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As a major product of glycolysis and a vital signaling molecule, many studies have

reported the key role of lactate in tumor progression and cell fate determination.

Lactylation is a newly discovered post-translational modification induced by

lactate. On the one hand, lactylation introduced a new era of lactate metabolism

in the tumor microenvironment (TME), and on the other hand, it provided a key

breakthrough point for elucidation of the interaction between tumor metabolic

reprogramming and epigenetic modification. Studies have shown that the

lactylation of tumor cells, tumor stem cells and tumor-infiltrating immune cells

in TME can participate in the development of cancer through downstream

transcriptional regulation, and is a potential and promising tumor treatment

target. This review summarized the discovery and effects of lactylation, as well as

recent research on histone lactylation regulating cancer progression through

reshaping TME.We also focused on new strategies to enhance anti-tumor effects

via targeting lactylation. Finally, we discussed the limitations of existing studies

and proposed new perspectives for future research in order to further explore

lactylation targets. It may provide a new way and direction to improve

tumor prognosis.

KEYWORDS

lactylation, tumormicroenvironment, immune cells, cancer therapy, epigeneticmodification
1 Introduction

It is well known that the occurrence of aerobic glycolysis is due to the greatly increased

demand for ATP in proliferating cells such as tumor cells, and as a result, the concentration

of lactate is significantly increased (1). As an important product of glycolysis, lactate has

been previously considered as a metabolic waste without any biological function, but in

recent years, lactate has attracted wide attention as a multifunctional signaling molecule in

many pathophysiological processes such as inflammation and cancer (2, 3). Lactate

accumulation in the tissue microenvironment is a prominent feature of inflammatory

disorders and cancers, and can participate in disease progression by regulating

inflammation response and tumor immune escape (4). Lactate has been reported to
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inhibit YAP and NF-kB activation as well as its downstream

production of TNF-a and IL-6 via GPR81-mediated signaling

pathways, thereby inhibiting the pro-inflammatory response of

macrophages to LPS stimulation (5). In tumor progression, lactate

can also promote tumor invasion by regulating basement

membrane remodeling (BM) and epithelial-mesenchymal

transition (EMT) through signaling cascade activation of

cytokines and related pathways (6–8). In addition, some studies

have claimed that high concentrations of lactate accumulated in the

TME can inhibit the secretion of pro-inflammatory cytokines by

cytotoxic T lymphocyte (CTL), cause T cell dysfunction, and induce

immunosuppression (9, 10). Meanwhile, tumor-associated

macrophage (TAM) polarization driven by lactate is also a key

mechanism of immune escape in malignant tumors (11).

In addition to being a key metabolite linking glycolysis and

oxidative phosphorylation, lactate also has non-metabolic activity

(12). The recent discovery of histone lactylation modification is an

important milestone in lactate research (4). The histone lysine

lactylation driven by lactate is a novel epigenetic mark, which can

translate cellular metabolic signals into transcriptional regulation,

help cells adapt to complex new environments, and play a main

character in immune regulation and maintenance of biological

balance (13). A number of previous studies have demonstrated

that TME metabolic reprogramming can reshape epigenetic

modifications, and many metabolites can be used as substrates for

post-translational modifications (PTMs) to cause epigenetic

changes during this process. For example, classical metabolites

acetyl-CoA and S-adenosyl-methionine can be used by

acetyltransferase and methyltransferase for lysine acetylation and

lysine methylation modification, respectively (14, 15), and thus

participate in the occurrence and development of tumors (2, 16–

19). The acetylation readers BRD4 in tumor tissues can stabilize

Snail through acetylation modification to promote the progression

and metastasis of gastric cancer, and its abundance is associated

with shorter survival of patients without metastatic (20). The

enrichment of histone acetyltransferase KAT7 in FOXO1 and

FOXO3a promoters can also induce changes in the expression of

downstream target genes, thereby inhibiting the proliferation and

invasion of gastric cancer cells (21). It has also been reported that

the succinyl-Coenzyme A (CoA) synthetase ADP forming subunit b
(SUCLA2)-coupled regulation of GLS succinylation and activity

counteracts oxidative stress in tumor cells (22). Lactate and the

acidification of TME are key processes that promote carcinogenesis

(23). Protein lactylation not only opens up a new field for the study

of protein PTMs, but also points out a new direction for the study of

lactate in tumor immunity or other areas (24). Since the first

identification and discovery in 2019, relevant studies on histone

lysine lactylation developed rapidly in the following four years, and

further studies have confirmed that lactate can promote M2

macrophages polarization through lactylation of histone lysine,

thus inhibiting immune response in the TME (25). This

achievement provided a new perspective for targeting lactate

metabolism to inhibit cancer progression and opened up a more

promising new idea for future tumor treatment and drug

targets exploration.
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The TME contains a variety of cell types, which can provide a

great metabolic environment for lactylation (26, 27). However, the

interaction between metabolic reprogramming, histone lactylation

and immunosuppression in the TME, including tumor cells,

immune cells and stromal cells, is still not fully understood.

Further elucidation of the association between the above elements

is necessary and urgent for the discovery of new and effective cancer

treatments. In this paper, we reviewed the recent literature on the

involvement of histone lysine lactylation in tumor progression and

summarized the potential targets of lactylation modification as well

as new achievements in the combined treatments of cancer. Finally,

we proposed that the combined strategy of inhibiting the

production, transport and signal transduction of lactate with

cancer therapy is promising.
2 Lactylation: The “New Favorite” in
Epigenetic Modification

2.1 Discovery process of lactylation

As mentioned in previous studies, lactate is an important

product of Warburg effect and can perform non-metabolic

functions as a signal molecule (23). This hydroxy-carboxylic acid

includes two stereoisomers, named L-lactate acid and D-lactate

(28), among which L-lactic acid is the main physiological

enantiomer and most current studies on its functions all focus

on L-lactate (29). So, in this article, all lactate and its associated

epigenetic modification refers to L-lactate unless otherwise noted.

As is known to all, histone acetylation depends on the transfer of

acetyl-CoA to histone lysine residues by acetyltransferase (30), and

similarly, lactate can also be added to histone lysine residues as an

epigenetic substrate for histone lactylation modification (25, 31).

In 2019, Zhao Y et al. analyzed the core histones of human MCF-7

cells digested by trypsin through HPLC-MS/MS and detected the

presence of lysine lactylation (Kla) for the first time. Meanwhile,

isotope experiments demonstrated that L-lactate CoA, the

activated form of L-lactate, is an important substrate for this

new PTMs. They also identified 26 and 16 Kla sites in the core

histones of human cervical cancer cell line HeLa and mouse bone

marrow-derived macrophages (BMDM), respectively. Further,

they found that the expression of Arginase 1 (Arg1) in

macrophage challenged by bacterial shows a time-dependent

change, which was mediated by a “lactate clock”. This suggests

that Arg1 expression is regulated by lactylation modification (25).

These findings are undoubtedly groundbreaking in that they

suggest a new approach to re-examine the role of excess lactate

in the TME, to redefine the association between metabolic

reprogramming and epigenetic modifications, and, more

importantly, to re-explore the impact of lactylation in lactate-

mediated carcinogenesis. Since then, histone lysine lactylation has

quickly stepped into the ranks of research hotspots and has

become a hot topic in the field of cancer, so what is the

lactylation process and what effectors are needed?
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2.2 Mechanism of lactylation and its
effectors: writers and erasers

It has been reported that the greater susceptibility of histone

lysine to lactylation modification is determined by the hydrophilic

position of lysine and special role of its ϵ-amino group, which

means that the accessibility and reactivity of lysine residues make it

prone to PTMs (32). Although the Nature article published by Zhao

Y et al. in 2019 has found histone lysine lactylation modifications in

HeLa cells and BMDM and identified a different number of

lactylation sites including H3, H4, H2A and H2B. However, the

lactylation sites of histones vary among different species and

lactylation modifications may also occur in non-histones (33–36).

In conclusion, as a new type of PTM, our understanding of the

lactylation modification sites, process and reaction kinetics is still

limited (37, 38). Protein acylation is an evolutionally-conserved and

reversible PTM (39), and currently, based on the generality of lysine

acylation and biochemical analysis of other acylation reactions (27),

we have known that those involved in lactylation modification

include specific lactylases (Writers), de-lactylases (Erasers), and

lactylation recognition enzymes (Readers), which perform the

functions of adding lactate CoA to or removing it from histones,

and recognizing lactylation modifications, respectively. It has been

reported that from a non-PTM perspective, p300 is a transcriptional

co-activator that can activate oncogene transcription, promote

tumor cell growth, regulate immune function, etc. (40–43), and in

recent years, p300 has also been found to be a classic

acetyltransferase. It catalyzes plentiful types of protein

modification and plays an important role in the progression of

many malignant tumors such as hepatocellular carcinoma (HCC),

esophageal carcinoma, and cutaneous squamous cell carcinoma

(44–47). In 2019, Zhao Y et al. demonstrated for the first time that

overexpression or interference with p300 in HEK293T cells can

increase or decrease the level of histone lactylation by using

overexpression and knockdown experiments, indicating that p300

can play a catalytic function of histone lactylation as acylase.

Further, cell-free recombinant chromatin template histone

modification and transcription experiments were conducted, and

they demonstrated a p53-dependent, p300-driven mechanism for

the biogenesis of histone lactylation (25). In 2021, Liu G et al. also

demonstrated that both lactylation levels and pro-fibrotic gene

expression were downregulated in p300 knockdown macrophages

(48). Similarly, Li C et al. found that interfering with the expression

of p300/CBP (CREB-binding protein) or inhibiting p300 using

C646 resulted in reduced levels of the high mobility group

protein B-1 (HMGB1) lactylation (49). CCS1477 is a promising

treatment for hematologic malignancies and advanced drug-

resistant prostate cancer, as well as the only CBP/p300 inhibitor

currently in Phase IB/IIA clinical trials (50). Moreover, studies have

prepared site-specific ϵ-n-l-lactylation recombinant proteins using

the genetic encoding of ϵ-n-l-lactoyl lysine in bacterial and

mammalian cells and constructed fluorescent and luminescent

probes for the detection of lactylases in living cells (51). The

above studies all indicate that p300/CBP is a potential Writer for

histone lactylation, which can co-regulate the occurrence of
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lactylation modification. The discovery of lactylation expands the

classical idea of research on the carcinogenic mechanism of p300/

CBP and provides a new potential therapeutic target for targeting

lactylation. However, at present, no more lactylase has been found

and the specific molecular mechanism of how p300/CBP functions

as a “writer” has not been reported in detail.

Similarly, based on the knowledge of other de-acylases, Zhao Y

et al. again published in 2022, where they screened in vitro for the

de-lactylases HDAC1-3 and SIRT1-3 by systematically evaluating

the ability of zinc- and nicotinamide adenine dinucleotide-

dependent histone deacetylases (HDACs) to cleave ϵ-n-l-alanine.
Among them, HDAC1-3 not only showed strong de-lactylase

activity for L-lactate but also functioned for D-lactate and a

variety of short-chain acyl modifications. Using cel l

overexpression and knockdown experiments, they further

confirmed the specific de-lactylase activity of HDACs 1 and 3

rather than HDAC2 (4), while in June of the same year, Zessin

et al. found that many HDAC isomers such as HDAC6 and 8 are

also potential de-lactylase, but their enzymatic activity is far less

than that of HDAC3 as the activity of HDAC3 is even thousands of

times higher than that of SIRT2 (52). Since then, studies have begun

to pay attention to the role of de-lactylases in tumor progression. It

has been confirmed that SIRT2 can act as a histone lactylation

eraser to inhibit proliferation and migration of neuroblastoma cells

(53), and that SIRT3-dependent delactylation of cell cycle protein

E2 can prevent the growth of HCC (54). In summary, these data

suggested that histone delactylation is accomplished by effector

enzymes, many deacetylases have the function of delactylase, but

the specific molecular mechanism is still poorly understood.
3 TME lactylation and cancer
development

It is well known that the metabolism of tumor cells “favors” the

Warburg effect compared to normal cells, thus accumulating higher

levels of lactate in the TME, which is a key tumor phenotype (55,

56). A microenvironment with high lactate levels is an important

underlying condition for lactylation (27), which means that the level

of lactylation modifications in the entire TME, including tumor

parenchymal cells, stromal cells and even immune cells, may be

greatly increased. Overall, the discovery of histone lactylation

provided a new perspective to explore the role and mechanism of

lactate metabolism in tumor progression, and many unknown

lactylation-related mechanisms may be involved in cancer

development. Now, more and more studies are unraveling the

mystery of how histone lactylation regulating tumor progression

step by step.
3.1 Lactylation of tumor cells in TME

As a mainstay of the TME, tumor cell histone lactylation

modification have received extensive attention for regulating
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1284344
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2023.1284344
cellular metabolism through mediating gene expression and thus

participating in cancer progression.

3.1.1 Lactylation of tumor cells and tumor
progression

Ma Y et al. has reported the effects of lactate on non-small cell

lung cancer (NSCLC) metabolism and confirmed that lactate

dehydrogenase (LDH) upregulation was associated with poor

prognosis in NSCLC, and that lactate regulated the expression of

the glycolytic enzyme HK-1 and the TCA cycle enzyme IDH3G.

Chromatin immunoprecipitation results showed increased histone

lactylation of HK-1 and IDH3G promoters (57). These results

suggests that in NSCLC, lactate regulates cellular metabolism at

least in part through histone lactylation-mediated gene expression

(Figure 1). However, this study did not elucidate the specific

mechanisms by which lactylation modification affect NSCLC. The

latest study used liquid chromatography-tandem mass

spectrometry (LC-MS/MS) to globally analyze lactylation in

human lung under normal physiological conditions. After

comparison, 141 proteins that modified by lactylation were finally

identified. This work expands the human lactylation database and

helps to advance the study of lactylation function and its

mechanisms under physiological and pathological conditions (58).

In addition, Jia R et al. found that histone lactylation levels are

elevated in ocular melanoma and associated with poor prognosis

(Table 1). Mechanistically, they demonstrated that histone

lactylation accelerates ocular melanoma progression by promoting

the expression of the m6A reading protein YTHDF2, which
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recognizes m6A-modified PER1 and TP53 mRNAs and promotes

their degradation (59), this study bridges the gap between histone

modifications and RNA modifications, providing a new

understanding of epigenetic regulation in tumorigenesis

development. To regulate lactate homeostasis inside and outside

the cell, the monocarboxylate transporter proteins MCT1 and

MCT4 are responsible for importing and exporting lactate into

and out of the cell, respectively (66). It has been claimed that

MCT1-mediated elevation of lactate can stimulate hyaluronan

(HA)-binding protein KIAA1199 signaling via enhancing HIF1a
lactylation, thereby triggering the pro-angiogenic role of KIAA1199

in prostate cancer and laying the groundwork for the exploration of

new therapeutic targets (67). Another study has confirmed that

clear cell renal cell carcinoma (ccRCC) patients with high levels of

histone lactylation modification have a poor prognosis. Kla can

promote ccRCC progression by activating PDGFRb transcription,

and conversely, PDGFRb signaling also stimulates histone

lactylation. Targeting histone lactylation can inhibit the growth

and metastasis of ccRCC in vivo. This study suggests that the

positive feedback pathway of histone lactylation is a potential

target for the treatment of ccRCC (60). It has also been shown

that histone lactylation modification promotes the proliferation of

BRAF-mutated interstitial thyroid cancer (ATC) (13), and

mechanistically, the oncogene BRAFV600E increases glycolytic

flux and reorganizes the cellular lactylation landscape, leading to

H4K12 lactylation-driven gene transcription and cell cycle

dysregulation, causing ATC deterioration. Combined lactylation

antibody with BRAFV600E inhibitors can effectively curb ATC
FIGURE 1

Lactate acts as a signaling molecule to affect gene transcription and immune evasion via histones and non-histone lysine lactylation and participate
in cancer progression. Lactylation on HIF1a promotes KIAA1199 expression and prostate cancer progression. Lactylation upregulates MYCN and
ASCL2 expression and thus promotes drug resistance. Increased H4K12 lactylation level causes cell cycle deregulation and ATC progression. Lactate
promotes the upregulation of METTL3 in TIMs via inducing lactylation of H3K18 and colon cancer progression. Lactylation of lysine at position K28
of AK2 protein promotes HCC deterioration. H3K18 lactylation promotes YTHDF2 expression and thus promoting P53 and PER1 degradation.
Histone lactylation in macrophages promotes a shift to the immunosuppressive M2 macrophage phenotype. Lactylation of K183 directly occur in
transcription factor YY1, which promotes FGF2 expression and proliferative retinopathy progression. Lactylation promotes IDH3G expression and
NSCLC. Histone lactylation on LINC0052 promoter promotes CRC progression. H3K18 lactylation promotes PDGFRb expression and ccRCC
progression. Lactylation of lysine at position K72 of MOESIN protein improves the interaction of MOESIN with TGF-b receptor I and regulates
effector Tregs generation. Abbreviation: Kla, histone lysine lactylation; GLUT1, glucose transporter type 1; MCT1/4, monocarboxylate transporter 1/4;
ATC, Anaplastic thyroid cancer; METTL3, m6A methyltransferase-like 3; AK2, adenylate kinase 2; YTHDF2, YTH Domain Family Protein 2; ccRCC,
clear cell renal cell carcinoma; NSCLC, non-small cell lung cancer.
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progression, it means that the metabolic-epigenetic axis is a new

option for combination therapy.

The roles of histone lactylation modifications in digestive

tumors, including stomach, intestine and liver, have also been

widely reported. It was found that Kla levels were significantly

higher in gastric tumors tissues than in adjacent tissues and that

high levels of Kla were associated with poor prognosis in gastric

cancer (GC). In this study, a comprehensive lactylome analysis was

performed for the first time in gastric cancer AGS cells and 2375 Kla

sites were obtained. Meanwhile, KEGG pathway analysis showed

that these proteins were significantly enriched in spliceosome

function (68). It has also reported that six prognostic gene models

associated with lactylation in GC tissues were constructed using

GSEA, TCGA and GEO database. Lactylation score was performed

by immune cell infiltration and genetic instability levels, and it was

found that lactylation score was strongly correlated with overall GC

survival and progression. GC patients with high lactylation score

had higher immune dysfunction, rejection, and lower response to

immune checkpoint inhibitors (ICIs) (69). These results suggest

that Kla may be a prognostic marker and potential therapeutic

target for GC to predict malignant progression and immune evasion

and to guide the therapeutic response of GC to ICIs. Hypoxia is one

of the most important features of TME and common initiators of

malignant progression in solid tumor tissues (70, 71). Researchers

found that hypoxia-induced glycolysis promotes b-catenin
lactylation, enhances stability and expression of b-catenin, thus
exacerbating the malignant proliferation of colon rectal cancer

(CRC) cells (72). Another study also proved that the decrease in
Frontiers in Immunology 05
histone lactylation level and expression of macrophage migration

inhibitory factor (MIF) promoted M1 macrophage polarization and

inhibited M2 polarization, thereby inhibiting CRC progression and

metastasis (73). Further, Liu X et al. identified histone lactylation on

lncRNA (74). They demonstrated that bacterial-derived

lipopolysaccharide (LPS) could promote CRC invasion and

migration by increasing the level of LINC00152 promoter histone

lactylation and decreasing its binding efficiency to transcription

factor YY1, thus upregulating LINC00152 expression and

promoting CRC invasion and migration. This provides new

insights into host epigenetics when human diseases were

challenged by intestinal bacteria. Overall, these results imply that

targeting lactylation may be beneficial for effective control of CRC.

HCC is the most common type of primary liver cancer (75). In

order to further explore the impact of lactylation on HCC

progression, Gao Q et al. prospectively collected hepatitis B virus-

associated HCC samples and performed comprehensive lactylation

profiling, which revealed that Kla preferentially affects enzymes

involved in metabolic pathways and further confirmed that K28

lactylation promotes HCC cell proliferation and metastasis by

inhibiting the function of adenylate kinase 2 (AK2). This reveals a

lactylation-dependent mechanism of metabolic adaptation in HCC

(61). Using TCGA database, 8 prognostically differentially

expressed lactylation-related genes and their characteristics have

been identified and elucidated, as well as their correlation with

immune pathways, therapeutic responsiveness, and characteristic

gene mutations. These demonstrates the powerful predictive

efficiency of lactylation-related models in HCC and suggests that
TABLE 1 Lactylation modification sites and functions in different cells.

Cells Lactylation site Function Reference

ATC cells H4K12 Gene transcription and cell cycle dysregulation and ATC deterioration (13)

MCF-7 H3K9,18,23,27,56,122 H4K5,8,12,31,77,91 N/A (25)

BMDM H3K14,18,23,27,56 Tumor cell proliferation (25)

LLC1 H3K18 N/A (25)

B16F10 H3K18 N/A (25)

HEK293T H3K18 N/A (25)

HCT116 H3K18 N/A (25)

HeLa H3K9,18,23,27,79
H4K5,8,12,16,31,77,91

H2AK11,13,115
H2BK5,11,15,16,20,23,43,85,108,116,120

N/A (25)

Ocular melanoma cells H3K18 PER1 and TP53 mRNAs degradation and ocular melanoma progression (59)

ccRCC cells H3K18 PDGFRb transcription activation and ccRCC progression (60)

HCC cells K28; H3K18 AK2 inhibition and HCC proliferation; N/A (25, 61)

LCSCs H3K9, H3K56 HCC proliferation (62)

Microglia K183 Increased expression of FGF2 and Proliferative Retinopathy progression (63)

TIMs H3K18 METTL3 upregulation and CRC promotion (64)

Tregs K72 Enhancing TGF-b signaling, efficient Tregs production and HCC progression (65)
ATC, Anaplastic thyroid cancer; BMDM, Bone marrow derived macrophage; ccRCC, clear cell renal cell carcinoma; HCC, Hepatocellular carcinoma; LCSCs, Liver cancer stem cells; TIMs,
Tumor infiltrating myeloid cells; Tregs, Regulatory T cells. N/A, Not available.
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lactylation-related gene markers can be used as biomarkers for the

efficacy of HCC clinical treatments (76). HCC is often accompanied

by pulmonary metastasis, therefore, a clinical study investigated

lactylation proteomics for the first time in normal liver tissue, 3-

year metastasis-free HCC and HCC pulmonary metastasis samples,

respectively (75, 77). They detected 2045 modification sites on 960

proteins and found many differentially expressed Kla proteins

between different sample groups that may be potential factors

promoting HCC formation and metastasis. In addition, they also

confirmed that ubiquitin-specific peptidase 14 (USP14) and ATP-

binding cassette family 1 (ABCF1)-specific Kla sites are diagnostic

indicators of HCC and its metastasis. This result provides a reliable

basis for further studies on the role of Kla in metastatic HCC. As

described in the previous section, SIRT3 catalyzes the removal of

lactate-CoA from histone lysine residues (4). Wang Y et al. found

that non-histones can also act as substrates for SIRT3. Using

quantitative SILAC-based proteomics and crystallography studies,

they demonstrated that SIRT3 can wipe the K348 lactylation of cell

cycle proteins (CCNE2) in HCC cells, thereby inhibiting the

development of HCC. This reminds us that the activation of de-

lactylase may be a new direction to inhibit the HCC progression.

Liver cancer stem cells (LCSCs) can promote the growth of primary

tumor cells and metastasis of xenograft tumors (78). It may be

associated with tumor resistance to conventional therapies (79, 80),

and it has been reported that the triterpene antitumor compound

DML can inhibit tumorigenicity induced by LCSCs via inhibiting

lactylation of the histone H3K9 and K56 sites (62). This work

provides a new alternative option for the treatment of HCC from

the perspective of tumor stem cells lactylation modification.

3.1.2 Lactylation of tumor cells and tumor
therapy

It has also been reported that lactylation modification is widely

involved in regulating the efficacy of tumor therapy. It has been

elucidated that the mechanism of resistance to ADT/PI3K-AKT

blockade in PTEN-deficient mCRPC (metastatic Castration-

Resistant Prostate Cancer) is associated with the level of histone

lactylation in PD-1-expressing TAM (81). More precisely, reduced

lactate production in tumor cells inhibits histone lactylation within

TAM, leading to its anticancer phagocytosis activation, which is

further enhanced by ADT/aPD-1 treatment. This implies that

reversal of lactate, lactylation and PD-1-mediated TAM

immunosuppression is a novel metabolic-epigenetic-immune-

based therapeutic strategy. Cell plasticity and neuroendocrine

differentiation in prostate and lung adenocarcinoma are the main

causes of resistance to targeted therapies, He Y et al. have explored

how metabolic reprogramming promotes the fate transition from

adenocarcinoma to neuroendocrine cells (82). They demonstrated

that deletion of the Numb/Parkin pathway in prostate or lung

adenocarcinoma can lead to metabolic reprogramming and lactate

increase, subsequently causing upregulation of histone lactylation

and transcription of neuroendocrine-related genes. This suggested

that the metabolic switch is a promising therapeutic target by

regulating histone lactylation and thus cancer cell plasticity.
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All the studies reported above suggest us that as a tumor

marker, the negative role of lactate and histone lactylation

modification in tumor cells on cancer progression and treatment

should not be underestimated, which provides a new idea and basis

for targeting metabolic reprogramming to improve tumor

therapeutic efficacy. Interestingly, however, some findings are

contrary to these conclusions. Lucia et al. found that increased

lactate inhibited the progression of uveal melanoma (UM) (83), and

they demonstrated that this inhibition was achieved by increased

lactate-induced H3K18 lactylation modification, thereby leading to

increased UM cell homozygosity, nuclear enlargement and

cytostasis. Similarly, Liu J et al. found that Catalpol induced

apoptosis by modulating PTMs, with significant increases in

acetylation, 2-hydroxyisobutylation and lactylation while

decreases in succinylation, malondialdehyde and phosphorylation

in Catalpol-treated breast cancers, but the exact molecular

mechanism was not elucidated (84). This implied that the

function of lactylation may differ across cancers and that the

reasons for this contrasting effect may require detailed molecular

mechanisms to explain.
3.2 Immune cell lactylation and cancer
progression in TME

The “lactate metabolism coupling” implies that the lactate

metabolism present in TME is not involved in a single cell type,

and the high level of lactate affects not only tumor cells and tumor

stem cells in TME, but also a large number of infiltrating immune

cells. In view of this, lactylation modifications are by no means only

occurring in tumor cells (27, 85). As already mentioned earlier,

researchers have found that lactate produced by tumor cells induces

overexpression of vascular endothelial growth factor as well as M2-

like genes such as Arg1 in TAM, and that Arg1 expression in M2

macrophages is positively correlated with histone Kla levels (11, 25).

Whether the core metabolite lactate in TME regulates the

metabolism of intrinsic and adaptive immune cells to form

immunosuppression is mediated by lactylation modifications

needs to be further explored and elucidated (86).

In addition to detecting histone lactylation modifications in

human breast cancer cells for the first time, Zhao Y et al. also

detected histone lactylation in macrophages isolated from mouse

melanoma and lung tumors, and they observed that histone

lactylation levels positively correlated with the oncogenicity of M2

macrophages (25). These results suggest that the elevation of M2

macrophage histone lactylation may contribute to tumor formation

and progression. Microglia are resident macrophages in the CNS and

retina and have been reported to play an important role in

angiogenesis and vasculopathy (87–90). Researchers found that the

histone lactylation mediated by p300 and expression levels of

transcription factor YY1 in microglia were all increased, thus up

regulating the expression of FGF2 and promoting the formation of

retinal neovascularization. This implies that targeting lactylase p300,

YY1 lactylation, and FGF2 expression in macrophage may all provide
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new therapeutic targets for proliferative retinopathy (63). Tumor

infiltrating myeloid cells (TIMs) are an important cell population

involved in tumor immune escape, and their function is regulated by

multiple epigenetic mechanisms. In 2022, a study reported by

Wang Q et al. claimed that the increased expression of m6A

methyltransferase-like 3 (METTL3) in TIMs was associated with

poor prognosis in colon cancer patients, and mechanistically, they

found that the accumulated lactate in TME can promote the

upregulation of METTL3 in TIMs via inducing lactylation of

H3K18. More interestingly, two lactylation modification sites

identified in the zinc finger structural domain of METTL3 were

also critical for METTL3 to capture target RNAs (64). This

emphasizes the importance of lactylation-driven METTL3-

med i a t ed RNA m6A mod ifi c a t i on s f o r p romo t i n g

immunosuppression and tumor progression in TIMs. This novel

link between histone and RNA modifications provides a new

perspective on epigenetic regulation in carcinogenesis. As an

important player in tumor immunity, the relationship between T

cell lactylation and tumor progression has also received widespread

attention. As we all know, regulatory T cells (Treg) play a crucial role

in maintaining the immunosuppressive microenvironment. Studies

have shown that lactate can promote tumorigenesis by regulating

MOESIN lactylation, enhancing TGF-b signaling, thus inducing

efficient Tregs production. Furthermore, researchers also have

found that the combination of PD-1 monotherapy with lactate

dehydrogenase inhibitors has a stronger anti-tumor effect than

anti-PD-1 alone (65). This suggests that targeting lactylation

modification mediated Tregs production is a novel idea to enhance

anti-tumor immunity. A special cell population named FOXP3+

NKT-like cell has been identified in the “cold” TME of malignant

pleural effusion (MPE). Using single-cell RNA sequencing analysis,

they found that like Tregs cells, FOXP3+ NKT cells had elevated

levels of lactylation to maintain immunosuppressive functions, but

the exact molecular mechanisms were not elucidated. These results

reveal for the first time a link between metabolic features and

epigenetic modifications in FOXP3+ NKT cells, providing a new

idea to overcome immunosuppression (91).
4 Targeting lactylation is a new
strategy to improve tumor
therapy efficacy

Modulation of lactate production and transport is an important

strategy to improve tumor prognosis (3, 92, 93), and the discovery

of lactylation modifications has further suggested that targeting

lactylation is a new option to inhibit cancer progression and

enhance antitumor effects (94). Epigenetic acylation targeted

drugs have achieved remarkable success in clinical applications of

antitumor therapy, for example, several deacetylase inhibitors

including Vorinostat, Belinostat, and Panobinostat have been

approved by the FDA for the treatment of lymphoma and

myeloma (95–97). Targeting lactylation can start from the process

of lactate generation, transport or lactylation processes and its

effector proteins (98–102). Currently, researchers have identified
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several potent LDH inhibitors such as Oxamate for inhibiting

lactate production and lactylation modifications, thus blocking

the downstream of lactylation pathway, some of which have

entered phase I and phase II clinical trials (59, 103, 104). For

example, FX-11 is a selective inhibitor of LDHA that shows

antitumor activity in a mouse transplantation tumor model and is

a potential target for cancer therapy (105, 106). Gallflavin also

inhibits lactate production and proliferation in Burkitt lymphoma

cells by reducing LDHA activity (107). As mentioned in the

previous section, studies have shown that lactate can promote

tumor progression by regulating MOESIN lactylation in Tregs

cells, and inhibition of LDHA can significantly reduce lactylation

level and tumor load. Further, the authors found that the lactylation

modification level of MOESIN was lower in patients responding to

PD-1 monoclonal antibody treatment (108). This means that

lactylation modification may affect tumor immunotherapy

efficacy. Targeting the lactate transporter protein MCT-1/miR-

34a/IL-6/IL-6R signaling axis has also been reported to inhibit

epithelial mesenchymal transition, tumor stemness and M2

macrophage polarization in triple-negative breast cancer (109), in

addition, MCT1-targeted drug AZD3956 is currently in clinical

trials (NCT01791595). Of course, there are also studies to achieve

effective tumor control by targeting the inhibition of lactylatse

p300/CBP or modulating the lactylation “eraser” SIRT2 (27, 53).

Based on this, a dual-targeting strategy has been proposed to

combine targeted therapy or immunotherapy with lactate axis

targets and apply them in cancer treatment (110), but this

therapeutic concept relies on limited signaling transduction and is

still not the best choice for tumor treatment. Notably, there are

some potential challenges during the application of LDHA

inhibitors for cancer treatment. Blindly inhibiting LDHA activity

to block lactate production in tumor cells may produce some

unmanageable side effects, for example, pyruvate accumulation

can drive ECM remodeling by inducing collagen hydroxylation,

thus promoting metastatic growth in breast cancer (111). Lactate

production and activity play an important role in maintaining

cellular and biological functions as well as immune regulation,

therefore, the realization of the anti-cancer potential of LDHAmust

overcome the non-targeting effects associated with LDHA

blockade first.

Although there is increasing evidence of lactate as a therapeutic

target to inhibit cancer progression and restore tumor sensitivity to

treatment, it is still not completely clear whether its specific

mechanism is mediated by lactylation modification. At present,

most of the means targeting lactylation are still based on the

inhibition of lactate generation, transport, signal transduction,

and even blocking the glycolysis process. Therefore, to continue

to explore and identify the “Writers”, “Erasers” and “Readers” of

lactylation modification is the primary task to truly target

lactylation specifically and provide new targets for tumor therapy.
5 Discussion

Although many epigenetic modifications have been discovered,

lactylation may have more research value in the tumor
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microenvironment than acetylation and other modifications.

Lactylation modification is induced by the metabolite lactate. As

we all know, Warburg effect is an important metabolic feature of

tumors, and lactate, as an important product of glycolysis, is

significantly accumulated in the tumor microenvironment.

Therefore, lactylation which caused by lactate should be more

widely valued. The original intention of this paper is to review

the studies on the regulation of cancer progression and treatment by

immune cell lactylation modification in TME, and propose new

ideas on targeting immune cell lactylation or lactate generation to

improve immune suppression, regulate immune function, and

enhance anti-tumor immunity. However, there are still few

researches in this field. Most studies focus on the regulation of

biological functions through the lactylation modification of tumor

cells in TME, and in-depth studies on specific sites using mutation

experiments have not been reported. Even so, existing studies have

shown that improving immune cell function and reshaping the

immune environment by targeting histone lactylation of immune

cells is definitely a promising direction and field to help the

development of new drugs and improve the effect of cancer

therapy. This field is worth further exploration.

The interaction between metabolomics and epigenomics has

made great strides in recent decades (94). Lactate has been

transformed from a metabolic waste product into an important

signaling molecule that can remodel TME (16). The recent

discovery of lactylation induced by lactate has further explored

the tumor-promoting mechanisms of lactate production, recycling,

and utilization. Like other PTMs, lactylation can modify histones to

alter the spatial conformation of chromatin, affect DNA

accessibility, and regulate corresponding gene expression, which

constitutes an important bridge between epigenetic and metabolic

reprogramming (112). Many studies have reported that lactylation

modifications can participate in cancer progression and affect

therapeutic efficacy by regulating the physiological functions of

tumor cells, tumor stem cells, and immune cells in TME. It have

emerged as new targets for tumor therapy, but many questions

remain to be investigated, for example, distinguishing the

foundation of Zhao Y et al., some subsequent studies confirmed

that Kla modifications can also occur on non-histone proteins and

even non-coding RNAs of other organisms such as plants and

microorganisms (33–35, 49, 64, 113). Gaffney et al. later suggested

by mass spectrometry that D-lactylation modifications are also

widely present in cells, but there are some differences between the

two L-lactyl and D-lactyl forms of Kla, in substrate origin and

chirality, as well as in target protein and functional performance

(114). In addition, there is growing evidence that the interaction

between RNA m6A methylation and histone/DNA epigenetic

machinery determines transcriptional output (115), and as

mentioned earlier, Wang Q et al. confirmed that lactylation can

mediate upregulation of RNA m6A enzyme METTL3 expression

and thus promote CRC progression (64). It would be interesting to

further investigate how these non-lysine lactylation sites regulate

tumor cell or immune cell function in TME and the interactions

between various epigenetic modifications in TME.

Identification of Kla substrates and their exact sites is crucial to

unravel the molecular mechanisms of lactylation. Mass spectrometry
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is the basic but time-consuming and laborious method for identifying

PTM sites. During the exploration, researchers built the first Kla

benchmark dataset, developed an architectural approach based on a

small amount of learning, and designed the predictor FSL-Kla for Kla

site analysis (116). Other research also proposed a new computational

model Auto-Kla for fast and accurate prediction of Kla sites in GC

cells based on automatic machine learning (117). The cutting-edge

experimental tools such as big data analysis based on lactylome and

artificial intelligence machine learning will surely lead lactylation

research to new heights.

Although the interactions between histone lactylation,

metabolic reprogramming, and immunosuppression in TME are

beginning to be explored, further exploration and elucidation of

these associations are necessary and urgent for more effective cancer

therapy. At present, the relevant research on lactylation “readers” is

still a blank. Given the universality of lysine acylation modification,

there must be more types and functions of “writers”, “erasers” and

“readers” in lactylation modification waiting for further exploration,

which will provide new ideas and targets for improving cancer

treatment effect and tumor prognosis.
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