on apoptotic

B cells in the peripheral blood of patients with severe malaria

compared to healthy controls. These early apoptotic LILRB1+

CD19+ B cells contribute to the inflammatory cytokine storm and

impairment of immune memory (249). RIFINs, which are the

causative targets of the malarial parasite, act as ligands for

inhibitory receptors. A recent study proposed that LILRB1-

binding RIFINs mimic the binding interface of the natural ligands

of LILRB1 at the immunological synapse of NK cells, which

suppresses NK cell cytotoxicity (96). LILRB2 also binds to RIFIN

expressed on Plasmodium falciparum-infected erythrocytes,

proposing it to produce a similar immune evasion to LILRB1

(133, 134). Additionally, infection with Toxoplasma gondii during

pregnancy provokes a downregulation of LILRB4, switching

macrophages and decidual MDSCs to a more pro-inflammatory

state, contributing to adverse outcomes during pregnancy (250). In

contrast, there is an upregulation of LILRB2 in non-classical

monocytes of infants born to placental malaria mothers,

enhancing susceptibility to the disease (251).

2.5.2 Autoimmunity and neurodegenerative
disorders

The immunomodulatory capacity of LILRs has been associated

with autoimmune diseases and neurodegenerative disorders

(Table 1). However, the functions of LILRs in these settings have

not been fully elucidated.

2.5.2.1 Thyroid disease

Hashimoto’s thyroiditis (HT) and Graves’ disease patients

express elevated levels of LILRB1 on peripheral CD4+, CD8+ and

NK cells as well as thyroid tissue (HT patients). However,

stimulation of these cells in vitro in the presence of a LILRB1

mAb has revealed that the receptor has an attenuated and defective

ability to inhibit T cell proliferation. This reduced activity was

mediated by IL-10 and contributed to poor control of inflammation

in autoimmune disease (140).,
2.5.2.2 Multiple sclerosis

Two studies looking at a western European population found an

association between the deletion of LILRA3 and an increased risk of
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multiple sclerosis (MS), whereas a study of a Polish population

found that LILRA3 deletion was associated with later onset of MS

(68, 74–76). In patients with MS, abundant expression of HLA-G

and LILRB1 in areas of activated microglia, central nervous system

(CNS) phagocytic cells, and periplaque tissues indicates that

LILRB1-HLA-G interaction can regulate immune homeostasis of

the CNS (139). Furthermore, LILRB4 is downregulated on

monocytes during MS relapse (200). MS patients treated with

IFN-b and vitamin D3 exhibit DC tolerance, in a LILRB4-

dependent manner (199, 200). In addition, in the experimental

autoimmune encephalopathy (EAE) mouse model of MS, sLILRB4

binds to immune cells and reduces the secretion of pro-

inflammatory cytokines, delaying the evolution of the disease

(252). Interestingly, it has been reported that glatiramer acetate

(GA), a therapeutic molecule for relapsing-remitting MS, interacts

with PIR-B on MDSCs and reduces pro-inflammatory responses. In

addition, soluble GA competitively interacts with LILRB2 and

LILRB3, modulating the alternative activation of monocytes and

macrophages (253).

2.5.2.3 Alzheimer’s disease

LILRB2 and PIR-B bind to oligomeric b-amyloid forms, which

are involved in memory deficits and loss of synaptic plasticity.

Interestingly, PIR-B-deficient mice do not have signs of damage

caused by b-amyloid peptide or synaptic loss, implying its role in b-
amyloid-induced Alzheimer’s disease (171, 172). Hence, many

efforts have been made to improve synapsis elimination by

disrupting LILRB2-b-amyloid interactions, for instance, with

structure-guided small molecule inhibitors that physically impede

the binding (254).
2.5.2.4 Systemic lupus erythematosus and cutaneous
lupus erythematous

Examination of peripheral blood mononuclear cells (PBMC)

from systemic lupus erythematosus (SLE) patients has revealed

reduced expression of LILRB1 on CD4+ and CD8+ T cells, B cells

and DCs, with LILRB1 on these cells demonstrating a diminished

inhibitory function compared to healthy donors (141, 142).

Moreover, LILRs possess high levels of polymorphisms that have

been implicated with different autoimmune disorders, including

SLE. A splice-site single nucleotide polymorphism (SNP) in LILRA2

gives rise to novel isoforms expressed on monocytes and is

associated with higher susceptibility to SLE and microscopic

polyangiitis (62). Furthermore, high expression and functionality

of LILRA3 are associated with higher susceptibility to SLE and an

increased disease activity and severity when induced in CD14+

monocytes (69, 71). Specific SNPs within LILRB4 observed in SLE

patients are associated with its decreased surface expression on

DCs, further correlating with increased serum type I IFNs and TNF-

a (201). These results suggest that LILRBs have a potential role in

the pathogenesis of SLE. LILRA4, BST2 and type I IFNs are

orchestrated in a loop that regulates pDCs activation (24, 79).

The release of autoantigens from dying keratinocytes induces

neutrophil extracellular traps (NET) that promote the activation

of LILRA4-expressing pDCs. This persistent activation drives the
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release of type I IFNs, provoking cutaneous lupus erythematous

(CLE). Type I IFNs are increased in CLE patients (83) and CLE is

known as a type I IFN disease (84, 85). Hence, LILRA4 has been

studied as a specific target for some autoimmune disorders (255).

2.5.2.5 Sjogren’s syndrome and Takayasu’s arteritis

Genotyping studies suggest that patients homozygous for

LILRA3 deficiency exhibit higher susceptibility to Sjogren’s

syndrome (SS) (68–70). LILRA3 shares close homology with

LILRA2, LILRB1 and LILRB2, so it may bind to their ligands

either agonistically or antagonistically, possibly accounting for the

contrary associations with LILRA3 in inflammatory diseases (25,

200). A risk allele (rs103294) in LILRA3 is involved in the deletion

of the gene, and the epistasis of LILRA3 and HLA-B*52 might play

an important role in Takayasu’s arteritis (TA), possibly by over

activating NK cells (256). However, deeper analyses are needed to

confirm an actual correlation. Additionally, genome-wide

association studies of TA patients have identified a SNP which is

associated with reduced LILRB3 expression as a susceptibility

allele (180).

2.5.2.6 Adult-onset Still’s disease

Neutrophil activation with high degree of NET formation is

associated with the pathogenesis of adult-onset Still’s disease

(AOSD). In a recent study, LILRA3 was reported to act as a novel

genetic risk factor for AOSD, with elevated plasma LILRA3 levels in

AOSD patients. NET formation was enhanced in neutrophils from

AOSD patients upon LILRA3 stimulation (77).

2.5.2.7 Rheumatoid arthritis

Aberrant expression of LILRs has been associated with several

arthritis syndromes. LILRA2, LILRA3, LILRA5, LILRB2, and

LILRB3 are found at elevated levels in the sera and synovial fluid

of RA patients, correlating with disease severity (25, 63, 72, 73, 87,

257). Significantly lower numbers of LILRA2+, LILRB2+ and

LILRB3+ inflammatory cells were detected in RA patients who

responded to anti-rheumatic therapy compared to healthy controls,

as a result of the partial blocking of LILRA2-mediated secretion of

TNF-a (63, 87, 257). Additionally, LILRA3 promotes pro-

inflammatory responses in fibroblast-like synoviocytes, promoting

their activation, migration and invasion in vitro (73). Anti-

rheumatic drugs downregulate synovial expression of LILRB2,

LILRB3 and LILRA2 in responding patients. However, this is not

replicated in vitro, suggesting that the drugs do not act directly to

impact LILR expression (257). While LILRA2 and LILRA5 are

expressed highly in patients treated with methotrexate, LILRB2 is

elevated in patients treated with prednisone (anti-inflammatory)

(63). The potential relevance of these receptors in rheumatic

inflammation is underlined by the ability of LILRB1, LILRB2 and

LILRA2 to engage with HLA-B27, a haplotype associated with

several inflammatory diseases. LILRB2 has been implicated in the

pathogenesis of spondylarthritis, since LILRB2 can recognise several

HLA-B27 isoforms and regulate innate and adaptive inflammatory

responses (48). Moreover, LILRB1 binds to sHLA-G in RA patients

protecting them against inflammation. However, this binding is not
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seen in advanced RA patients with long-term chronic

inflammation, which impedes the immunosuppression and

reduction of inflammation mediated by LILRB1 (258). Due to the

high polymorphic nature of LILRs, different alleles can confer

susceptibility to RA. A haplotype of LILRB1 that leads to reduced

surface expression of the receptor is associated with high

susceptibility to RA in HLA-DRB1 shared epitope-negative

patients, possibly because of insufficient inhibitory signalling in

their leukocytes (17).

2.5.3 Allotransplantation and pregnancy
APCs derived both from the recipient and donor are able to

present Ags to T cells, and play a key role in transplant immunity

(259). Consequently, alloreactive T cells are stimulated, which result

in allogeneic graft rejection. Elevated levels of circulating T

suppressor cells, tolerogenic APCs and HLA-G augment

immunosuppression and are associated with a more favourable

allotransplant acceptance (153, 260, 261). As receptors for HLA-G,

LILRBs can be considered as therapeutic targets for medicating

transplantation tolerance. In an organ transplantation setting,

LILRB-mediated inhibition of T cells induced immune tolerance

to allow allograft acceptance (249). LILRB1, LILRB2 and LILRB4

play fundamental roles in the immunosuppression cascade

(Figure 4). Rejection-free heart, liver and kidney transplant

recipients all possess alloantigen-specific CD8+ T suppressor cells

(153, 260, 261). These T cells are able to induce LILRB2 and LILRB4

expression on donor DCs and monocytes and abrogate the

expression of CD80/CD86 co-stimulatory molecules and

alloreactive CD4+ Th cell proliferation (153, 260, 261). T

suppressor cell-mediated tolerance extends to non-professional

APCs including donor endothelial cells to confer tolerance of

APCs (262, 263). In addition, LILRB1 was found highly expressed

in circulating non-classical and intermediate monocytes of kidney

transplant recipients. Interestingly, myeloid cells from kidney

biopsies showed an upregulation of LILRB1, LILRB2 and LILRB3

after antibody-mediated rejection (ABMR), whereas circulating

non-classical monocytes specifically had higher levels of LILRB3

and LILRB4 after ABMR (52).

Transplanted human pancreatic islet cells are tolerated by

PBMC-engrafted NOD/SCID mice when treated with sLILRB4.

This graft acceptance is associated with expansion of CD8+ T

suppressor cells and diminished Th reactivity against graft HLA

alloantigens (158, 264). The immunosuppression induced by the

drug rapamycin is associated with increased LILRB2 and LILRB4

expression on DCs and a related increase in Tregs, T suppressor

cells and serum HLA-G (173). Moreover, interaction of LILRB1 and

LILRB2 with soluble and membrane-bound HLA-G from

transplant patient sera augments Tregs and MDSCs and reduces

T cell proliferation, enhancing the survival of skin allograft (215,

265–273). Similar findings were demonstrated in animal studies,

where PIR-B was shown to enhance allotransplant acceptance.

UVB-irradiated DCs that were unable to stimulate CD4+ T cells

induced tolerance in heart transplant recipient rats, characterised by

T suppressor cells and upregulation of PIR-B on APCs. Re-

transplantation of PIR-B+ APC heart allografts to a second
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recipient failed to elicit rejection, indicating that these PIR-B+

APCs are responsible for tolerance (274). In addition, LILRB2+

DCs in LILRB2 transgenic mice induced tolerance against skin

allografts when treated with HLA-G microbeads, via STAT3 and

IDO activation and T cell suppression (273, 275, 276). HLA-G

treatment of LILRB1 transgenic mice that previously received

allogenic skin grafts resulted in expansion of MDSCs, which was

associated with prolonged allograft survival (271).

Graft-versus Host Disease (GVHD) is the foremost impediment

of allogeneic hematopoietic stem cell transplantation (HSCT),

which in turn is associated with rejection of the allograft. PIR-B-

deficient mice that received allogeneic T cells exhibited aggravated

GVHD compared to wildtype mice as a result of the stimulation of

PIR-B-deficient DCs (277). Similarly, acute GVHD was abrogated

in mice that received PIR-B-transfected DCs, which were deficient

in CD80/CD86 co-stimulatory molecules (278). A clinical study

reported that 5.4% of patients that received HSCT, but not solid

organ, had LILRB3-reactive antibodies directed against LILRB3+

DCs. These patients also expressed LILRB3 on leukemic cells,

proposing LILRB3 as a GVH and graft-versus-leukaemia target

(181). Moreover, our group demonstrated that mAb-mediated

ligation of LILRB3 in humanised mice induces tolerance, allowing

the engraftment of allogenic lymphoma cells (177). Collectively,

these studies demonstrate that LILRBs are key regulators of

immune tolerance and allograft acceptance and present an

exciting therapeutic opportunity. Contrary to LILRBs, few studies

have analysed the role of LILRAs in allotransplantation. A recent

study showed that LILRA1 was highly expressed in circulating

FcgRIIIA+ CD14- non-classical monocytes after kidney

transplantation. Additionally, LILRA5 and LILRA6 were found

overexpressed in circulating non-classical monocytes after ABMR

and LILRA5 was highly expressed in myeloid cells from kidney

tissues (52).

Pregnancy can be considered a type of allotransplant. Although

the mechanisms that prevent foetal rejection by the maternal

immune system remain incompletely known, LILRs have been

implicated. HLA-G is expressed in trophoblasts during

pregnancy, hence its interaction with LILRBs is considered

essential (92). During pregnancy LILRB1 ligation inhibits the

cytotoxicity of NK cells, while LILRB2 promotes M2 macrophage

polarisation and MDSC suppressive activity (12, 92). Moreover,

LILRB2 promotes DC tolerance and MDSC activation by binding to

sHLA-G, and both LILRB1 and LILRB2 regulate B and T cell

functions to maintain pregnancy. Considering all of this and their

relevant role in placental vascular remodelling and foetal

development, LILRBs are being considered as biomarkers of

recurrent implantation failure (273, 279).

2.5.4 Cancer
In addition to expression on immune cells and their

dysregulation within the tumour microenvironment (TME),

LILRs may also be present on cancer cells, to support

tumourigenesis and suppress anti-tumour immunity. Hence,

LILRs may be exploited as potential targets in cancer

immunotherapy. It is now appreciated that LILRs may play
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central roles in a number of hallmarks of cancer: immune-evasion,

inflammation, tumour cell proliferation and metastasis (6, 41).
2.5.4.1 LILRAs and cancer

The implication of LILRAs in cancer has not been fully

addressed. In oestrogen receptor-positive breast cancer patients,

LILRA2 gene expression correlated with tumour shrinkage (60), and

in pancreatic ductal adenocarcinoma (PDA) higher transcript levels

were associated with relapse-free survival (82). In the case of

LILRA3, its ligation on monocytes was proposed to stimulate

CD8+ T cells and NK cells in vitro, suggesting LILRA3 may be

immunostimulatory (66). In addition, genetic deletion of LILRA3

leads to predisposition to non-Hodgkin’s lymphoma (66), while its

presence is more common in prostate cancer patients of Chinese

Han origin than in healthy controls (67). Notably, LILRA4 ligation

can inhibit IFN-a and TNF-a production from pDCs. pDC

infiltration in human tumours has been associated with poor

prognosis, linked to impaired ability to produce the tumouricidal

IFN-a (80, 280). More recently BST2 has been identified as a ligand

for LILRA4, which is also expressed on several human cancers and

downregulates IFN-a production, implying a mechanism through

which tumours interact with LILRA4 to suppress immunity (79,

245). Additionally, a study looking at PDA patients found that

higher LILRA4 expression is associated with better overall survival

(OS) (82). Finally, a genome-wide association study showed that

duplications at LILRA6 were associated with high-grade serous

ovarian cancer susceptibility (20).
2.5.4.2 LILRBs and cancer

In contrast to LILRAs, there is compelling evidence that LILRBs

are implicated in tumourigenesis, as well as tumour immune-

evasion and progression. Examination of human cancer cell lines

and tumour specimens has highlighted three main mechanisms.

Firstly, aberrant LILRB expression occurs in several human cancers

but not healthy adjacent tissues, with the expression of LILRBs and

HLA-G found to correlate with poorly differentiated, more

advanced or aggressive cancers in most cases (80, 120, 121, 124,

206–208, 210, 211, 213, 281–283). Secondly, IL-10 contributes to

the LILRB : HLA-G axis of immunosuppression, as it upregulates

LILRB and HLA-G (27, 98, 114, 115, 128, 143, 151, 282). Thirdly,

recent advances have implicated LILRB signalling and expression

directly with tumour progression and worse therapeutic response

(119, 284). Directly or indirectly, many important LILRB functions

involve modulation of myeloid cells (Table 1, Figure 5). Since the

role of LILRBs in cancer have recently been reviewed elsewhere (6,

41, 93, 249), a brief summary is outlined here.

LILRB1 is found on a variety of cancers including breast and

prostate cancers, hepatocellular carcinoma, B cell lymphoma, acute

myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL)

and gastric cancer cell lines (110, 120, 124, 126). Moreover, a pan-

cancer genomics analysis showed that LILRB1 was highly mutated

in various cancers (119). In addition to expression on tumour cells,

higher levels of LILRB1 have been demonstrated on the peripheral

blood of non-small cell lung cancer (NSCLC), renal, head and neck,

oesophagus and colon cancer patients than healthy individuals (6).
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Histological analysis of breast cancer biopsies revealed LILRB1

expression on CD68+ macrophages and CD8+ T cells (124).

There is strong evidence that LILRB1 mediates cancer immune-

evasion. Additionally, LILRB1 has been recently defined as a

prognosis marker in ovarian cancer; high expression correlating

with immunosuppression and its levels on immune cells associating

with the clinical subtype and stage, resistance to platinum treatment

and PD-1/PD-L1 mAb therapy (125). LILRB1 and LILRB4 are also

expressed on human primary gastric cancer specimens compared to

healthy tissue, with high expression correlating with advanced

disease (120). Expression of LILRB1 on gastric cancer cell lines

induces resistance to NK cell cytotoxicity (120, 283). Interestingly,

LILRB1 gene and protein levels correlate with a shorter

progression-free survival and poor clinical outcome in high but

not operated intermediate-risk prostate cancer patients, indicating

its correlation with tumour grade (126). Similarly, LILRB1 was

found in the highest grade glioma patients, and correlated with M2

macrophage markers, proliferation, migration and invasion of

glioma cells, lack of response to immunotherapy and poor

prognosis (118). Furthermore, blocking of LILRB1 combined with

rituximab and anti-CD47 enhanced antibody-dependent cellular

phagocytosis (ADCP) of chronic lymphocytic leukaemia (CLL) cells

(285). LILRB1 expression has been associated with poor AML

survival, adverse prognostic impact, the inhibition of genes

related to immune activation and dysfunctional CD8+ T cells

(119). Expectedly, LILRB1 ligation by HLA-G on tumour cells

induces tumour immune-evasion (206–208, 210, 211, 213,

281, 282).

LILRB2 is expressed on several types of cancers, including

colon, breast, pancreas, lung, hepatocellular and prostate cancers

and leukaemia (82, 126). In prostate cancer, LILRB2 together with

LILRB3 and LILRB5 expression have been associated with reduced

recurrence-free survival in intermediate but not high-risk patients

(126). Furthermore, its overexpression in hepatocellular carcinoma,

colon and NSCLC is associated with poor prognosis (82).

Interestingly, in colorectal cancer it has been recently described

that tumour-derived LILRB2 promotes tumour growth by

increasing angiogenesis, and its blocking sensitises tumours to

bevacizumab (anti-VEGF-A) treatment (163). As such, LILRB2

binding to HLA-G is associated with advanced stage and poor OS

due to the increase in proliferation, migration and invasion of

colorectal cancer cells (164). Moreover, in clear cell renal cell

carcinoma LILRB2 increases the infiltration of macrophages,

which have pro-angiogenic functions, and induces VEGF-C

production (165). Additionally, LILRB2 is found on stromal

macrophages, fibroblasts and plasma cells within the TME of

primary breast cancer patients (162). Expression of LILRB2 on

tumours correlates with higher levels of IL-10. Elevated levels of IL-

10 in LILRB2+ breast cancer tissue positively correlates with

advanced disease and lymph node metastasis, as well as reduction

in tumour-infiltrating lymphocytes (TIL) (162). Moreover,

LILRB2+ tissues in NSCLC have reduced numbers of TILs

compared to LILRB2- tissues (121). In addition, LILRB2 is

upregulated in NSCLC patients, inducing M2 macrophage

polarisation and impairing T cell function, whose inhibition

reverses its immunosuppressive role (286). Moreover, LILRB2
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expression is associated with adverse prognostic impact in AML

patients and lower OS (119). The ANGPTL2-LILRB2 interaction

contributes to metastasis of pancreatic and lung cancers, correlating

with poor survival. Oncogene mutations important in the

carcinogenesis of PDA lead to the overexpression of LILRB2 and

secretion of ANGPTL2 in pancreatic cancer lesions (284, 287).

LILRB3 has not yet been extensively studied with respect to

tumour immune-evasion and development. LILRB3 has been found

to be expressed in leukaemia and a few solid cancers, such as

hepatocellular and colorectal cancers, and its expression is

associated with a poor OS (119, 122, 179, 288). Perna et al.,

identified LILRB3 as being overexpressed on primary human

AML samples and leukemic stem cells, while absent on healthy

HSCs (178). Moreover, LILRB3 expression is linked to adverse
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prognostic impact in AML patients, with the highest LILRB3

expression found in M5 monocytic AML subtype, which

correlates with worse OS. LILRB3 activates TRAF2 in AML cells,

but not healthy monocytes, promoting NF-kB signalling and

inhibiting anti-tumoural T cell activity (119, 288, 289).

Interestingly, ectopic expression of LILRB3 on colorectal cancer

cells associates with lower TILs and its high expression within the

TME correlates with worse OS (179). LILRB3 as well as LILRA6 (>

90% extracellular homology) have been found to interact with

cytokeratin-associated proteins on necrotic glandular epithelial

cells, which may enhance tumour immune-evasion (89).

LILRB4 is expressed on a number of cancers, including AML,

multiple myeloma, gastric cancer, melanoma, colorectal, pancreatic,

hepatocellular, NSCLC and ovarian cancers (119, 158, 158, 185,
FIGURE 5

Proposed mechanism of LILRB-mediated immune-evasion and tumour progression via myeloid cells. Engagement of LILRB1 and LILRB2 with HLA-G
on myeloid-derived suppressor cells (MDSC) activates STAT6 and STAT3-mediated cascades, which in turn induces ARG1 and IDO production
responsible for T cell suppression. LILRB4 ligation by APOE on monocytic AML cells mediates SHP-2 inhibitory signalling, which in turn positively
regulate the NF-kB pathway. This leads to ARG1 production and urokinase-type plasminogen activator receptor (uPAR), responsible for T cell
suppression and support of leukaemia migration. Although further studies are needed, LILRB3 ligation can mediate similar processes, such as
induction of amphiregulin.
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191–196, 290). LILRB4 has been associated with tumour immune-

evasion with lower expression correlating with higher sensitivity to

killing by NK cells in gastric cancer (120). LILRB4 is highly

expressed on MDSCs of patients with NSCLC, correlating with

poor OS due to the immunosuppressive environment and the

enhanced migration, invasion and pro-angiogenic ability of

NSCLC cells by binding to APOE (195, 196). In addition, LILRB4

expression on tumour-infiltrating cells and particularly MDSCs

correlates with postoperative recurrence and shorter OS and

relapse-free survival (290). Interestingly, its blockade prevented

leukaemia metastasis and enhanced immunotherapy (185).

Moreover, LILRB4 has been found on TAMs in several cancer

types, and its blocking enhances the infiltration of anti-tumour

immune cells due to the increased secretion of IL-1b and inducible

nitric oxide synthase (184). sLILRB4 has been associated with

immunosuppression and is found elevated in the sera of cancer

patients (melanoma, colorectal and pancreatic), raising the

possibility that it contributes to tumour escape (158).

Humanised-SCID mice transplanted with several different

allogenic tumour cell lines developed tumours when injected

simultaneously with sLILRB4, unlike tumour cells that were

injected alone (158). TILs found in these tumours were anergic

with no tumour cell necrosis observed (158). T cells isolated from

lymph nodes of the sLILRB4-treated mice failed to elicit T cell

proliferation in a mixed lymphocyte reaction (MLR), a phenomena

also observed when a MLR was conducted using human sera from

cancer patients (158). The addition of a LILRB4 mAb or depletion

of sLILRB4 increased T cell reactivity, demonstrating that sLILRB4

in the sera of cancer patients inhibits T cell proliferation (158).

Deng et al. reported a potential mechanism for LILRB4-mediated

AML progression (185). LILRB4 expression was shown to be

restricted to monocytic AML cells, with ligation by APOE

recruiting SHP-2 to the phosphorylated ITIM, leading to

regulation of the NF-kB pathway and T cell suppression (185).

LILRB5 is also expressed in different tumours but its functions

remain unclear (119, 122, 203). LILRB5mRNA has been detected in

NK cells (203), with NK cells from hepatocellular cancer patients

blood expressing higher levels of LILRB5 than those from healthy

donors. The same was observed in TAMs compared to healthy

tissue (122). Moreover, and opposite to other members of the

family, LILRB5 was associated with a favourable outcome in AML

patients (119).

The mouse homolog PIR-B inhibits CD8+ T cell infiltration and

promotes M2 macrophage polarisation (179). PIR-B-/- MDSCs

exhibit an M1-like phenotype upon entry into the periphery and

result in reduced suppressive function associated with impaired

Treg activity, and accelerated lung tumour growth and metastases

(291). In addition, deficiency in PIR-B results in increased

differentiation of AML cells, indicating that PIR-B maintains

AML cell stemness and promotes leukaemia development by

arresting transformed cells in an undifferentiated state (146).
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2.6 Therapeutic potential of LILRs

Recent success in the use of immune checkpoint blockade,

including pembrolizumab, nivolumab (anti-PD-1) and ipilimumab

(anti-CTLA-4), has paved the way for the development of novel

immune checkpoint inhibitors (292). Apart from their potential use to

predict immunotherapy responses, the powerful immunomodulatory

capacity of LILRs supports this family of receptors as potential

therapeutic targets (119). Several immunomodulatory approaches

have been proposed to target LILR family members. In particular,

antibodies can exert potent immunomodulatory functions with the

ability to either activate (agonistic) or block (antagonistic) the activity

of the respective targets (249).

2.6.1 LILR immunomodulation in infection,
autoimmunity and transplantation

Targeting LILRBs could achieve allotransplantations and prevent

autoimmunity. Work by Suciu-Foca and colleagues has highlighted the

Ag-specific immune tolerance mediated by LILRB2+ LILRB4+ tDCs

and proposed them as therapeutic targets for allotransplantation, while

avoiding the side effects of indiscriminate immunosuppression (293).

Ex vivo expansion of tDCs with T suppressor cells may enable the

transfer of donor-specific tolerance to mediate transplant tolerance.

Moreover, treatment with sLILRB4 has the potential to dampen over-

active immunity but may lack specificity (293). In addition, treatment

with recombinant human LILRB4-extracellular domain-Fc fusion-

protein has been shown to induce DC tolerance, reducing the

progression of the disease, while blocking it exacerbated SLE (187).

Alternatively, agonistic LILRB mAbs that block immune effector

functions can be used to treat autoimmune syndromes that involve

exacerbated immune activation. We recently demonstrated the

potential of an agonistic LILRB3 mAb to reprogram myeloid cells

(177). LILRB3 mAb treatment induced tolerance in vivo and enabled

successful engraftment of allogeneic tumour cells in a humanised

mouse model. This immunosuppressive efficacy may be exploited as

a therapy for transplantation and autoimmunity (177). Another study

showed that GA acts as a ligand for PIR-B, LILRB2 and LILRB3 on

MDSCs, whose activation promotes Th2 immunity and the release of

cytokines that suppress autoimmunity (253).

LILRAs can also be used as immune modulators. In CLE, pDCs

expressing LILRA4 are essential in the immunopathology of the

disease. For that reason, blocking LILRA4 can improve CLE patients’

outcome. In this regard, an anti-LILRA4 (clone VIB7734) that can

deplete pDCs, reduced type I IFN release and disease severity in the

skin (255). In fact, this mAb was evaluated in two Phase 1 clinical

trials in patients with different type I IFN-mediated autoimmune

diseases, including CLE. However, the primary endpoint in the Phase

2 trial was not met. Nevertheless, a Phase 2 clinical trial in SLE was

recently completed. Additionally, the same mAb has been

investigated in a Phase 1 clinical trial to treat and prevent acute

lung injury in patients with COVID-19 (Table 2).
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TABLE 2 A comprehensive list of clinical trials investigating the therapeutic targeting of LILRs to date.

py/
on Therapy

Trial
Phase

Trial
Number

Completion
Date

1 NCT02780674 November 2017

1 NCT03817424 July 2020

2 NCT04925934 June 2023

1 NCT04526912 May 2021

nd combined therapy
umab (anti-PD-1) or
i-EGFR)

1/2 NCT04717375 January 2024

nd combined therapy
(anti-PD-1) and/or

nti-CTLA-4)

1 NCT05377528 January 2027

nd combined therapy
1

1 NCT05061219 December 2025

nd combined therapy
ab (anti-PD-1)

1/2 NCT04669899 January 2024

1 NCT06007482 August 2025

1 NCT05788484 February 2026

1 NCT04803929 March 2026

1 NCT05548088 August 2024

– NCT05739409 August 2024
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Therapeutic
agent

Target Format Manufacturer Disease
indication

Monothera
Combinati

VIB7734 LILRA4 Humanised
IgG1 mAb

Viela Bio Dermatomyositis, Polymyositis, SS, SLE, Systemic Sclerosis Monotherapy

VIB7734 LILRA4 Humanised
IgG1 mAb

Viela Bio Dermatomyositis, Polymyositis, SS, SLE, CLE, Systemic Sclerosis Monotherapy

VIB7734 LILRA4 Humanised
IgG1 mAb

Viela Bio SLE Monotherapy

VIB7734 LILRA4 Humanised
IgG1 mAb

Viela Bio Acute Lung Injury in COVID-19 patients Monotherapy

BND-22 LILRB1 Humanised
IgG4 mAb

Biond Biologics Head and neck SCC, gastric or gastroesophageal junction
adenocarcinoma and NSCLC

Monotherapy a
with pembroliz
cetuximab (ant

AGEN1571 LILRB1 Humanised
IgG4 mAb

Agenus Advanced solid tumours Monotherapy a
with balstilima
botensilimab (a

ADA-011 LILRB1 Humanised
mAb

Adanate Advanced solid tumours Monotherapy a
with anti-PD-L

JTX-8064 LILRB2 Humanised
IgG4 mAb

Jounce Therapeutics Advanced solid tumours Monotherapy a
with pimivalim

ES009 LILRB2 Humanised
IgG4 mAb

Elpiscience
Biopharma
Australia Pty. Ltd.

Advanced solid tumours Monotherapy

CDX-585 LILRB2
and PD-
1

IgG-scFv Celldex
Therapeutics

Gastric, head and neck, ovarian, fallopian tube, bladder, colon,
rectum, oesophagus, liver and pancreas cancer primary peritoneal
carcinoma, NSCLC and cholangiocarcinoma

Monotherapy

anti-ILT3
CAR-T

LILRB4 – Carbiogene
Therapeutics Co.Ltd
Zhejiang Provincial
People’s Hospital

AML M4 and M5 Monotherapy

anti-ILT3
STAR-T

LILRB4 – Peking University
People’s Hospital
Beijing Qingyi Taike
Pharmaceutical
Technology Co., Ltd

AML Monotherapy

anti-ILT3
STAR-T

LILRB4 – Hematology and
Blood Diseases
Hospital

Monocytic leukaemia Monotherapy
b
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Trial
Phase

Trial
Number

Completion
Date

py and combined therapy
idine (chemotherapy) and
and Venetoclax (BCL-2

1 NCT04372433 May 2025

py and combined therapy
rolizumab

1 NCT05309187 April 2024

py and combined therapy
erimental anti-PD-1

1 NCT05763004 March 2025

py and combined therapy
rolizumab or cemiplimab
)

1 NCT05054348 December 2024

py 1 NCT05038800 August 2025

py and combined therapy
rolizumab and paclitaxel,
xel, gemcitabine,
, pemetrexed
apies)

1 NCT03918278 February 2025

therapy with
mab

2 NCT04165096 February 2032

py and in combination
rolizumab, lenvatinib
inase inhibitor),
, pemetrexed, paclitaxel and
hemotherapies)

1 NCT03564691 November 2025

therapy with
mab and standard
py

2 NCT05446870 June 2025

py and combined therapy
rolizumab

1/2 NCT04913337 July 2025
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Target Format Manufacturer Disease
indication

Monoth
Combin

IO-202 LILRB4 Humanised
IgG1 mAb

Immune-Onc
Therapeutics
California Institute
for Regenerative
Medicine (CIRM)

AML with monocytic differentiation and chronic myelomonocytic
leukaemia

Monothera
with azacit
azacitidien
inhibitor)

IO-202 LILRB4 Humanised
IgG1 mAb

Immune-Onc
Therapeutics

Advanced solid tumours Monothera
with pemb

IOS-1002 LILRB1,
LILRB2
and
KIR3DL1

HLA-B57-
Fc fusion
protein

ImmunOs
Therapeutics AG

Advanced solid tumours Monothera
with an ex

IO-108 LILRB2 Humanised
IgG4 mAb

Immune-Onc
Therapeutics
Regeneron
Pharmaceuticals

Advanced solid tumours Monothera
with pemb
(anti-PD-1

MK-0482 LILRB4 Humanised
IgG4 mAb

Merck Sharp &
Dohme LLC

Relapsing and refractory AML and myelomonocytic leukaemia. Monothera

MK-0482 LILRB4 Humanised
IgG4 mAb

Merck Sharp &
Dohme LLC

Triple negative breast cancer, glioblastoma, PDA, sarcomas and non-
squamous NSCLC

Monothera
with pemb
nab-paclita
carboplatin
(chemothe

MK-0482 LILRB4 Humanised
IgG4 mAb

Merck Sharp &
Dohme LLC

NSCLC Combined
pembrolizu

MK-4830 LILRB2 Humanised
IgG4 mAb

Merck Sharp &
Dohme LCC

Ovarian, fallopian tube, stomach and pancreas cancer, head and neck
SCC, NSCLC, glioblastoma multiforme, RCC, primary peritoneal
carcinoma, triple negative breast cancer, mesothelioma, müllerian
mixed mucinous, malignant Brenner’s, germ cell and sex cord and
stromal tumours

Monothera
with pemb
(tyrosine k
carboplatin
cisplatin (c

MK-4830 LILRB2 Humanised
IgG4 mAb

Merck Sharp &
Dohme LCC

High-grade serous ovarian carcinoma Combined
pembrolizu
chemother

NGM707 LILRB1
and
LILRB2

Humanised
mAb

NGM
Biopharmaceuticals,
Inc
Merck Sharp &
Dohme LLC

NSCLC, mesothelioma, glioblastoma, RCC, PDA, head and neck
SCC, cholangiocarcinoma, stomach, breast, ovaries, endometrium,
cervix, colon, rectum and oesophagus cancers

Monothera
with pemb
p

r

a
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2.6.2 Therapeutic potential of LILRs for cancer
immunotherapy

Immunomodulatory approaches targeting LILRs may also

provide durable therapy for cancer. Blockade of LILRBs may

simultaneously inhibit tumour progression and promote anti-

tumour immune responses. Indeed, several studies have addressed

this therapeutic potential, especially by targeting LILRB1, LILRB2 and

LILRB4 (93, 119). Furthermore, combination with other classes of

immunotherapies, such as anti-PD-1, are being investigated in the

clinic (Table 2). Mandel et al. developed BND-22, a first-in-class

LILRB1 blocking antibody to treat murine and humanised mouse

tumour models by increasing the activity of NK and T cells and the

phagocytic potential of macrophages (294). A Phase 1/2 clinical trial

is currently evaluating the safety, tolerability and anti-tumour effect of

BND-22/SAR444881 in advanced solid tumours (unresectable or

metastatic disease). Another Phase 1 clinical trial is underway to

examine the potency of AGEN1571, a novel LILRB1 mAb, as

monotherapy or combined with anti-PD-1 or anti-CTLA-4 in

advanced solid tumours. Interestingly, AGEN1571 can polarise

macrophages towards a pro-inflammatory phenotype and enhances

the activity of CD8+ T, NK and NKT cells in preclinical models (295).

Additionally, patient recruitment is underway for a Phase 1 clinical

trial involving another LILRB1 mAb, ADA-011, as monotherapy or

combined with a PD-L1 inhibitor in advanced solid tumours.

Moreover, a recent preclinical study showed that dual mAb

blockade of LILRB1 and PD-1 enhances CD8+ T cell activation and

as a result augments the cytolytic efficacy of bispecific T cell engager

(BiTE) molecules (296). Similarly, Zhang and colleagues recently

developed and tested the efficacy of an antagonistic LILRB1 mAb.

They specifically focused on the activity on NK cells, where LILRB1

expression is significantly upregulated in cancer patients, and

demonstrated that LILRB1 blockade increases the tumouricidal

activity of NK cells against several types of human solid and

haematological cancers in preclinical settings (297). In addition,

blockade of LILRB1 and NKG2A mediated NK cell cytotoxic

killing of primary human ALL and AML blasts (110).

Blockade of LILRB2 has been demonstrated to reduce cancer cell

proliferation, migration and invasion of cancer cells (284). Preclinical

studies in NSCLC showed that LILRB2 blockade reprograms

immunosuppressive myeloid cells and promotes antitumour

immunity via SHP1/2, AKT and STAT6 inhibition, suppressing

granulocytic MDSCs and Treg infiltration and improving

checkpoint inhibitor efficacy (160). Moreover, LILRB2 antagonism

increases inflammatory macrophages by interfering with M-CSF

maturation (160). Umiker and colleagues demonstrated that the

blockade of LILRB2 with JTX-8064 in different tumour types

reprogrammes macrophages and DCs by inhibiting HLA I ligand

binding. In addition, JTX-8064 improved the efficacy of anti-PD-1

therapy (161). JTX-8064 is currently in a Phase 1/2 clinical trial as

monotherapy or in combination with the PD-1 mAb pimivalimab in

advanced refractory solid malignancies with potential clinical benefits

(298). Moreover, in another Phase 1 clinical trial, a human LILRB2

mAb (MK-4830) is being used as monotherapy or in combination

with pembrolizumab (anti-PD-1) to treat advanced solid tumours.

Initial results showed 11 objective responses to the combination and 1

to the monotherapy with durable responses in heavily pre-treated
T
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patients and no dose-limiting toxicities. Furthermore, LILRB2

blockade alleviated the myeloid-suppressive compartment,

improving T cell response to pembrolizumab (299). IO-108 is

another LILRB2 mAb that is in a Phase 1 clinical trial to treat solid

tumours (as monotherapy or in combination with pembrolizumab)

with promising results reportedly due to its activation of cytotoxic T

lymphocytes and APCs, and repolarisation of macrophages (300).

NGM831, an antagonistic LILRB2 antibody, is being investigated as

monotherapy or in combination with pembrolizumab in advanced or

metastatic solid tumours in a Phase 1 clinical trial. In preclinical

studies, NGM831 modulated tDCs to a more stimulatory and

responsive phenotype, stimulating allogenic T cells in combination

with anti-PD-1 (301). Additionally, a recent Phase 1 clinical trial is

currently recruiting patients with advanced solid tumours to evaluate

the safety, tolerability and clinical activity of a new human LILRB2

mAb (ES009). Previous in vitro and ex vivo studies demonstrated that

blocking LILRB2 with ES009 reprograms myeloid cells to a pro-

inflammatory phenotype and enhances T cell activation (302).

Furthermore, NGM707, a mAb that recognises both LILRB1 and

LILRB2 is in a Phase 1/2 clinical trial as monotherapy or combined

with pembrolizumab in advanced or metastatic solid tumour

malignancies. Preliminary data from the Phase 1 trial showed that

NGM707 was well tolerated and developed early signs of anti-tumour

activity by reprogramming myeloid cells (303, 304). Similarly, a new

Phase 1 clinical trial with IOS-1002, a first-in-class molecule that

targets LILRB1, LILRB2 and KIR3DL1, is being investigated in patients

with advanced solid tumours. It is being evaluated as monotherapy and

in combination with anti-PD-1, and preclinical data have shown that it

significantly increases the anti-tumourigenic responses of

macrophages, T and NK cells (305). CDX-585 is a novel tetravalent

IgG-scFv bispecific antibody targeting both PD-1 and LILRB2, which is

undergoing Phase 1 clinical trial in advanced malignancies. In

preclinical studies, CDX-585 improved T cell activation, resulted in

macrophage polarisation towards M1 and enhanced anti-tumour

responses in a humanised mouse model of melanoma (306).

LILRB4 has also been widely evaluated for its therapeutic

potential (307). IO-202 is being investigated in relapsed/refractory

myelomonocytic and monocytic AML and relapsed/refractory

chronic myelomonocytic leukaemia (308). In addition, IO-202 is

undergoing clinical trials as monotherapy or in combination with

pembrolizumab in solid tumours (308). Similarly, Di Meo and

colleagues developed a LILRB4 BiTE that showed a high efficacy in

potentiating T cell cytotoxicity against multiple myeloma cells in vitro

and in vivo, and prolonged survival of tumour-bearing mice (193).

MK-0482 is being tested in patients with relapsed/refractory

myelomonocytic and monocytic AML and relapsed/refractory

chronic myelomonocytic leukaemia. However, it is important to

highlight its toxicity; myositis was observed in two patients and led

to death of one of them. The same antibody is being used as

monotherapy or in combination with pembrolizumab in a Phase 1

clinical trial in heavily pre-treated advanced solid tumours and in a

Phase 2 clinical trial in advanced NSCLC. A novel anti-LILRB4

chimeric antigen receptor (CAR) T cell therapy recently

demonstrated potent elimination of human LILRB4+ AML cells in

preclinical models with no toxicity on normal CD34+ hematopoietic

cells (307). An early Phase 1 clinical study is evaluating the safety and
Frontiers in Immunology 21
efficacy of this anti-LILRB4 CAR-T cell immunotherapy in AML

patients. Similarly, LILRB4 synthetic T cell antigen receptor (STAR)-

T cells have been developed and are in a Phase 1 clinical trial for the

treatment of relapsed/refractory AML (309) and monocytic AML.

Interestingly, Huang and colleagues developed a bispecific LILRB4 x

CD3 antibody for monocytic AML with promising preclinical results

(310). Moreover, a T-cell engager targeting LILRB4, NGM936, to

treat AML has been developed, which induces T cell cytotoxicity

against LILRB4+ cells in preclinical studies (311). Finally, an

antibody-drug conjugate has been developed from a humanised

anti-LILRB4, inducing cytotoxicity against LILRB4+ AML cells (312).

3 Conclusions

LILRs are emerging as important mediators of immune

homeostasis, regulating the balance between tolerance and immune

activation. Increasing evidence supports LILRs’ central involvement in

various human pathologies, ranging from oncology to autoimmune

disorders, associated with suppressed immunity or exacerbated

immune activation, respectively. Our understanding of the human

LILR biology and crosstalk is limited by our understanding of their

ligands, with ligands for only some LILRs identified to date. The lack

of direct LILR homologues in the mouse and specific reagents have

impaired the study of this important family of immune receptors. This

poses a major hurdle for studying LILR biology and requires the need

for the development of novel mouse models, including LILRA and/or

LILRB transgenic mice and knock-in/-out mice (eg, PIR- and LILR+),

faithfully expressing these receptors. As such, more recent engineering

advances in generating humanised mice have begun to allow the study

of this complex receptor family in a more ‘physiological’ context and

will undoubtedly continue to support the study of these receptors and

other elusive immune receptors (177, 218, 313, 314). These models

could allow us to further examine the ligand profiles, functions and

therapeutic potential of the LILR family members.

In regard to their therapeutic potential, the high homology

among certain LILRs must be taken into consideration. Without

this, targeting the inhibitory LILRs could simultaneously mediate

LILRA activation or inhibition, which may interfere with the desired

outcome. The recent preclinical and clinical evidence propose LILRBs

as ideal targets for immunotherapies against various pathologies

including cancer. Most exciting is the emerging dual role of LILRBs

in promoting carcinogenesis and immune-evasion, which propose

the development of novel and highly potent immunotherapies for

reducing tumour burden and immunosuppression. As such, it is

anticipated that novel LILR-targeting modalities currently in clinical

trials will soon make their way into the clinic.
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