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Epigenetic, metabolic, and transcriptional regulation of immune cell
plasticity and functions in cancer and non-cancer diseases
High plasticity represents an essential characteristic of innate and adaptive immune

cells, which allows their multi-directional transition into diverse phenotypes with different

(even opposite) functions (1, 2). The significance of this property is further highlighted by

an increasing number of recently emerging new phenotypes of immune cells, particularly

involving many malignant and non-malignant disorders (3). Mechanistically, the

phenotypic transition occurs via reprogramming of gene expression at the

transcriptional level primarily driven by complex and interactive mechanisms involving

microenvironment, intracellular signaling, transcription factors, epigenetic remodeling,

metabolic rewiring, and post-translational modification (PTM) (1, 4–9).

Transcriptional reprogramming for the phenotypic transition of immune cells is

primarily governed via various epigenetic mechanisms, including DNA methylation,

histone PTMs, non-coding RNA, RNA modification, etc. (1, 10, 11). DNA methylation

usually functions to silence the expression of tumor suppressors in most types of cancer

(12). In contrast, many oncogenes are often hypomethylated to promote their expression in

tumor cells. Interestingly, multiple differential methylation sites (DMSs) have been found

in either the gene itself or the promoter of telomerase reverse transcriptase (TERT), a

critical enzyme that controls the length of telomere and is thus considered an oncogene

(Lin et al.). Moreover, hypermethylation of these DMSs significantly correlates with TERT

expression, infiltration of immune cells [e.g., T cells, T helper 2 (Th2) cells, Treg, CD56dim

natural killer (NK) cells, activated dendritic cells (DCs), and B cells], and immune

checkpoints (e.g., LAG-3) in triple-negative breast cancer (TNBC) (Lin et al.). Of note,

hypermethylation of at least some DMSs is associated with poor overall survival of patients

with TNBC (Lin et al.). These findings suggest that TERT promoter hypermethylation may
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play a role in tumor microenvironment (TME), although the

underlying mechanism remains to be explored.

5-methylcytosine (m5C) represents one of the important forms

of RNA modification, which occurs on virtually all types of RNA

(e.g., mRNA, tRNA, rRNA, lncRNA, and other RNAs) and plays

diverse roles in RNA transcription, transportation, and translation

(13). Thus, there is no doubt that m5C and its regulatory elements

(including “writer”, “eraser”, and “reader”) account for malignant

behaviors of both tumor cells and TME involving numerous

immune cells (e.g., T cells, B/plasma cells, macrophages,

granulocytes, NK cells, DCs, and mast cells) in numerous types of

cancer, including solid tumor (e.g., liver, stomach, bladder, prostate,

head and neck, breast, pancreas, kidney, and colon and rectum

cancer) and hematologic malignancies (e.g., leukemia) (Gu et al.).

Recently, many novel forms of histone and non-histone protein

PTMs have been discovered in physiological and/or pathological

scenarios (14–17). Among them, lactylation occurs primarily at

lysine residues of histones and in some circumstances, also non-

histone proteins. Since lactylation is induced by lactate (the end

product of glycolysis) (18), it thus represents a key linker between

metabolic rewiring (paradigm shift from oxidative phosphorylation

to glycolysis or vice versa) and epigenetic remodeling (19, 20). This

new PTM may be particularly important in cancer, considering

aerobic glycolysis as a metabolic hallmark of cancer known as the

Warburg effect (21, 22). Indeed, fast-emerging evidence supports

the functional role of lactylation in both tumor cells and TME

involving tumor-infiltrating myeloid cells, including tumor-

associated macrophages (TAMs), myeloid-derived suppressor cells

(MDSCs), and tumor-associated neutrophils (TANs), especially the

communication between them (Su et al.). Thus, more reliable

targets will become available for anti-tumor epigenetic therapy

and immunotherapy soon.

As another protein PTM, ubiquitination is essential for protein

turnover via the ubiquitin-proteasome system (UPS) or autophagy,

among many other functions, in both normal and malignant cells

(23). Consequently, agents targeting UPS (e.g., proteasome

inhibitors such as bortezomib) have been extremely successful in

the treatment of plasma cell neoplasms like multiple myeloma that

relies on a highly-efficient protein turnover machinery to remove

abundant useless but harmful immunoglobulin in tumor cells (24).

Notably, many E3 ubiquitin ligases (e.g., WWP1/2, SMURF1/2,

ITCH, FBXW7, FBXO3/6 /21 , HECTD1 , and ULF1)

deubiquitinases (e.g., USP3/5/7/13/14/15/49) that reciprocally

regulate ubiquitination are associated with osteoarthritis (Zheng

C. et al.), suggesting that this non-inflammatory degenerative joint

arthritis may be another disorder caused by deficient protein

turnover. In addition to a number of (de)ubiquitination-targeted

agents undergoing development (Zheng C. et al.), it is interesting to

see whether the FDA-approved proteasome inhibitors would be

effective against this type of (de)ubiquitination-deficient disorders

like osteoarthritis.

Among various immunotherapies, immune checkpoint

inhibition represents a major therapeutic strategy. The most

representative one is anti-PD1/PD-L1 monoclonal antibodies

(mAbs), which have been approved for the treatment of many

types of solid tumors, including lung cancer (25). However,
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although anti-PD1/PD-L1 mAbs display a striking efficacy, a

considerable number of patients with lung cancer have not been

benefited (26). To this end, numerous biomarkers have been

discovered to pre-select patients who are most likely to benefit

from this immunotherapy, including tumor-related markers (e.g.,

PD-L1 expression, tumor mutation burden, dMMR/MSI, and many

tumor-specific genes), peripheral blood-based markers (e.g.,

ctDNA, immune cells/T cell receptor, and exosomal PD-L1/

cytokines) and gut microbiome (Wang et al.). Exhaustion of T

cells represents a major hurdle for immunotherapy (27), which may

at least in part explain the unsatisfied efficacy of anti-PD1 mAb in

most hematologic malignancies like acute myeloid leukemia

(AML). In AML patients, accumulation of a subset of severely

exhausted T cells (CD28−/PD-1+/TIGHT+) correlates with the

presence of minimal residue disease, poor therapeutic response,

and short disease-free survival (Huang et al.). Thus, a strategy

combining agents targeting such exhausted T cells may improve the

efficacy of PD-1 blockade in AML and probably other hematologic

malignancies as well. Another approach to enhance the efficacy of

immunotherapy is to combine it with radiotherapy, based on a

potential mechanism of action involving oxidative stress (e.g., ROS)

induced by radiation (Zheng Z. et al.). ROS promotes the release of

tumor-associated antigens, which promote infiltration and

differentiation of immune cells, modulate the expression of

immune checkpoints, and remodel TME (Zheng Z. et al.).

Interestingly, expression of certain cell cycle-related genes such as

CENPE also correlates with the infiltration of immune cells (e.g.,

DCs, B cells, T cells, CD4+ or CD8+ memory T cells, macrophages,

and mast cells) at least in some types of cancer (e.g.,

medulloblastoma) (Fang et al.). However, its functional role in

TME, other than tumor cells themselves, and immunotherapy

remains to be investigated.

In addition, many other immune checkpoints could also serve

as potential targets to fill in the gap left behind. One example is

CD47/SIRPa (known as a “don’t eat me” signal for phagocytosis by

macrophages) (28). While this checkpoint has been well

investigated, its targeted therapy has however not been as

successful as anti-PD1/PD-L1 mAbs thus far, largely due to

severe adverse events (e.g., anemia, because red blood cells highly

express CD47) (29). In this circumstance, many alternative

approaches, rather than mAbs, have been attempted to avoid this

dark side (30). Targeting glutaminyl-peptide cyclotransferase-like

protein (QPCTL) that catalyzes CD47 pyroglutamylation crucial for

the binding between CD47 and SIRPa may be a promising

approach for the treatment of glioma, in which QPCTL is highly

expressed due to DNA hypomethylation and associated with poor

outcomes (Liu et al.).

Last, unlike the rapid advance in immunotherapy for cancer, its

application in non-cancer diseases lags way behind (31). Among

many obstacles, the most important one may be the lack of defined

target immune cells in autoimmune or inflammatory diseases,

primarily due to the complexity of immune cells with diverse,

plastic phenotypes. To this end, recently developed single-cell-

analyzing techniques have been doing a really good job of

identifying immune cells with different functions (3). For

example, single-cell RNA sequencing (scRNAseq) and high-
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dimensional mass cytometry (CyTOF) have defined a hyper-

inflammatory signature in peripheral blood mononuclear cells of

patients with Prader-Willi syndrome, with a marked increase in

CD16+ monocytes that likely drive hyper-inflammatory status of

this disease and therefore represent a potential target for

immunotherapy (Xu et al.).

Together, further basic, translational, and clinical research with

the development and utilization of modern technology would

provide much deeper insights into the mechanisms underlying

immune cell plasticity (Figure 1), leading to the discovery of

useful biomarkers or targets for precision medicine against cancer

and non-cancer diseases.
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FIGURE 1

Phenotypic plasticity of immune cells in cancer and non-cancer diseases. (A) Multiple dimensions involving the mechanisms underlying the
polarization of immune cells into heterogeneous phenotypes with diverse (even opposite) functions in different pathological scenarios. (B) Modern
approaches for resolving the highly complex mechanisms for plasticity of immune cells in a disease-specific manner, thereby leading to immune
microenvironment-targeted therapy for cancer and non-cancer diseases. AI, autoimmune disease; ID, inflammatory disease; UPS, ubiquitin-
proteasome system; ncRNA, non-coding RNA; PTM, post-translational modification.
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