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Human Immunodeficiency Virus (HIV) has plagued human society for a long time

since its discovery, causing a large number of patients to suffer and costing

hundreds of millions of medical services every year. Scientists have found that

HIV and antiretroviral therapy accelerate immune aging by inducing

mitochondrial dysfunction, and that terminal effector memory T cells (TEMRA

cells) are crucial in immune aging. This specific subset of effector memory T cells

has terminally differentiated properties and exhibits high cytotoxicity and

proinflammatory capacity. We therefore explored and described the interplay

between exhaustion features, essential markers, functions, and signaling

pathways from previous studies on HIV, antiretroviral therapy, immune

senescence, and TEMRA cells. Their remarkable antiviral capacity is then

highlighted by elucidating phenotypic changes in TEMRA cells during HIV

infection, describing changes in TEMRA cells before, during, and after

antiretroviral therapy and other drug treatments. Their critical role in

complications and cytomegalovirus (CMV)-HIV superinfection is highlighted.

These studies demonstrate that TEMRA cells play a key role in the antiviral

response and immune senescence during HIV infection. Finally, we review

current therapeutic strategies targeting TEMRA cells that may be clinically

beneficial, highlight their potential role in HIV-1 vaccine development, and

provide perspectives and predictions for related future applications.

KEYWORDS

TEMRA cells, HIV, immunosenescence, antiretroviral therapy, vaccines
1 Introduction

Human immunodeficiency virus(HIV) rapidly progresses to lethal acquired

immunodeficiency syndrome (AIDS) if left untreated. However, with the advent of

antiretroviral therapy, it is now possible to manage HIV infection as a chronic disease

(1, 2). Despite this advancement, HIV infection disrupts the immune system’s homeostasis,
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leading to significant consequences (3). Long-term HIV infection-

related cellular damage exposure accelerates cellular senescence,

resulting in chronic inflammation and immune system failure (4, 5).

Notably, inflammation has been identified as the second most

influential factor, after age itself, in predicting outcomes such as

survival, functional capability, and cognition (6). Additionally,

antiretroviral therapy may contribute to HIV-associated

inflammation and mitochondria-related aging in persons with

HIV (PWH) (7–9). These factors together lead to a rise in the

prevalence and morbidity of age-related comorbidities in PWH,

including cancer, cardiovascular disease, metabolic illness, and

neurodegenerative disorders (7, 10). Among those older than 40,

the frequency of HIV infections has been rising quickly. According

to a longitudinal study of an INDEPTH community in South Africa

conducted in 2010, HIV prevalence in those 40 years and older was

21% and increased to 23% 5 years later (11). By 2030, the median

age of PWH receiving combination antiretroviral therapy (ART)

will be 56.6, up from 43.9 in 2010,thepercentage of PWH aged 50

years or older will be 73%, up from 28% in 2010. according to data

from the Dutch AIDS Therapy Evaluation in the Netherlands

(ATHENA) cohort (12, 13). Consequently, it is of utmost

importance to further investigate the connection between HIV,

antiretroviral therapy, and immunosenescence.

HIVand antiretroviral therapy accelerate immune senescence

by inducing mitochondrial dysfunction (14, 15). Terminal effector

memory T cells (TEMRA cells) are crucial in immune senescence.

There are four subpopulations of T cells based on their expression

of CD45RA and CCR7: effector memory T cells(TEM, CD45RA-/

CCR7-), Naive T cells(TN, CD45RA+/CCR7+), central memory T
Frontiers in Immunology 02
cells(TCM, CD45RA-/CCR7+), and effector memory T cells re-

expressing CD45RA(TEMRA, CD45RA+/CCR7-) (16). TEMRA

cells, which are T cells that re-express CD45RA, represent

terminally differentiated effector cells associated with protracted

antigen exposure. Table 1 presents the primary markers of TEMRA

cells, particularly senescent markers. These cells are considered

hallmarks of immunosenescence and are characterized by a decline

in proliferation potential but strong cytotoxicity and

proinflammatory activity. They generate effective effector

molecules including perforins, granzymes, IFN-g, and TNF-a (27)

(28, 29). As people age, the proportion of TEMRA cells

progressively increases (30). These cells exhibit various

characteristics of advanced differentiation, such as a low

proliferative activity, high levels of DNA damage and the loss of

telomerase activity (31–33). Telomere shortening and the activation

of a senescent phenotype are brought on by the relative absence of

telomerase activity in TEMRA cells (34). Senescence-associated

secretory phenotype (SASP), a distinctive proinflammatory

secretory program, is driven by enhanced senescence-associated

-galactosidase (SA-Gal) activity. TEMRA cells thrive in an

inflammatory milieu and may also exacerbate it by producing

multiple proinflammatory molecules recognized as contributors to

SASP (32, 35). SASP is regulated by p38 MAPK signaling and has a

significant role in inflammation and organismal aging (36).CD8

+TEMRA cells and CD4+TEMRA cells exhibit differences in

specific senescence-related characteristics. CD8+ TEMRA cells

demonstrate significant mitochondrial dysfunction primarily due

to decreased mitochondrial mass, leading to compromised

metabolic stability and impaired nutrient uptake (37). In contrast,
TABLE 1 Summary of significant markers of TEMRA cell.

Marker Identification Expression Significance Ref.

CD45RA Receptor protein tyrosine phosphatase + Initiates T-cell receptor signaling (17)

CCR7 CC−chemokine receptor 7 – Participate in the lymph node homing and contribute to balance immunity and
tolerance

(18)

CD57 A 100-115 kD terminally sulfated
carbohydrate epitope

+/- Identify terminally differentiated senescent cells with reduced proliferative capacity
and altered functional properties

(19)

CD27 TNF receptor superfamily.
(TNFRSF) target receptors

– Drive T-cell activation (20)

CD28 A founding member of a subfamily of
costimulatory molecules

– Drive critical intracellular biochemical events, including unique phosphorylation
and transcriptional signaling, metabolism, and the production of key cytokines,

chemokines, and survival signals

(21)

CD31 A transmembrane glycoprotein in the
diverse immunoglobulin (Ig) gene

superfamily of receptors

+/- Recruit leukocvtes into inflammatory sites and promote angiogenesis and
cardiovascular development

(22)

CD38 Activation-inducing surface protein on T
cells

+ An Immunomodulatory Molecule in Inflammation and Autoimmunity (23)

CD69 Membrane-bound receptor for type II C-
lectins

+ Regulate activation and metabolic of lymphocytes (24)

PD-1 Programmed Cell Death Protein 1 + Inhibiting the apoptosis of regulator T cells and active apoptosis of antigen-
specific T cells

(25)

Ki67 A protein highly expressed in cycling
cells

+ Proliferation marker for human tumor cells regulates cell cycle progression (26)
frontier
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CD4+TEMRA cells showcase a larger mitochondrial mass and

absorb more lipids and glucose than CD8+ counterparts (38).

Human T cell senescence is mostly determined by mitochondrial

mass, and CD8+ TEMRA cells age more rapidly than CD4+

TEMRA cells due to their increased sensitivity to senescence (38,

39). Therefore, the research findings of TEMRA cells and related

treatment methods seem to provide new ideas and solutions for the

treatment of HIV.

Here we aim to review the correlation between HIV,

antiretroviral therapy, and immune senescence, and to summarize

the characteristics, function, and regulation of TEMRA cells. We

comprehensively highlighted the critical role of TEMRA cells in

immunosenescence under HIV infection from multiple

perspectives, including their alterations, antiviral activity, changes

under antiretroviral therapy and other drug therapies, age-

associated complications, and cytomegalovirus (CMV)-HIV

coinfection. Based on these findings, we underlined the roles of

immunosenescence and TEMRA cells in treatments and vaccines

for HIV.
2 Mechanism

2.1 The interaction between HIV,
antiretroviral therapy, and
immunosenescence

2.1.1 HIV and antiretroviral therapy cause
immunosenescence and influence
mitochondrial function

Immunosenescence is a dynamic and multifactorial process

characterized by age-associated changes in immune responses (40,

41), which results from changes in the innate and adaptive immune

systems, increasing the risk of infection, decreasing the protection

provided by prior vaccines, and decreasing the response to

subsequent immunizations (42, 43). Thymic involution, a

significant manifestation of immunosenescence during regular

aging process, reduces T cell production (44). In response to this

production failure, a homeostatic process of memory T cell

proliferation takes place, leading to a relative decline in T cell

receptor repertoire (TCR) diversity (45).

Chronic viral infections impose a permanent stress on the

immune system and reinforce immunosenescence.The enduring

hyper-antigenemia such as HIV, hepatitis C virus (HCV), and CMV

during the progressive decline of immune system function results in

chronic inflammation, ultimately accelerating immune senescence

(46, 47). The accumulation of senescent cells creates an

immunosuppressive state while promoting viral replication and

dissemination, ultimately exacerbating disease pathogenesis and

hastening the progression to AIDS (48).

To prevent AIDS progression and the progression of viremia,

PWHmust be treated with antiretroviral therapy for the rest of their

lives (49). The antiretroviral treatment, in particular, interferes with

mitochondrial function and causes senescence in a variety of cells,

despite just a brief exposure (15).
Frontiers in Immunology 03
Both HIV and antiretroviral therapy cause multiple

impairments to mitochondrial function, including disturbances in

electron transport chain (ETC) respiration and Adenosine 5’-

triphosphate (ATP) synthesis, damage to mitochondrial DNA

(mtDNA), disruption of mitochondrial membrane potential

(▵Ym), and increased oxidative stress. In the setting of HIV/

antiretroviral treatment, increasing oxidative stress causes more

mtDNA mutations. Consequently, there is a continuous loop of

mtDNA damage, decreased mitochondrial function, increased

oxidative stress, and reduced ATP synthesis and cellular

homeostasis (50–52). Here we demonstrate the role of TEMRA

cells and immune senescence from various perspectives, which will

be discussed in the following sections (Figure 1).

2.1.2 CD28 and replicative senescence
CD28 has a central role in the replicative senescence program,

which likely represents a characteristic end-stage state of TEMRA

cells (53, 54). According to a previous study that involved

individuals from various age groups, most CD8+ T cells express

CD28 at birth, where the proportion of CD28- T cells gradually rises

with age (55, 56).

The absence of CD28 results in upregulating p16 and p21, two

vital proteins in cell cycle regulation. The proteins inhibit cyclins

and cyclin-dependent kinases responsible for converting G1 to S,

leading to G1 arrest and subsequent replicative senescence (57–

59).In CD8+CD27− CD28− T cells, reduced phosphorylation of a

serine/threonine kinase Akt (Ser473) affects the phosphorylation of

human telomerase reverse transcriptase (hTERT) (60).

Additionally, down-regulation of CD28 is associated with hTERT

loss, resulting in reduced telomerase activity and increased telomere

fragility (61).
2.2 Functions and regulations of
TEMRA cells

TEMRA cells, particularly CD8+ TEMRA cells, secrete

substantial quantities of cytotoxic factors like perforin and

granzymes, displaying a significant level of cytotoxicity (27).

Additionally, they can assemble into supramolecular attack

particles to carry out cytotoxic functions (62). The morphological

changes include shrinkage of cells, membrane blebbing, chromatin

condensation, and nuclear fragmentation that result from perforin’s

disruption of intracellular endosomal membranes (63–65).

TEMRA cells’ cytotoxic potential is regulated by transcription

factors T-bet and (eomesodermin)Eomes, which produce granzyme

B, granzyme H, and perforin (66). Additionally, T-bet and Eomes are

regulated by mammalian target of rapamycin (mTOR), a vital cellular

metabolism regulator crucial in developing CD8+ T cells (67).

TEMRA cells not only possess cytotoxic functions but also

display a proinflammatory phenotype and secrete multiple

inflammatory factors, such as interferon-gamma (IFN-g), tumor

necrosis factor-alpha (TNF-a), IL-1b, and IL-6 (28). While TEMRA

cells initially produce abundant IFN-g, their ability to do so

gradually diminishes upon TCR stimulation. Nonetheless, IL-15
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administration can restore their capacity for IFN-g production. The
exact mechanism underlying this restoration remains unknown but

is believed to involve the mTOR pathway (68, 69). We summarize

the biological characteristics, functions, and signaling pathways of

TEMRA cells in Figure 2.
2.3 Interaction of TEMRA cells and HIV

2.3.1 The alteration of TEMRA cells among PWH
2.3.1.1 Major biomarkers alteration

Several previous studies have demonstrated alterations in

TEMRA cells in PWH and healthy individuals. There is an

increase in the number of TEMRA cells among PWH, as well as

an increase in the expression of PD-1, CD38, CD57, and Ki67 (70).

Additionally, there is an increase in the number of CD4+TEMRA

cells expressing PD-L1 in the viremic HIV-1+ group (71). A PD-1

molecule or PD-L1 ligand acts as a negative regulator of T-cell

activity. Furthermore, CD31 expression on memory CD8+ T cells

during HIV-1 infection appears to be associated with PD-1

expression on CD8+ TEMRA cells (72). CD57 has previously

been proposed as a marker of proliferative history, and more

recently as a marker of HIV-specific cytotoxic CD8+ T cells, and

correlated with viral suppression (73). Individuals with controlled

HIV-1 infection exhibit a higher likelihood of possessing antigen-

specific CD8+ TEMRA cells compared to those with progressing

infection (74). High expression of EOMES among CD57+ CD8+

TEMRA cells is associated with viral control during chronic HIV

infection (75). Moreover, gdT cells play a crucial role in innate

immunity as the primary defense against infectious diseases (76). In
Frontiers in Immunology 04
individuals with acute HIV and rapid progressors, memory Vd (2)

gd T cells display a preference for the TEMRA Vd (2) gd T cell

phenotype. The frequency of TEMRA Vd (2) gd T cells is positively

correlated with the frequency of CD38+ T cells, indicating that HIV

infection leads to an excessive activation of TEMRA Vd (2) gd T

cells (77). Table 2 provides a summary of the significant TEMRA

subsets that have experienced alterations, along with their respective

characteristics and significance.

2.3.1.2 The senescent and activated phenotype of
significant infection populations

Male homosexuality and mother-to-child transmission of HIV

pose significant global health challenges (78, 79). Additionally,

PWH show a statistically significant increased frequency of CD8+

memory T cell subsets with a more activated phenotype (80). In

children with vertically acquired HIV-1 infection and a detectable

viral load, there is an observed increase in CD8+ TEMRA cells

compared to the age-matched healthy group. These CD8+ TEMRA

cells also exhibit a more senescent and activated phenotype (81)..

Additionally, vertically infected children have significantly higher

levels of CD4+ TEMRA cells (82). These findings suggest that HIV

infection induces immune activation and drives cells toward

terminal differentiation, ultimately resulting in the exhaustion and

depletion of these cells.

2.3.2 Antiviral activity of TEMRA cells
CD8+ TEMRA cells have a strong antiviral effect. It has been

shown that CD8+ TEMRA cells with HIV-1 specificity are associated

with HIV-1 viremia control and can predict the set point of viral loads

to come (83). Numerous studies have shown that CD8 T cells, rather
FIGURE 1

The role of TEMRA cells in HIV infection within the context of immunosenescence. HIV infection and antiretroviral therapy contribute to
immunosenescence, resulting in the expansion of TEMRA cells. CD4+TEMRA cells, CD8+TEMRA or both have different connections with the clinical
course of HIV infection, HIV infected population, drugs, and complications of HIV infection. The mitochondrial function of TEMRA cells and the
cost-benefit analysis to prevent CMV infection are also noteworthy. MSM, men who have sex with men; ART, antiretroviral therapy; MRV, maraviroc;
sIBM, sporadic inclusion body myositis; HIV, human immunodeficiency virus; CMV, cytomegalovirus; TEMRA cells, terminal effector memory T cells
re-expressing CD45 RA.
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than CD4 T cells, exhibit stronger activation in HIV infection with

increased viremia (84). The use of consensus HIV-1 gag peptides before

in vitro stimulation may increase CD8+ T cells’ viral suppressive

capacity (VSC) in people with progressive HIV infection.

Significantly, this enhanced VSC is correlated with greater levels of

IFN-g, TNF-a, and IL-10 production, CD8+ TEMRA cells also express

immunological checkpoint markers, which are linked to T-cell

exhaustion and the loss of T-cell effector functions in the context of

sustained antigen exposure. In comparison to nonsuppressors,

suppressor individuals have a greater fraction of PD1+CD160+CD8+

TEMRA cells, which may indicate the existence of more active and

cytolytic cells that may inhibit viral replication (85). Despite prolonged

viral suppression, HIV-1-infected patients are affected by impaired

restoration of CD4+ T cells. In patients who demonstrate a good

virological response to antiretroviral therapy, there is an association

between insufficient CD4 T-cell numbers and altered CD8 T-cell

responses, such as poor differentiation and fewer CD8+TEMRA cells,

especially in response to Gag p24 stimulation in vitro (86). This

impaired differentiation of CD8+ TEMRA cells reflects characteristics

of progressive HIV-1 infection. Low CD4+ Tcell counts that continue

to exist are expected to affect CD8+ TEM cell development, producing

insufficient and defective CD8 +TEMRA cells that are specific for

HIV-1.

2.3.3 TEMRA cells in PWH and the selection of
HIV-resistant CD4+ T cells

Despite their remarkable resistance to CCR5 (R5)-tropic HIV-1

infection, TEMRA cells remain highly susceptible to CXCR4 (X4)-

tropic HIV-1 infection (70). It helps to understand how these

individuals may sustain long-term life despite chronically low CD4+
Frontiers in Immunology 05
T-cell numbers because R5-tropic virus resistance in TEMRA cells

begins after viral entrance but before early viral reverse transcription. In

a subgroup of HIV-infected people, a substantial positive connection

between the percentage of TEMRA cells and CD4+T cell counts has

also been discovered (70). Based on these findings, the development of

new anti-HIV-1 treatment approaches might be aided by selecting an

HIV-1-resistant CD4+T cell population.

2.3.4 The changes in TEMRA cells during
antiretroviral therapy

A latent viral reservoir, predominantly in CD4+ T cells, is the

main reason antiretroviral therapy fails to eliminate HIV-1 in

infected individuals. The majority of those treated for acute or

early HIV-1 infection and HIV-1 controllers have smaller viral

reservoirs. People with 50 copies of HIV-DNA per 106 peripheral

blood mononuclear cells (PBMCs) were shown to have a reduced

percentage of CD8+ TEMRA cells in the absence of antiretroviral

treatment (87). In viraemic patients, the initiation of antiretroviral

therapy result in increased proportions of CD57- TEMRA cells (88).

During antiretroviral therapy, CD127– T cells were reduced

within the TEMRA subset (88). School-age children, teenagers, and

young adults in the virological failure (VF) group had more CD4+

TEMRA cells than those in the low-level viremia (LLV) and

virological suppression (VS) groups (89).

After antiretroviral therapy, HIV-1 DNA levels and cell

associated unspliced RNA (CA usRNA) levels were negatively

correlated with CD8+ CCL4-CCL5+ TEMRA cells (90). Among

antiretroviral therapy responders and controllers, there was a high

percentage of TEMRA cells in CD4+ T cells (91). Compared to

healthy controls, viral non-controllers (VNC) had a higher absolute
FIGURE 2

The features, functions, and regulations of TEMRA cells. The absence of CD28 influences the cell cycle, particularly G1 by upregulating p16 and p21,
leading to replicative senescence. Additionally, the lack of CD28 contributes to the loss of hTERT and reduced telomerase activity. TEMRA cells
produce granzyme and perforin and exhibit high cytotoxicity. This process is regulated by T-bet, Eomes, and mTOR signaling. P38 MAPK signaling
participates in the SA-Gal-driven SASP. hTERT, human telomerase reverse transcriptase; SASP, senescence-associated secretory phenotype; TEMRA
cells, terminal effector memory T cells re-expressing CD45 RA; SA-bGal, senescence-associated b-galactosidase.
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number of CD57+ TEMRA cells, but CD57–TEMRA cells

decreased after nine months of antiretroviral therapy (88), which

highlighted the importance of TEMRA cells in restraining HIV-1

virus reservoirs individuals undergoing antiretroviral therapy.

These results add to a small body of evidence that the increased

cytotoxic TEMRA cells have positive antiviral effects during HIV

infection and antiretroviral therapy.
3 Clinical treatment and
related applications

3.1 The changes in TEMRA cells under
different drugs

Maraviroc (MRV) is the first CCR5 antagonist that has been

approved for the treatment of HIV infection and serves as the
Frontiers in Immunology 06
initial antiretroviral Medications (ARVs)targeting an endogenous

chemokine receptor instead of HIV itself (92). In patients with R5

multi-resistant viruses, MRV demonstrates virological

effectiveness when combined with other ARVs (93). In PWH

receiving eight days of MRV monotherapy, there was a notable

rise in CD8+TEMRA cells and a decrease in CD4+TEMRA cells

(94). The opposite effect observed in the CD4+TEMRA cells and

CD8+ TEMRA cells is likely due to the blockade of CCR5. CCR5 is

a receptor expressed on the surface of CD4 +T cells and is involved

in various functions, including activation, migration, and survival

(95). CCR5 acts as a co-receptor for certain strains of HIV-1,

allowing the virus to enter and infect CD4 T cells (96, 97). In

addition to its role in viral entry, CCR5 is also involved in the

activation of CD4 T cells, promoting their proliferation and

cytokine production (98). Further research is needed to

investigate this topic. Dasatinib, a tyrosine kinase inhibitor

primarily used for the treatment of chronic myeloid leukemia

(CML), has been found to have an impact on HIV-1 production in

vitro. Several studies have demonstrated that dasatinib can

significantly block HIV-1 production in HIV-1-infected primary

CD4 +T cells (99–101). Dasatinib hinders TCR-mediated

activation of CD4+ T cells and obstructs the integration and

reactivation of HIV-1 provirus (101). Additionally, dasatinib can

preserve its antiviral function by inhibiting the phosphorylation of

SAMHD1 at T592, thus having a crucial role in limiting HIV-1

replication in CD4+ T cells (102). Dasatinib also inhibits IL-2- and

IL-7-induced proliferation of CD4+ T cells (103). In PWH

receiving antiretroviral therapy and dasatinib, treatment with

dasatinib resulted in an average 3.3-fold decrease in the

proportion of CD4+ TEMRA cells compared to those receiving

solely antiretroviral therapy (104). These findings underscore the

significance of CD8+ TEMRA cells in limiting the reservoir in

PWH undergoing antiretroviral therapy.
3.2 TEMRA cells’ roles in
complications of HIV

PWH are prone to develop various comorbidities resulting

f rom immune defic i ency , such as Type 2 d iabe t es ,

neurotuberculosis, and sporadic inclusion body myositis

(sIBM). Even though PWH may live for decades on effective

antiretroviral medication, this success is offset by the population’s

rising burden of metabolic illnesses (105–107). A longitudinal

study carried out from 2005 to 2007 revealed a correlation

between an elevated presence of CD4+TEMRA cells in

peripheral blood mononuclear cells (PBMC) and the onset of

diabetes in PWH (108). Furthermore, subcutaneous adipose

tissue (SAT) of PWH is also enriched with CD4+ TEMRA cells,

exhibiting higher CD69 expression and co-expressing CD57,

CX3CR1, and GPR56 associated with increased glucose

intolerance. The CX3CR1 and GPR56 markers’ expression

raises the possibility that TEMRA cells have antiviral selectivity.

The adipose tissue of PWH could potentially serve as a significant

source of inflammation in the presence of antigen stimulation
TABLE 2 Summary of the significant TEMRA subsets, their
characteristics and significance.

Subsets of
TEMRA
cells

Features Potential sig-
nificance and
related factors

ART
treated
or
untreated

CD8+ TEMRA
cells

Cytotoxic, long
half-life

Accumulate more
frequently in persons
with controlled HIV-1
infection

untreated

PD1+ CD8
+TEMRA cells

Negative
regulator of T-
cell activity

Related to CD31
expression on memory
CD8+ T cells during
HIV-1 infection

untreated

PD-L1+ CD4
+TEMRA cells

Negative
regulator of T-
cell activity

Accumulate in the
aviraemic HIV-1+
group, affect T cell
functionality,
especially the specific
ability to generate
responses against
HIV-1

treated

CD57+ CD8
+TEMRA cells

Cytotoxic
(terminally
differentiated
feature) and
poorly
proliferative
(replicative
senescent)

Correlated with viral
suppression during
HIV infection

treated

EOMEShighCD57
+CD8+ TEMRA
cells

Cytotoxic,
preserve
proliferative
capacity and
interleukin 7
(IL-7) receptor
expression

Correlated with viral
control during chronic
HIV infection

untreated

TEMRA Vd(2)
gd T cells

Mostly CD4-
and resistant
to HIV
infection

Explain the
dysfunction of Vd(2)
gd T cells during acute
and fast progressive
HIV infection

both
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(109). This collection of virus-specific cells may contribute to

adipose tissue inflammation and perhaps increase the

susceptibility to developing illnesses in PWH. To determine

how these cells, affect adipocytes, however, further research is

required. One of the most prevalent HIV-associated

opportunistic illnesses of the central nervous system in India is

neurotuberculosis . HIV-TB coinfection influences the

frequencies and phenotypes of CD4+ TEMRA cells and CD8+

TEMRA cells. In addition, there is a higher frequency of activated

CD8+ TEMRA cells than CD4+TEMRA cells (110). sIBM has

been identified as a complication of HIV/AIDS since the early

days of the HIV/AIDS pandemic (111, 112). The presence of

TEMRA cells is a characteristic feature of sIBM in HIV+ patients,

although it is not a prerequisite for the development of

IBM (113).
BOX 1: Future applications of TEMRA cells.

1. As combination therapy or adjuvant therapy in ART.
2. Applied to the treatment of HIV comorbidities by elimating TEMRA

cells.
3. For the development of related vaccines.
4. Treatment for improving HIV drug resistance.
5. Applied to the early diagnosis of related immunodeficiency

population.
3.3 Immunosenescence and TEMRA cells in
CMV coinfection populations

In populations infected with HIV, CMV) coinfection is quite

common, CMV-specific CD8+TEMRA cells typically outnumber

HIV-specific T cells (114). In CMV-HIV coinfection patients, the

inflated CMV epitope–specific CD4+ TEMRA could potentially

contribute to the higher T cell activation (115). CMV contributes to

the accelerated bone loss observed in HIV disease through the

proinflammatory secretory profile of CD8+ TEMRA cells (116).

Moreover, CMV contributes to cardiovascular pathologies observed

in HIV. Independent associations have been observed between

CMV-specific T-cell responses (including TEMRA cells) and

carotid intima-media thickness (117). T-cell senescence and CMV

seropositivity have been identified as predictors of cardiovascular

mortality, including death from myocardial infarction and stroke

(118). In CMV-positive patients experiencing myocardial ischemia

and reperfusion, there is a rapid loss of CD8+ TEMRA cells,

potentially due to PD-1 dependent programmed cell death

(119).Therefore, CMV and HIV may collectively contribute to

immunosenescence, with CMV potentially exerting a more

pronounced impact than HIV (120). Clinically, age-related

diseases including cardiovascular disease and bone loss may get

much worse as people age, which is indicative of an expedited

progression of immunosenescence in chronic HIV infection.

Chronic infection with CMV contributes to the accumulation of

TEMRA cells (44). CMV infection is the most common congenital

infection. Recent some case reports and a small observational study

show that high-dose valacyclovir may be a safe and effective

preventive measure for congenital CMV (cCMV) among women

with primary CMV infection in the first trimester of pregnancy

(121).While prophylactic CMV immunization during infancy may

be a viable strategy, It is highly unlikely that prophylactic

vaccinations against CMV and HIV-1 will be developed anytime

soon. There is a link between CMV and the human immune system,

demanding a careful cost-benefit analysis to prevent CMV infection

(122). In addition, anti-CMV viral medications usually reduce

antigenic burden only when severe immunosuppression is
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present, such as in organ transplant recipients or individuals in

advanced stages of HIV disease (123, 124).
3.4 Role of immunosenescence and
TEMRA cells in treatments and
vaccines of HIV

The buildup of CD8+ TEMRA cells, which show symptoms of

replicative senescence, is a hallmark of both immunosenescence and

HIV infection. Despite the positive antiviral effects of TEMRA cells,

reduced numbers of these cells might lessen some of the negative

clinical effects that go along with them and reduce chronic

inflammation caused by TEMRA cells ’ release of pro-

inflammatory cytokines (124). Firstly, for the homeostatic

expansion of more functional cells, it may be helpful to explore

physical methods to eliminate TEMRA cells from circulation or

induce apoptosis in these cells (125). As an alternative to lowering

the antigenic load, CD28 or telomerase gene therapy may prevent

replicative senescence and improve the activity of virus specific CD8

T cells. When CMV- or HIV-specific CD8+ TEMRA cells with

intact CD28 signaling molecules were reintroduced, restoring IL-2

production and proliferative response to antigens (126). Boosting

telomerase activity presents a potential strategy for preventing or

delaying T lymphocyte senescence. It has been discovered that

hTERT promotes enhanced proliferation, telomere length stability,

and sustained antiviral action in virus-specific CD8 T cells (127).

In elderly individuals, vaccine responses might be indirectly

influenced by the expansion of ‘senescence’ memory cell

populations. The growing proportions of these cells within the T

lymphocyte pool imply a constrained “immunological space” for

the naïve repertoire, potentially contributing to the diminished

response of older adults to neoantigens in vaccines (125).

Nonetheless, prior research has provided evidence that the

modified vaccinia Ankara-based (MVA-B) vaccine elicits targeted

immune responses against the vector, partly facilitated by TEMRA

cells, specifically CD8+ TEMRA cells. These responses demonstrate

robust polyfunctionality and persist even after administering the

third dose of MVA-B (128). These findings have significant

implications for HIV-1 immunology and the broader domain of

HIV-1 vaccine development.

According to the current research results, we predict the

strategy and applicable direction of TEMRA for HIV treatment

(Box 1).
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4 Discussion

HIV and antiretroviral therapy contribute to the acceleration of

immunosenescence by inducing mitochondrial dysfunction (129,

130).These age-associated immune responses further exacerbate the

inflammatory state through the expansion of TEMRA cells, and this

terminally differentiated subset displays a high cytotoxic and

proinflammatory phenotype. CD28 is a critical marker for

TEMRA cells, exerting influence over replicative senescence by

regulating the cell cycle and hTERT. To produce effective

antiviral responses, TEMRA cells are essential. They also aid in

the accelerated immunological senescence seen in PWH. Therefore,

we emphasize that TEMRA cells have both positive antiviral effects

and negative chronic inflammatory effects during HIV infection.

This expansion of TEMRA cells, specifically those expressing

exhaustion markers observed in PWH, suggests the involvement

of T cell-mediated immune responses in the immune senescence

observed during HIV-1 infection. Besides adaptive immune cells,

the inflammatory microenvironment of the innate cells may also

drives TEMRA cells towards senenscence non- specifically.

TEMRA cells persist in the memory T-cell pool due to their

resistance to apoptosis, gradually occupying the pool and thereby

restricting the repertoire of remaining T cells (131). This review

revealed that the exhaustion marker CD57 can influence the anti-

apoptotic properties of TEMRA cells. CD57-TEMRA cells exhibit a

longer half-life, declining until nine months after antiretroviral therapy

initiation. Conversely, CD57+TEMRA cells are more vulnerable to

activation-induced cell death upon antigen stimulation. The presence

of HIV (either as reservoirs or with detectable viral load) may induce

apoptosis in the CD57+TEMRA subset.

Furthermore, the expression of immune checkpoint markers on

TEMRA cells is correlated with viral suppression. The groundwork for

future research into the immunological profiles linked to viral

suppression is laid by the widespread recognition of these immune

checkpoint markers as signs of cellular fatigue. The expression of

immune checkpoint markers has been associated with T-cell

exhaustion in chronic diseases characterized by prolonged antigen

exposure, resulting in a progressive decline in effector functions (132).

CD4+ TEMRA cells are strongly linked to more severe immunological

suppression during HIV infection, whereas CD8+ TEMRA cells exhibit

robust antiviral activity. Despite our identification of the accumulation

and phenotypic alterations of TEMRA cells during antiretroviral

therapy and specific drug therapies, additional research is necessary

to ascertain the specific subsets of TEMRA cells contributing to the

suppression of viral replication. Additionally, the discrepancies in

TEMRA cell markers and protein levels still require clarification.

Among PWH, the diverse behaviors exhibited by TEMRA cells at

various stages of differentiation may have significant implications for

future treatment strategies. Specific drugs, like MRV, might have

distinct effects on TEMRA cells, resulting from the blockade of the

CCR5 receptor. Consequently, more extensive research is needed to

examine this subject in greater detail.

We believe that these alterations in TEMRA cells, which result

from comorbidities of HIV infection, are specific to certain organs. Due

to the modified immune status caused by HIV infection, along with

notable clinical distinctions like an earlier onset of illness and
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potentially accelerated disease progression, it is advisable to classify

patients with varying HIV comorbidities into subgroups for future

investigations. These differences in cytotoxic TEMRA cell

differentiation stages may be relevant for potential novel therapeutic

strategies. Long-term chronic exposure to CMV plays a significant part

in accelerated immunosenescence, which is defined by replicative

senescence-related traits, notably the increase of CD8+ TEMRA cells.

Reactivation of CMV can also lead to severe complications. Regardless

of the underlying causes for the increase of TEMRA cells in PWH,

lowering the percentage of these cells may lessen many of the negative

clinical outcomes and lessen the severity of age-related pathologies.

Further investigation is needed to explore strategies for delaying the

generation of senescent CD8+ TEMRA cells. Researchers working on

vaccine development have a big difficulty because of the aging immune

system. Yet, new vaccine trials to induce antibodies and T-cell

immunity have already been initiated, and the results will be revealed

in the upcoming years.

In conclusion, the research on TEMRA cells and the exploration

of immune senescence may to provide new treatment ideas and

research directions for immunodeficiency patients and PWH. The

application of related combination therapy and the research and

development of vaccines also have huge medical market value. We

believe that with the development of technology and in-depth

research in related fields, we can eventually treat and prolong the

survival of PWH through various means such as drugs or vaccines.

Author contributions

LG:Writing – original draft. XL: Writing – review & editing. XS:

Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

All the authors acknowledge and thank their respective Institutes

and Universities. Figure support was provided by Figdraw.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1284293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1284293
References
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