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Cannabinoids are a group of bioactive compounds abundantly present in

Cannabis sativa plant. The active components of cannabis with therapeutic

potential are known as cannabinoids. Cannabinoids are divided into three

groups: plant-derived cannabinoids (phytocannabinoids), endogenous

cannabinoids (endocannabinoids), and synthetic cannabinoids. These

compounds play a crucial role in the regulation various physiological

processes including the immune modulation by interacting with the

endocannabinoid system (A complex cell-signaling system). Cannabinoid

receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits

the attachment of anorexigenic proteins to hypothalamic neurons in mammals,

increasing food intake. Digestibility is unaffected by the presence of any

cannabinoids in hemp stubble. Endogenous cannabinoids are also important

for the peripheral control of lipid processing in adipose tissue, in addition to their

role in the hypothalamus regulation of food intake. Regardless of the kind of

synaptic connection or the length of the transmission, endocannabinoids play a

crucial role in inhibiting synaptic transmission through a number of mechanisms.

Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic

mechanisms. Useful effects of cannabinoids in animals have been mentioned

e.g., for disorders of the cardiovascular system, pain treatment, disorders of the

respiratory system or metabolic disorders. Dietary supplementation of

cannabinoids has shown positive effects on health, growth and production

performance of small and large animals. Animal fed diet supplemented with

hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter

performance without any detrimental effects. But the higher level of hemp or

cannabinoid supplementation suppress immune functions and reduce
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productive performance. With an emphasis on the poultry and ruminants, this

review aims to highlight the properties of cannabinoids and their derivatives as

well as their significance as a potential feed additive in their diets to improve the

immune status and health performance of animals.
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Highlights
➢ Cannabinoids are a class of naturally occurring compounds

found in the cannabis plant that plays a crucial role in

regulating various physiological processes, in animals.

➢ Dietary cannabinoids could play a role, in improving

appetite regulation, reducing inflammation, managing

stress, and promoting overall well-being in animals.

➢ Certain cannabinoids, such as CBD (cannabidiol), might

have the potential to improve feed efficiency in animals.

➢ Modulating the rumen microbiome through cannabinoids

might have broader implications for gut health in ruminant

animals, influencing overall well-being and potentially

reducing the risk of digestive disorders.

➢ Dietary cannabinoids serve as a natural alternative to

traditional animal health interventions, such as antibiotics

or anti-inflammatories.

➢ Cannabinoids have been observed to exhibit protective

effects against challenges posed by endotoxins

and lipopolysaccharides.
1 Introduction

The current era of antibiotic resistance has raised concerns about

the use of antibiotics in various fields, including animal production

system (1). Antibiotics have been commonly used in animal

agriculture to promote growth, prevent diseases, and improve feed

efficiency (2). In response to the challenges of antibiotic resistance,

there has been increasing interest in alternative strategies for

promoting animal health and productive performance (3, 4). The

use of phytobiotics, which are plant-derived substances with potential

health-promoting properties (5). Plant and animal derived additives

such as essential oils, plant extracts, and bioactive compounds, offers

a range of medicinal benefits including antimicrobial, antioxidant,

anti-inflammatory, and immunomodulatory and could be used as

alternative to antibiotic and contributing to the overall sustainability

of livestock industry (6–9).

Over 480 significant active chemicals have been identified as

cannabinoids, the active cannabis-derived compounds with
02
medicinal activity. Each active pharmacological ingredient in a

cannabis sample has a different concentration depending on the

subspecies of the plant, how the leaves were dried, when the leaves

were harvested, the plant’s age, and other elements (10). The three

main categories of cannabinoids are endogenous cannabinoids

(endocannabinoids), herbal cannabinoids (phytocannabinoids),

and synthetic cannabinoids. Cannabinoids are chemical

substances that primarily act on certain cannabinoid receptors

(11). Cannabidiol derived from cannabis plant has gained

popularity for its potential therapeutic properties and is being

explored in various industries, including agriculture and livestock

sectors. The potential application of of cannabinoids in animal feed

is a relatively new and expanding area of research. Some studies

suggest that cannabinoids may have anti-inflammatory and stress-

reducing effects, which could potentially benefit livestock.

Cannabinoid receptors are categorized into two types,

cannabinoid receptor type 1 (CB1) and cannabinoid receptor type

2 (CB2), which have been associated to heterotrimeric guanine

nucleotide-binding proteins (G-proteins). The effects of

cannabinoids on intelligence and thinking ability, hunger,

emotions, memory, perception, and motor function are correlated

with the widespread distribution of CB1 receptors in the brain

central nervous system (CNS). CB2 receptors are more prevalent in

the immune system and peripheral nervous system than in the CNS,

where they play pivotal role in the control of inflammation and pain

(12). Delta-9-trans-tetrahydrocannabinol (d9-THC), more

commonly called “THC”, is the psychoactive component of

cannabis that makes it a popular recreational drug. A typical

cannabis plant’s component can contain up to 10% THC. One of

the cannabinoid compounds known as CBD is not thought to be

psychoactive and has more of a medical use (13).

Tetrahydrocannabinolic acid (THCa) and cannabidiolic acid

(CBDa), present in plant during its growth, are converted to THC

and CBD by heating process known as “decarboxylation” (14).

Based on its cannabinoid content, cannabis is categorized into

chemotype I, II, III, IV and V. High levels of the psychoactive

compound 9-tetrahydrocannabinol (9-THC) are present in

chemotype I, which is utilised therapeutically. Chemotype two

characteristics fall between those of fibre and medicinal hemps.

Chemotypes three and four are threadlike and have relatively low

concentrations of psychoactive chemicals and high concentrations

of nonpsychoactive cannabinoids. Chemotype V, the final group, is

fibrous and devoid of cannabinoids (15). Cannabis sativa L. C.
frontiersin.org
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sativa L. var. ruderalis, var. indica, var. sativa and C. sativa L. are the

cultivars that are currently considered as one diverse species (14).

Given that scientists are much interested in the potential health

advantages of cannabinoids from Cannabis sativa L. in the making

of food, veterinary medicine, and medicines Table 1. Our goal is to

give a particular summary of the latest information regarding the

cannabinoids and plant properties, as well as an evaluation of the

cannabinoids’ potential for usage in food and medicine.
2 History and origin

Cannabis sativa L. is among the planet’s earliest cultivars of

plants. Initially utilised as a source of fodder in animal feed and as a

fabric for clothing, humans eventually turned to it as a source of

food and medicines (15, 30). The plant includes cannabinoids,

which are bioactive substances (10). Hemp has been used

medicinally in Europe since the thirteenth century. Its

antiepileptic, palliative, and antiemetic qualities were discovered

in 19th century (31). In terms of land use for hemp production and

the quality of the items produced by the end of the 1950s, Russia

and Italy were the top two countries (32, 33). Canada was among

the first nations to legalise industrial hemp production, and it

continues to be a major distributor and exporter of the crop,

notably in the food business (33). The European Union is the

world’s 2nd-largest cultivator of Cannabis sativa L., with centres in

Romania, the Netherlands, Lithuania, and France. C. sativa L. has

long been recognized as an important plant roughage resource.

Hemp seeds have acquired admiration over last few years due to

their high nutritional contents and presence of phytochemicals that

have positive effects on human health (33).

Cannabis sativa L belongs to the Cannabaceae family and the

Urticales order. This perennial herb is cultivated in the Boreal

Hemisphere’s temperate conditions (34). Since the plant has

scattered throughout the world and has been changing for

generations, it is unknown where hemp first appeared to grow

(15, 30, 34). There are records of Cannabis sativa L. cultivation and

use dating back to the Neolithic era. In cave artefacts from around

700 before Christ (BCE), the first known instances of the plant’s use

for therapeutic purposes were discovered. The origin of Cannabis

sativa L. may have been in Central Asia, from which it may have

migrated to the Mediterranean region, Eastern, Central Europe,

especially in Afghanistan and Pakistan. According to studies,

Cannabis sativa L. has two additional centers of species diversity;

the Hindustani and European-Siberian varieties (35).
3 Potential of cannabinoids to address
autoimmune diseases and
chronic inflammation

A so-called cannabinoid system made up of certain receptors

and ligands appears to exist in the immune system and brain tissues.

This system mediates communication between the various tissues,

along with others that use hormone and cytokine agents (36). Even
Frontiers in Immunology 03
though the structure and function of the cannabinoid structure have

been extensively studied, there are still many unanswered questions,

particularly in regards to the system’s role in immunity (i.e.,

immune cannabinoid system).
3.1 Evidences of cannabinoid receptors in
autoimmune system

Cannabinoid receptors (CBRs) can be divided into at least two

subtypes, CB1 and CB2. At first, pharmacological evidence implied

that these receptors were present in brain tissue and was verified by

cloning of CB1 using complimentary DNA from a Ratus ratus CNS

(37, 38). Interestingly, a human immune cell line rather than the

brain was used to clone the second subtype, CB2 (39). It became

clear right away that the CBR system existed in immune system cells

in addition to the brain cells. CBRs are grouped into 7

transmembrane G protein-coupled receptor super families (40),

Moreover, recent studies suggest that they may also bind to Gs

proteins, despite the fact that they convey signals via a pertussis

toxin-sensitive Gi/Go inhibitory pathway (41). Notably, immune

system cell signalling has been connected to G protein pathways

(42). The brain and peripheral organs both have endogenous

ligands for these receptors in addition to CBRs (43). Because they

are structurally based on arachidonic and palmitic acids rather than

cannabinoids, these molecules often have a lower affinity for CBRs

than cannabinoid derivatives (44). Their existence lends credence to

the current hypothesis that the entire cannabis system, which

consists of endogenous receptors and ligands, regulates a wide

range of physiological processes in both the brain and peripheral

tissues. They are created by immunological and brain cells

respectively (45).

The discovery of CB1 mRNA expression in human testis tissue

provided the first evidence of CBRs being expressed outside of the

brain (46). Following this, it was discovered that human peripheral

blood mononuclear cells (PMBCs) and mouse solenocyte’s both

expressed CB1 mRNA using reverse transcriptase polymerase chain

reaction (47, 48). Additionally, it was shown that immune cells and

the rat spleen expressed the second receptor subtype CB2 at higher

levels than CB1 rather than the brain (39, 49). Immune system cells

have different levels of CBR expression. For instance,

polymorphonuclear neutrophils, B cells, CD8 cells, NK cells,

monocytes, and CD4 cells are in decreasing order of CB1

expression in human peripheral blood mononuclear cell (48).

Interactions between the cannabinoid systems have lately been

found to follow this tendency. The expression of cannabinoid

receptors and anandamide in the immune system, brain, and

hypothalamic-pitu itary-adrenal (HPA) axis has been

demonstrated. Both receptor subtypes seem to be expressed by

the immune system. Combined with other cytokines and

neuroimmune hormones, the cannabis system may facilitate

bidirectional communication between neural and immune tissues

mouse splenocytes (50). These investigations, along with others,

have contributed to the development of the current hypothesis for

CBR distribution, which states that CB1 is largely found in brain

and nearby structures like the pituitary (51) and peripheral nervous
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tissues (52), while CB2 is largely found in the immunological and

reproductive systems. Along with the numerous CBR subtypes,

these organs also express endogenous ligands such as anandamide.

The outcome is the development of the body’s immunological

cannabinoid system.
3.2 Cannabinoid use in auto
immune diseases

Cannabinoids have been tested as a possible treatment for a

number of chronic auto immune illnesses. Autoimmune deficiency

syndrome (AIDS) and multiple sclerosis (MS) are two of these. The

manufacturing of reliable THC chemical formulation and delivery

methods that are secure to use and more potent than marijuana

smoking is a main problem in the utilization of CBD in these

ailments as it is known that smoking marijuana is a fundamental

delivery system for THC that also transfer toxic compounds. While

inhalers and cutaneous patches are already in the works, THC- and

other active cannabinoids-containing medication formulations

have not yet been created (53).
3.3 Antitumor effects of
cannabimimetic agents

The patterns of hematopoietic and tumor cells development are

affected by cannabimimetic substances. For instance, anandamide

greatly boosts the proliferative effect of IL-3 on the myeloid cell line

32Dcl3 via a CB2-mediated mechanism (54). Anandamide, on the

other hand, prevented the development of breast and prostate

cancer cell lines when the levels of prolactin and nerve growth

factor receptors were decreased (55). The inhibitory impact was

shared by several cannabis agonists, and the CB1 receptor appeared

to be implicated hence, these compounds can prevent tumor

development in mice and rats (56). To demonstrate this, mice

were given THC with other cannabimimetic drugs for up to 7 days

following the implantation of C6 glioma cell tumors. This therapy

increased survival and reduced tumor size (56). Additionally, it was

demonstrated that the drug’s mode of action involves causing

tumor cells to undergo apoptosis. Numerous research studies, like

this one, have demonstrated that substances associated to cannabis

cause apoptosis (57, 58). It’s likely that the main mode of action by

cannabimimetic medicines in a variability of tissues, with

malignancies, is programmed cell death.
3.4 Anti-inflammatory effects
of cannabinoids

According to recent studies, cannabinoids and their non-

psychoactive derivatives have anti-inflammatory potential in

addition to their popular usage as analgesics. Oral administration

of the THC-11-oic acid dimethylheptyl derivative to mice reduced

both short-term and long-term inflammatory changes (59).

Additionally, it has been demonstrated that this chemical has
Frontiers in Immunology 06
potent analgesic and anti-inflammatory properties and is well

tolerated by the host when administered orally (59). In multiple

studies, it has been shown that the non-psychoactive cannabinoid

HU-211 reduces inflammation brought on by the release of

cytokines like TNF-a (60, 61). These studies highlight a

significant issue with the link between marijuana’s effects on

cytokines and these chemicals’ effects on inflammation. The

drug’s anti-inflammatory effects are most likely caused by a

reduction in cytokine production or activity. According to Klein

et al. (62), cannabimimetic drugs have a significant impact on

cytokine biology and, depending on the circumstance, may have

proinflammatory or anti-inflammatory effects. More study is

necessary to settle these possibilities.
4 Role of cannabinoids to control
oxidative stress in animals

Oxidative stress as a result of emergence of free radicals have

pivotal role in the causing of many ailments e.g., atherosclerosis,

rheumatoid arthritis, diabetes, cardiovascular diseases, cancer,

chronic inflammation, myocardial infarction, post-ischemic

perfusion damage and some degenerative ailments in Homo

sapiens (63–66). Cannabis sativa L. is a best resource of naturally

occurring antioxidants and could be utilized in the controlling of

oxidative stress. Antioxidants protect the body from the side-effects

of free ions, stop the oxidation of molecules, and protects from cell

damage (67–69). Now-a-days, much research has been done on

hemp (Cannabis sativa L.), also known as industrial cannabis which

is basically studied because of its chemical composition i.e. one

hundred and thirty-three cannabinoids and terpenes (70).

Cannabinoids such as tetrahydrocannabinol (THC), cannabinol,

and cannabidiol (CBD) are potential lipophilic antioxidants (71),

and their pathway of CBD and THC has been reported (72). For

many years, researchers have examined and well documented the

antioxidative and anti-inflammatory characteristics of cannabis in a

range of tissue types and cellular models (73). The antioxidant

activity of CBD is seen in Figure 1. Numerous studies have shown

that CBD, the main non-psychoactive phyto cannabinoid in

Cannabis sativa, has a wide range of anti-inflammatory properties

and a propensity to control oxidative processes in neuropathic and

inflammatory models (74).
4.1 Cannabinoids mode of action to
control oxidative stress

CBD has both cannabinoids receptor-dependent and

-independent modes of action. It also exhibits very low affinity

and negligible agonist activity for both CB1 and CB2 receptors (16,

75). Peroxisome proliferator-activated receptor- (PPAR-) as a CB1/

2-independent mechanism of action for CBD (76, 77), TRPV1

receptor (78), G-protein coupled receptor 55 (GPR55) (79), 5-

hydroxytryptamine (5-HT) receptors (76, 80–82) and m-/d-opioid
receptors (Kathmann et al., 2006) are discovered.
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4.2 Evidences of CBD to control
oxidative stress

CBD has been shown to lessen oxidative metabolism in

polymorphonuclear leukocytes and nucleus pulposus cells that

have been exposed to H2O2, and numerous research have

suggested that CBD possesses antioxidant capabilities (83, 84),

and moreover lowers pancreatic cell oxidative stress markers (85).

It’s interesting to note that CBD works similarly to vitamin E

(alpha-tocopheryl acetate) in reducing the generation of reactive

oxygen species (ROS) in the brain after exposure to cadmium

chloride (86), additionally, data suggests that it is more

neuroprotective against glutamate toxicity than ascorbate and a–

tocopherol (86). Due to the physiological and pharmacological

variety of CBD and sign of its similar antioxidant activity to

identified antioxidants, CBD is a promising medication for

therapeutic immunomodulation. Following are the evidences that

are collected from various researches that proves role of CBD in

oxidative stress Figure 2.

4.2.1 Role of CBD in redox equilibrium
According to a large body of research, CBD alters redox

equilibrium via changing the concentration and activity of

antioxidant molecules. In fact , research on CBD has

demonstrated that it affects how redox-sensitive transcription

factors like nuclear factor erythroid 2–related factor 2 (Nrf2) are

controlled in microglia (87), keratinocytes (88) and endothelia (89),

It is critical because Nrf2 is necessary for cytoprotective and

antioxidant gene transcription to begin (90).

Through intrinsic methods, CBD primarily influences redox

equilibrium. According to data, CBD breaks up free radical chain
Frontiers in Immunology 07
reactions and uses the hydroxyl groups on its phenol ring and

electrophilic aromatic region to change free radicals into more

innocuous molecules (91). It was demonstrated that CBD delivered

electrons at a potential similar to that of well-known antioxidants

and inhibited hydroperoxide-induced oxidative damage in neurons

using the iron-catalyzed ROS production technique (Fenton

reaction) and cyclic voltammetry (86). Using cyclic voltammetry

once more, it was shown that CBD is an antioxidant on par with

tocopherol and butylated hydroxytoluene, two widely used

antioxidants (92). Recent evidence showing that CBD can lessen

the formation of ROS by chelating the transition metal ions

involved in the Fenton reaction (93). According to data, although

concurrently amplifying Yo-induced ROS generation, CBD reduces

the destruction of mitochondrial membrane potential brought on

by anti-Yo antibodies in a way comparable to that of the ROS

scavenger butylated hydroxytoluene. This shows that CBD protects

against paraneoplastic cerebellar degeneration caused by anti-Yo

(94). In an oxygen-glucose-deprivation/reperfusion injury

paradigm, additionally, CBD has been shown to guard against

energy stress on hippocampus neurons by controlling glucose

uptake and triggering the pentose-phosphate pathway (95).
4.2.2 Role of CBD in controlling
protein expression

Recent research has demonstrated that CBD can target the

expression of Kelch-like ECH-associated protein 1 (Keap1) and

Nrf2 in pulmonary artery smooth muscle cells, potentially boosting

its antioxidant benefits in a model of pulmonary arterial

hypertension (96). Furthermore, CBD regulates the expression of

the induced antioxidant enzyme heme oxygenase-1 (HO-1) in

keratinocytes (97), adipose tissue-derived mesenchymal stem cells
FIGURE 1

Overview of antioxidant property of cannabinoids, especially CBD, have been shown to act as scavengers of free radicals via neutralizing the reactive
molecules, preventing them from causing cellular damage.
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(98), neuroblastoma cells (99) and smooth muscle (100). This may

have an impact on how effectively this Phyto cannabinoid regulates

the level of ROS in cells. In fact, irrespective of CB receptors, in a

time- and concentration-dependent approach, CBD dramatically

upregulates HO-1 mRNA and protein expression in human

umbilical artery smooth muscle cells (89).

4.2.3 Role of CBD in activity of
superoxide dismutase

Previous studies have shown that CBD can control the activity

of the superoxide dismutase (SOD) enzyme as well as the Cu, Zn,

and Mn-SOD enzymes (88, 101). CBD’s vasorelaxant effects are

diminished by a Superoxide Dismutase (SOD) inhibitor,

demonstrating that SOD increases CBD’s vascular activities (102).

Additionally, by raising glutathione (GSH) levels and concurrently

raising GPx and SOD1 activity after injury, CBD reduces

hippocampus oxidative damage during oxygen-glucose

deprivation/reperfusion injury (95). In vivo injection of CBD

mitigates the decline in the oxidized glutathione ratio (GSH/

GSSG) in diabetic mice’s cardiac tissue (101). Further shields

against GSH depletion in cardiac tissue after doxorubicin

cardiotoxicity (103).

4.2.4 Role of CBD in activity of ROS
Data shows that CBD has an inherent capacity to scavenge free

radicals. In fact, it has been demonstrated that CBD reduces LPS’s

ability to cause ROS in microglia (104). Additionally, CBD inhibits

the production of mitochondrial superoxide in human coronary

endothelial cells stimulated by high glucose levels and lowers the

production of mitochondrial ROS after hippocampal oxidative

injury caused by oxygen-glucose deprivation/reperfusion injury

(105). In models of retinal neurotoxicity, CBD has been shown to

have neuroprotective benefits by directly reducing N-methyl-D-

aspartate (NMDA) mediated oxidative stress and maybe by

targeting the synthesis of nitro tyrosine, a byproduct of tyrosine
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nitration (106). Similarly, it has been demonstrated that CBD has

ROS scavenging properties created by H2O2-driven ROS in

keratinocytes and oligodendrocyte progenitor cells, shielding

them from H2O2-induced cell death (107, 108). Recently, it was

demonstrated that CBD had a comparable impact on H2O2-

induced ROS in intestinal cell monolayers (109). Furthermore,

findings show that CBD works similarly to -tocopheryl acetate in

reducing brain ROS generation after exposure to cadmium chloride

(110). Moreover, CBD dose-dependently lessens the generation of

ROS in neurons caused by b-amyloid (111). Parallel to this, CBD

has been demonstrated to lessen cisplatin’s induction of renal nitro

tyrosine synthesis in a model of nephrotoxicity (112). It has

additionally been demonstrated to dose-dependently decrease the

ROS generation brought on by tert-butyl hydroperoxide in

keratinocytes (97). Accordingly, polymorphonuclear leukocytes

exposed to chemotactic peptides produce less ROS when CBD is

present (83) additionally, administering CBD in vivo reduces the

level of lipid peroxides and ROS in diabetic mice’s cardiac tissue

(113). Last but not least, new study by Baeeri and colleagues (85)

demonstrates that CBD can serve as a free radical scavenger in

response to a range of stressors by decreasing age-related increases

in ROS production in pancreatic islets.
5 Nutraceutical effects
of cannabinoids

Hempseeds and seed meal derived from Cannabis sativa have

proven to be significant contributors to the Old World’s food

resources. These seeds are abundant in essential fatty acids, such

as omega-3 and omega-6, making them a nutritious source of

dietary oil. Moreover, they offer a substantial amount of protein

and fiber, enhancing the overall balance on nutrients and bioactive

compounds. The prospective usage and advancement of Cannabis

sativa seed as a source of nutrition for human and house animals
FIGURE 2

During the adaptive immune response, immune cells of the T-helper (Th)1 type that have been activated create cytokines like interleukin-2 or
interferon (IFN). In monocyte-derived macrophages (M), IFN-, a pro-inflammatory cytokine, stimulates the production of reactive oxygen species
(ROS), as well as the action of indoleamine-2,3-dioxygenase (IDO) and GTP-cyclohydrolase I, which are both involved in the alteration of tryptophan
to kynurenine and the production of neopterin, respectively. The creation of tumour necrosis factor (TNF), which increases macrophage receptivity
to pro-inflammatory IFN, is triggered by the formation of ROS, which also activate redox-sensitive signal transduction cascades. When cells’
antioxidant defences are continuously overwhelmed by ROS, oxidative stress and inflammation result.
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was halted after the forbidding of Cannabis variants growth in the

late 1930s (114).

Whole hempseed typically contains 20 to 25 percent protein, 25

to 35 percent carbohydrates, along with 10 to 15 percent insoluble

fibre, and 25 to 35 percent oil (taken via cold pressing the seeds or

by extraction of oil) (114, 115). Regarding the nutraceutical abilities

of cannabis by-products, various outcomes of their inclusion to

basal feed have been hypothesized, includes a decrease in the

occurrence of tibia deformation in egg-laying chicks and hens, an

enhanced serum lipid profile, a protective impact against the onset

of hepatic disease, an anti-microbial activity, an improvement in

anti-oxidative systemic condition, and an anti-inflammatory action

(116–120). However, additional work and study is required to

establish all of these beneficial effects.
6 Effect of cannabinoids on nutrient
digestibility, feed efficiency and live
weight gain

The overall digestibility of feed or distinct nutrients is precisely

known as the amount or percentage that is not eliminated in fecal

waste hence considered to be retained by the organism. There were

no negative impacts on digestibility due to the existence of any

secondary compounds in Cannabis sativa straw (121). However, it

is unclear why the digestibility of dry matter (DM) and organic

matter (OM) has improved. In comparison to the hemp-containing

pellets, the control diet exhibited elevated concentration of

polyphenolic chemicals. Polyphenolic compounds such as tannins

diminish the digestibility of food by binding to gastric enzymes and

dietary proteins, as compared to a controlled diet (122). Hemp

contains flavonoids, which can lower DM digestibility (123, 124).

Digestibility and lignin contents are inversely associated (125, 126).

When hemp stubble was added to the pelleted diets, the lignin

content increased, but there was no negative correlation between

digestibility and lignin level. The digestibility of a diet is also

impacted by variations in the neutral detergent fiber (NDF) and

digestibility of the forage products. Oat straw typically has an NDF

digestibility of above 20 percent (127), in contrast to Cannabis

sativa stem which is 12.7 percent (121), suggesting that oat straw

could be more easily digested than hemp stalk. More research into

the digestibility of Cannabis sativa straw is necessary to understand

the changes in apparent DM, OM, NDF, and Acid Detergent Fiber

(ADF) digestibility’s as a result of Cannabis sativa straw addition in

the pelleted diets. In order to study, cannabinoid role in controlling

feed conversion ratio, cold-pressed Cannabis sativa seed cake was

studied as a protein feed for young cows and finishing steers. Effects

on feed intake, live weight gain (LWG), faecal traits and carcass

traits (steers only) were investigated. Animals fed Cannabis sativa

seed cake consumed more NDF than those fed Glycine max diet (P

< 0.05). Lower feed efficiency as a result of higher feed intakes and

equivalent LWG was observed in calves given Cannabis sativa (P <

0.05). In summary, developing cattle who are aggressively fed

Cannabis sativa seed cake instead of Glycine max meal produce

equivalent amounts of milk and have better rumen functions (128).
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7 Role of cannabinoids in nutrient
absorption, metabolism, and excretion

The ECS clearly plays a critical effect in macronutrient

metabolism, hence regulating feed consumption and body energy

homeostasis (129, 130). General pathway illustrating role of THC in

energy metabolism is given in Figure 3.
7.1 CB1 activation stimulates appetite and
nutrient uptake

CB1 promotes intake in animals by causing orexigenic peptides

to bind to hypothalamic neurons and preventing the addition of

anorexigenic proteins (131). After feeding, the adipose tissues (AT)

releases leptin hormone in this metabolic process, which binds to

the hypothalamus and causes the release of anorexigenic peptides

(132). According to studies, leptin resistance and hyperleptinemia

in a diet-induced obese mouse model were reversed by peripherally-

restricted CB1 inverse agonist (133). These findings show how CB1

can inhibit the hypothalamic leptin sensitivity and satiation

signaling pathways thus playing pivotal role in nutrient

uptake (134).

The gastrointestinal tract contains all of the components of the

ECS. When food is first taken into the mouth during a meal,

cephalic-phase reactions happen to anticipate and prepare for

optimal digestion. The orexigenic hormone ghrelin, which is

released when the gastric CB1R is activated, raises the perception

of fat and encourages consumption of fat (135). Furthermore, in

both rodents and humans, the ECS in the gut may change

cholinergic transmission to the colon, lowering intestinal motility

(136). Additionally, the CB1Rs’ anti-inflammatory properties make

the ECS a possible enhancer of food absorption in the GI tract (136).
7.2 NAPE-PLD, the intestinal barrier, and
nutrient absorption

Nutrient absorption in rumens is increased by improving gut

epithelial barrier and microbial function are affected by adipose

tissue levels of N-acetylphosphatidylethanolamine phospholipase D

(AT NAPE-PLD), which in consideration enhances energy storage

function in a periodic way (137). The intestinal epithelium has a

pivotal role in the absorption of nutrients, hormone release, and

synthesis of endocannabinoids (eCBs), all of which affect metabolic

activity (138). Few minutes’ nutritive fatty acids (FA) exposure in

the stomach in monogastrics causes jejunal anandamide (AEA)

mobilization and FA transport into the duodenum, which enhances

oleoylethanolamide (OEA) production (139). Endocannabinoid

system (ECS) activation in the stomach enhances adipogenesis in

addition to enriching eCB production (140). The intestinal ECS

lowers LPS transferring, barrier breakdown, gut inflammation, and

dysbacteriosis of gut microorganisms in monogastric animals (140).

When released from the rumen epithelium, lipopolysaccharide

(LPS) in dairy cows crosses the intestinal barrier and enters the
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bloodstream. Elevated levels of endotoxin in the bloodstream lead

to substantial changes in metabolism and provoke systemic

inflammation (141). The same study found that circulating LPS

levels related to blood glucose and non-esterified FA levels (141),

and these gains are followed by dairy cows consuming less dry

matter (142). It is interesting to note that local CB1 activation

reduces the amount of LPS that enters the body, which may increase

appetite and reduce inflammation in milking cows.
8 Role of cannabinoids in
lipid metabolism

One of the most major health issues in Western countries is

obesity, and the discovery that the endocannabinoid (EC) system is

involved in the control of energy balance and the focalization of

fatness is a huge improvement in our knowledge of this issue.

Ancient medicine was aware of the impact of plant-extracted CBD

on individual weight or body mass and appetite, but it wasn’t until

recently that the mechanisms underlying these effects were

understood. This was made feasible by the exact EC receptors’

identification as well as the endogenous ligands anandamide and 2-

arachidonoylglycerol (2AG) (38, 143–145). Numerous

experimental studies have shown that ECs are present in adipose

tissue and other membrane tissue involved in the energy

metabolism. This information provides another hint to

understanding adipose tissue function in Homo sapiens obesity

(146, 147).

Multiple evidences suggest that endogenous cannabinoids are

appropriate for the membranous control of lipid management in fat

tissue, which follows the revelation that these molecules are taking

part in hypothalamus regulation of food intake (147–149).

Rimonabant, a sepecific CB1 blocker, has been the subject of

numerous phase-III clinical trials, all of which have demonstrated

that inhibiting CB1 lowers body mass in fat specimens and

improves cardiovascular risk elements in obese and diabetic
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patients (150–153). A sufficient amount of both fatty acids and

glucose must reach fat cells in order to store and expand

triglycerides. To feed lipid substrates to fat cells, fatty acid flux

from chylomicrons and very-low density lipoprotein is mediated by

lipoprotein lipase (LPL). The crucial processes of creating the

glycolytic intermediate a-glycerophosphate required for

triglyceride synthesis are insulin-dependent glucose transporter

(GLUT4) translocation and glucose transport. In both of these

pathways, insulin is in charge. Enough insulin sensitivity and the

activation of its downstream machinery are thus necessary to

permit adequate fuel channeling to fat cells (154).

CB1 receptor is not found on preadipocytes however, upon

differentiation, adipocytes rapidly exhibit its expression. This has

been seen in both primary Homo sapiens adipose cell and primary

cells and cell lines from rodents (155). It is debatable whether adult

adipocytes express CB2. While some scientists discovered

considerable expression of CB2 in differentiated adipocytes,

others were unable to (146). It is plausible that predispose cells,

invasive macrophages, or vascular cells are the source of CB2

mRNA in fat tissue extracts because CB2 is expressed at modest

levels in fat tissue biopsies as well (146). Adipose tissue and fat cells

both express CB receptors as well as the enzymatic machinery

needed to create and break down endogenous cannabinoids locally

(156, 157). In primary mouse adipocytes, activation of CB1

increases lipoprotein lipase activity (158). As a result, there would

be a greater inflow of free fatty acids into adipocytes for the

synthesis of triglycerides. They found that the strong CB1 agonist

HU210 stimulates the creation of intracellular lipid droplets in 3T3-

F442A cells, demonstrating the importance of CB1 and ECs in the

growth of neutral lipids in fat cells (156). Adipocytes produce more

2AG and anandamide before adipose cell differentiation occurs,

supporting the idea that this system is responsible for causing

preadipocytes to convert to adipose tissue (156).

The entrance of glucose into fat cells is also encouraged by CB1

activation. CB1 activation increases glucose absorption in human

primary adipose cells, and this action is achieved by Glucose
FIGURE 3

General illustration of pathway showing cannabinoids role in absorption, metabolism and excretion.
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transporter type 4 (GLUT4) moving from an intracellular

compartment to the plasma membrane, which is where it is

located. Additionally, the cannabinoid-stimulated glucose uptake

in fat cells is mediated by the same molecular mechanism as drives

insulin-induced glucose uptake stimulation of PI3-kinase. Actually,

the benefits of CB1 activation on glucose absorption are totally

negated by the inhibition of this enzyme by wortmannin.

Additionally, the absorption glucose into the fat cells is mediated

by an increase in intracellular calcium from the surrounding

environment (146). In studies conducted in calcium (Ca) free

medium or with the Ca chelating reagent ethylene glycol tetra-

acetic acid (EGTA), The translocation of GLUT4 and the

absorption of glucose were unaffected by CB1 activation.

Rimonabant fully offset the effects of the CB agonist on glucose

absorption. The extent of the ECs’ impact on glucose absorption

was between 40 and 50 percent that of insulin. However, it is

uncertain what physiological consequences EC-induced glucose

clearance by fat cells would have. Although the EC’s effect as

insulin in fat cells is expected to be important for triglyceride

accumulation and preadipocyte formation, the influence on the

body’s ability to handle glucose should be minimal. Rimonabant-

based in vivo investigations have repeatedly demonstrated that

provoking CB1 did not degrade insulin resistance in obese people,

instead causing weight loss and a reduction in the size of fat tissues

and perhaps adipose fat cells increased whole-body insulin

sensitivity (159).

Mice lacking CB1 receptors (CB1/) are thin and unaffected by

high-fat diet (160). Similar to how rimonabant, a selective CB1

receptor antagonist, causes reductions in body weight of obese rats

over time, however after a brief initial 1–2-week weight loss, food

intake returns to normal (160, 161), indicating that the stimulation of

energy metabolism by CB1 receptor blockage results in a reduction in

fat content. If we take a holistic view of the body, this situation may

result from higher energy expenditure along with enhanced oxidative

capability of many tissues, in specific the brown adipose tissue, the

liver and skeletal muscle. This might be explained by at least three

causes if just white adipose tissue is taken into account: The first three

alterations are an increase in lipolysis, a decrease in liposynthesis, and

an increase in fatty acid oxidation inside the fat cell. Several pieces of

evidence show that the CB1 blockage increases lipolysis in vivo. A

single-dose study on postprandial rats revealed an instant rise in free

fatty acids (FFAs), conclusively demonstrating an underlying

pharmacological impact of rimonabant to induce lipolysis instead

of a secondary one brought on by a decline in intake and after-

starvation post-absorptive metabolic alterations in intermediate

metabolism (162).

In conclusion, several evidence unequivocally demonstrate that

EC and CB1 receptor levels increase during adipocyte differentiation

(156, 163, 164). CB1 activation causes pre-adipocytes to differentiate

more quickly (156). We propose that elevated lipogenesis is a result of

the EC system’s overactivity stimulating Lipoprotein lipase (LPL)

activity (158), an improvement in insulin sensitivity, as well as a faster

rate of glucose absorption and utilization (146, 164) and a fatty acid

synthase activation (147). The AMP-activated protein kinase

(AMPK) and eNOS-dependent mitochondrial biogenesis in adipose

tissue are also inhibited by this overactivation, which reduces ATP
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generation and oxidative metabolism of energy sources. This process

may be reversed by blocking the adipose CB1 receptor, which would

reduce adiposity and weight growth. This would provide rimonabant

with a fresh, as-yet-unknown mode of action for reducing body

weight (165).
9 Potential of cannabinoids to
modulate rumen microbiome to
enhance expression of fibrolytic genes

The phrase “microbiome” refers to the collective genome of

microbial communities, or “microbiota,” which are connected to

people, animals, and plants. The influence of microbial

communities in determining the host immune system and fitness

has come to light in recent years (166). There are similarities

between the control of host gene expression by the gut and root

microbiota (167, 168), catabolic genes that increase their hosts

metabolic capabilities (169, 170), and the control of dangerous

pathogens (171).

Ruminants account for a sizable portion of all domesticated

animal species in the world and the fundamental producers of milk,

meat and other by products. Ruminants are able to digest enormous

number of plant polysaccharides because of the variety of bacteria

that can be found in the rumen. The rumen, which is home to a

range of microorganisms like as bacteria, archaea, fungi, viruses,

and protozoa, has evolved into a prolific fermentation vessel for the

breakdown of cellulose (172, 173), they interrelate and importantly

affect ruminants health. Around 95% of all rumen microorganisms

are bacteria, which rule over the diverse domains of the rumen’s

microbiome (174). Microbes play a key role in the rumen

fermentation process, which changes the content and quality of

milk and meat as well as the productivity of the animal (175).

To break down the intricate plant polysaccharides, rumen

microorganisms create a variety of fibrolytic enzymes known as

Carbohydrate-Active Enzymes (CAZymes), which include

exoglycanases, glucosidases, endoglucanases, and hemicelluloses.

Technologies for high throughput sequencing (HTS) are widely

utilized to tackle the complex procedure of lignocellulose

breakdown in ruminants. With a greater knowledge of the rumen

microbial population, In the cattle industry, issues with ruminant

nutrition and environmental issues may be tackled. Number of

metagenomics investigations have documented different types of

fibrolytic enzymes found in the rumen of yak’s, reindeer, Jersey cow,

Angus cattle, and buffalo (173, 176–178). In-depth scholarly studies

on metagenomic analysis on CAZymes profile in rumen of

Holstein-Friesian crossbred cattle feeding with just finger millet

straw are not yet available, though.

The rumen is a special natural environment due to the genetic

diversity of fibrolytic enzymes from microbial origin that break

down plant polysaccharides. An investigation was conducted to

determine the main cell wall-degrading enzymes in plants and the

associated rumen microbiomes taxonomic profiles (179). Through a

comprehensive metagenomics sequencing method, the rumen

microbiota of cattle and the carbohydrate-active enzymes were
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divided into functional groups. The candidate genes encoding

fibrolytic enzymes from various classes of carbohydrate-binding

modules, glycoside hydrolases, polysaccharide lyases, carbohydrate

esterases, glycosyltransferases and auxiliary activities were found

through analysis of the assembled sequences using the

carbohydrate-active enzyme analysis toolkit. A large fraction of

the CAZymes were produced by bacteria from the genera Prevotella,

Fibrobacter, Bacteroides, Clostridium, and Ruminococcus, according

to phylogenetic analysis of the contigs that encode the CAZymes

(179). The findings showed that the CAZymes and the rumen

microbiome of cattle are extremely complex, structurally related,

but different from those of other ruminants in terms of content. The

rumen microbiota’s distinctive traits and the enzymes produced by

the residing microorganisms provide chances to increase

ruminants’ feed conversion efficiency and function as a repository

for crucial industrial enzymes for the synthesis of cellulosic

ethanol (179).
10 Potential of cannabinoids as
a feed additive to enhance
animal performance

The European Food Safety Authority (EFSA) panel on

Additives and Products or Substances used in Animal Feed stated

in its scientific opinion that hempseed and hempseed cakes might

be used in animals feed, though there may be differences in rate of

incorporation in diet depending on the specie (180). Animal feed

may be supplemented with hemp oil, a rich source of vital fatty

acids, meanwhile seeds and hempseed cakes can serve as protein

and fat sources. The hemp plant produces cannabinoids,

terpenophenolic compounds that are closely related to the

pharmacological effects of cannabis (181). The bract covering the

seed is where hemp has the most THC and other cannabinoids

(182). Cannabinoids may be present in hemp seed products in

substantial amounts if the hemp seed varieties are not carefully

chosen, grown, processed, and handled. For instance, during cold

pressing, cannabinoids can be absorbed by hemp seed oil.

Cannabinoids from the resin of the flowers or leaves can also be

transferred to the seeds during processing and handling.

Cannabis sativa, with the exception of the seeds and roots,

produces cannabinoids in glandular organs (trichomes) that are

dispersed across the whole surface of the plant. Trichomes are

heavily concentrated in the area of influorescence, in the veins of the

leaves, and on the sides of the leaves. They contain essential oils,

highly polymeric phenols, terpenes, waxes, and resin that contains

80 to 90% cannabinoids. Delta-9-tetrahydrocannabinol (THC), the

primary psychoactive substance, is primarily present in the inactive

precursor form delta-9-tetrahydrocannabinol acid (THC-A), which

may account for up to 90% of all cannabinoids in hemp plants

produced in Europe (183). Cannabinol (CBN) and cannabidiol

(CBD) are the other two key active ingredients among the 60

additional cannabinoids that have been found. Cannabis sativa

phenotypes can be identified by their THC + CBN/CBD ratio. The

ratio of hemp types grown for fibre production is less than 1,
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whereas variants grown for cannabinoids show a ratio greater than

1 (184). The plant’s cannabinoid content fluctuates according on its

vegetative state of development, cultivation conditions

(temperature, humidity), and other factors.

When the hemp leaf is used as forages (for cattle, for example),

whether in whole or in part, the animals may be exposed to THC at

levels higher than those resulting from consumption of the top

portion of the same variety classified and assessed for control under

the same regulation. In terms of hemp seeds, it has been

demonstrated (185), that the majority of THC was discovered on

the outside of the seeds due to contamination with plant debris,

probably as a result of physical contact with the plant leaves during

processing. Numerous research has examined the effects of

consuming hempseed or its derivatives on farm animals, albeit

the outcomes were not every time obvious. Here is a summary of the

most telling research, broken down per animal species.
11 Protection against endotoxins and
lipopolysaccharide’s challenge

Immune challenges include several pathophysiological

situations including stress, endotoxemia, and inflammatory

illnesses, which affect how neuroendocrine factors are produced

and released normally (186). Lipopolysaccharide (LPS), a gram-

negative bacterial endotoxin is an effective inducer of

catecholamines, prostaglandin and proinflammatory cytokines to

be released (187). It is therefore widely employed to elicit

immunological challenge, which in turn affects neuroendocrine

systems. During systemic infections, proinflammatory cytokines

react to peripheral signals and cross the blood-brain block or

fenestrated capillaries in specific areas of the brain to enter the

central nervous system (188, 189). Additionally, the brain produces

cytokines in the presence of other cells, primarily astrocytes and

microglia, but also neurons and endothelial cells (190).

The primary center that receives a multitude of peripheral

signals is the hypothalamus because it is the area of the brain

where the majority of neuroendocrine factors that control essential

pathophysiological activities are produced. In actuality, infectious

organisms, antigens, and the LPS challenge quickly engage the

immune system, causing it to produce interferon gamma and

cytokines that are subsequently transported into the brain where

they influence the function of the hypothalamus (191). It is widely

known that the release of corticosterone from the hypothalamic-

pituitary-adrenal axis, which is activated by the immunological

response, regulates the cardiovascular, metabolic, neuronal, and

immune systems (192, 193). Last but not least, glucocorticoids

create a negative feedback loop that controls both their own

production and the immune system (194, 195). It’s important to

know that endocannabinoid signaling appears to be tightly linked to

the proper operation of the hypothalamic-pituitary-adrenal axis

(196–199).

The role of the ECS in innate reactions in case of inflammation

and brain functions is particularly intriguing (200, 201). Numerous

studies have demonstrated that various organs and tissues produce
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endocannabinoids as a result of infection and inflammation (202),

which act as moderators to control the activated neuroimmune

response (203). The profiles of endocannabinoids change

significantly during a variety of pathological circumstances, such as

Parkinson’s and Alzheimer’s disease, amyotrophic lateral sclerosis

(ALS), multiple sclerosis (MS), traumatic injury, stroke, and bacterial

and viral infections of the central nervous system due to the

inflammation-modulating and the way these substances work to

reduce pain (204). Additionally, endocannabinoids influence

neuroendocrine function. Endocannabinoids must be produced

“on-demand” for neurotransmission to be fine-tuned under both

resting settings and immunological challenges that regulate the

release of neuropeptides, neurotransmitters, and hormones. The

formation of ECS differs based on the desired response in both

circumstances, and the ECS functions as a intermediary for the

transmission in between glial cells and neurons to produce the

most feasible neuroendocrine responses in every scenario

respectively (205).
12 Effects on poultry health
and performance

12.1 Broilers

After C. sativa seeds were added to a basal diet at rates of 10 and

20 percent, broilers’ body weight dramatically increased when related

to animals fed with the basal feed alone. In contrast to the control

group, animals fed a diet containing hempseed had a lower feed

intake and a higher feed conversion rate. The higher hempseed

content resulted in the best growth performance. In contrast, the

broilers body mass was considerably lower than in the control group

at hempseed concentrations lower than 5 percent (206). Mahmoudi

et al. (116), also observed a decrease in average daily intake and

growth in broilers given 2.5 percent hempseeds over the first twenty-

one days of treatment, but no change was noted in weight gain with

diets at 4 and 7.5 percent (117). Neither hemp oil up to 6 percent nor

Cannabis sativa seed cakes at 10 percent and 20 percent improved the

development performance of hens in the experiments (207, 208).

Effects of adding 5 and 15 percent Cannabis sativa seed cakes to

broiler diets were investigated. Comparing the greater dose to diets

without Cannabis sativa seed cakes, the researchers discovered a

detrimental effect on broiler development but no variations in carcass

weight or the ratio of breast to thigh meat (209).
12.2 Layers

The majority of authors came to the conclusion that adding

hemp products to chicken diets had no detrimental effects on the

bird’s performance. Several research has also looked into how

adding hemp to eggs affected their levels of saturated fatty acid

(SFA) and monounsaturated fatty acids (MUFA), polyunsaturated

fatty acids (PUFA) and essential fatty acids (EFAs). The

concentrations of linoleic acid (LA) and a-linolenic acid (ALA)

increased linearly with the addition of 5, 10, or 15 percent Cannabis
Frontiers in Immunology 13
sativa seed cakes to the diet (210), while SFA and MUFA levels

decreased. Neijat et al., 2016 examined the addition of Cannabis

sativa seeds (ten, twenty and thirty percent) and Cannabis sativa

seed oil (4.5 and 9.0%) and discovered that the highest amounts of

Cannabis sativa seeds and Cannabis sativa seed oil significantly

increased the amount of ALA and docosahexaenoic acid (DHA) in

egg yolks when compared to a control group.

The fatty acid profile of egg yolks changed in the study by

depending on whether Cannabis sativa oil or Cannabis sativa seed

cakes were included in the diet: While ALA was greater than the

control and lower than the Cannabis sativa seed group, LA was

higher with Cannabis sativa seed cakes than with Cannabis sativa

seeds and the control group. Oleic acid levels in the yolk were lower

and MUFA concentrations were lower when chickens were given

both hemp derivatives (211). The same study also found that eggs

from laying hens fed a diet enriched with hempseeds or hempseed

cakes contained higher levels of -tocopherol, indicating a higher

antioxidant potential (211). Last but not least, it was discovered that

including 25 percent Cannabis sativa seed in the diet of hens

enhanced the -6/-3 ratio in egg yolks. Up to 12% of laying hen

diets could contain hemp oil without having a negative impact on

performance metrics or the flavor and aroma characteristics of

cooked eggs (208, 212).
13 Effects on health and performance
of ruminants

The effects of include hempseed cakes at variable amounts (143,

233, and 318 g/kg dry matter) in the diets of dairy cows were

evaluated. When the cows received an increment of 143 g/kg in

comparison to the control group animals, who were given

hempseed oil, their milk production rose (213). The rate of

dietary crude protein conversion into milk protein declined as

hempseed cake consumption increased, which prompted the

authors to draw the conclusion that adding 233 or 318 g/kg had

no positive effects on milk performance (214). In contrast to cattle

fed “normal diets,” other studies found no differences in weight gain

when whole hempseeds or hempseed cakes were included to the diet

(213, 215). However, hempseed meal might be regarded as a

superior naturally occurring rumen crude protein (216). All

things considered, findings suggest that hempseed cakes have

better rumen performance than control diets, perhaps as a result

of their higher fiber content and lower starch content (215). Studies

have shown that including hempseed oil in a hay-based dairy goat

diet at a rate of 4.70% increased the milk fat content, while

increasing conjugated FA and PUFA proportions, but it had no

effect on milk yield (217).
14 Potential of cannabinoids to
modulate metabolic signaling pathway

In the brain, 2-Arachidonoylglycerol (2-AG) is present at a

baseline level that is roughly 1000 times greater than AEA. Altering
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the metabolism of 2-AG, but not AEA, through pharmaceutical

means has a notable impact on endocannabinoid-mediated

retrograde signaling. These data lead to the hypothesis that the

central nervous system’s (CNS) have naturally occurring ligand for

cannabinoid receptors (CBRs) is 2-AG (218–220). AEA, however,

has been demonstrated to independently activate transient receptor

potential vanilloid 1 (TRPV1), inhibit l-type Ca2+ channels, and

negatively regulate 2-AG production and physiological

consequences in the striatum, highlighting its critical function in

the control of synaptic transmission (221).

Depolarization-induced suppression of inhibition (DSI)/

excitation (DSE) was the first conclusive evidence for retrograde

endocannabinoid signaling (222). Furthermore, it was

demonstrated that both short-term depression (STD) and long-

term depression (LTD) include activation of endocannabinoid

system in excitatory and inhibitory synapses (223, 224). In most

situations, increasing intracellular Ca2+ concentrations and active

Gq/11-coupled receptors trigger the synthesis of 2-AG, which then

initiates endocannabinoid-mediated retrograde signaling (224).

Then, by a procedure that is not completely understood yet,

before reaching the presynaptic terminal and interacting with the

CB1R, 2-AG is entered into the extracellular space and travels

through it. Activated cannabinoid receptor 1 (CB1R) reduces

neurotransmitter release by inhibiting voltage-gated Ca2+

channels, which reduce presynaptic Ca2+ influx, and adenylyl

cyclase (AC) and the subsequent cAMP/PKA cascade, which is

implicated in LTD (222–224). 2-AG must be degraded by

monoacylglycerol lipase (MAGL), which inhibits signaling by

being expressed in certain synaptic terminals and glial cells

(223–225).

It has been demonstrated that AEA plays a variety of roles in

endocannabinoid-mediated synaptic transmission (Figure 4).

TRPV1 is a complete agonist of AEA, and it is thought to play a

role in endocannabinoid signaling (218). The effect of AEA’s

negative regulation of 2-AG metabolism can be mirrored by

TRPV1 activation (226). A tonic function for AEA as an

endocannabinoid is also supported by the fact that chronic fatty

acid amide hydrolase (FAAH) blocking causes persistent agonist of

the endocannabinoid system without lowering CB1R appearance,

which is the opposite of MAGL antagonism (227). Independent of
Frontiers in Immunology 14
the type of synaptic transmission or the length of the transmission,

endocannabinoids play a significant role in suppressing synaptic

transmission through a variety of methods (223, 224). A subset of

neocortical interneurons, pyramidal neurons, and hippocampal

cornu ammonis (CA1) neurons, as well as CB1R-dependent self-

inhibition in postsynaptic neurons, have all been identified (228–

230). The ability of microglial cells and astrocytes to make 2-AG or

AEA has been demonstrated in earlier research, it is currently

unknown, nevertheless, whether these endocannabinoids are

involved in the control of synaptic transmission (231). However,

despite studies demonstrating the existence of cannabinoid type 2

(CB2R) in the brain, it is still largely unclear how CB2R contributes

to endocannabinoid-mediated synaptic transmission (232–234).

The CB1R modifies the working of various ion channel types

(235, 236). In cultured Ratus ratus primary hippocampal neurons,

mouse cerebellar slices, and neuroblastoma cell lines, CB1Rs have

been shown to block N-type Ca2+ channels (237–239). It has

hypothesized, but only recently demonstrated, that the CB1R

controls Ca2+ inflow to reduce the release of y-aminobutyric acid

(GABA) in mouse hippocampus slices by altering the activity of

presynaptic N-type Ca2+ channels (240). CB1R has been

demonstrated to adversely regulate a variety of Ca2+ channel

subtypes, including P/Q-type and R-type Ca2+ channels (241).

But when CB1R complementary deoxyribonucleic acid (cDNA) is

injected into transfected AtT-20 cells, Mus musculus nucleus

accumbens slices and rat sympathetic neurons, the CB1R activates

GIRK and triggers the activity of G-protein-coupled deeply

changing potassium ion channels (242, 243).

Previous research has demonstrated that stimulation of the

CB1R causes the extracellular signal-regulated kinase 1/2 (ERK1/2),

c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase

(MAPK) and p38 signaling pathways, which have vital role in the

regulation of cell cycle control, cell proliferation, and cell death to

become active in a system that expresses the receptor endogenously

or heterogeneously (235, 236, 244). The way that CB1R modulates

MAPK signaling typically depends on the cell type and ligand (235).

For instance, depending primarily on the microenvironment and

stimulus type, CB1R-induced ERK1/2 activation can be mediated

by G protein, b-arrestin, or phosphatidylinositol-3-kinases (PI3K)
(245–247). Similar to this, CB1R stimulation has been shown to
FIGURE 4

Endocannabinoid-mediated synaptic transmission.
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activate p38 in rat/mouse hippocampus slices, transfected Chinese

hamster ovary (CHO-K1) cells, and human vascular endothelial

cells (248). In transfected CHO-K1 cells, JNK activation has been

demonstrated, and G proteins, PI3K, and the transduction was

mediated by the reticular activating system (Ras) (249).

Additionally, JNK initiation was seen in Neuro2A cells that

express CB1R endogenously, which may be connected to CB1R-

mediated neurite propagation (250).

The CB1R is able to communicate in a G protein-independent

manner by linking with additional molecules such as -arrestin, in

addition to the conventional G protein-dependent communication

present with all G protein coupled receptors (GPCRs) (244). GPCR

desensitization is primarily mediated by b -arrestin. b -arrestin

attaches to the receptor after GRK phosphorylates it, starting the

internalization process, during which b-arrestin may mediate

signaling pathways (251). It has been demonstrated that b-
arrestin 2-dependent desensitization of the CB1R occurs in a

variety of settings (252, 253). According to research done in

transfected human embryonic kidney cells (HEK-293), the timing

of ERK1/2 phosphorylation in response to CB1R activation is

controlled by b-arrestin 2-mediated desensitization but not by

CB1R internalization (254). Additionally, follow-up investigations

showed a beneficial relationship between the duration of CB1R

association with -arrestin at the cell surface in a ligand-specific way

and the degree of b-arrestin-mediated signaling (246). Studies with

mice deficient in -arrestin 2 have indicated that this protein is

crucial for controlling CB1R activity (255, 256). The CB1R

expression in the -arrestin 2 knockout mice was similar, but they

were more sensitive to THC, with improved antinociception and

reduced tolerance (255, 256). In response to the CB1R allosteric

modulator ORG27569. A recent study revealed that MAPK kinase

½, ERK1/2, and the proto-oncogene tyrosine-protein kinase Src are

all phosphorylated by -arrestin 1, highlighting a signaling

mechanism that is heavily reliant on stimuli (257).

In addition to MAPK signaling, the phosphatidylinositol 3-

kinase/protein kinase B (PI3K/Akt) pathway also plays a significant

role in regulating cell growth and death. The CB1R has been

demonstrated to activate the PI3K/Akt pathway in Ratus ratus

fundamental astrocytes, the Homo sapiens astrocyte cell line, and

transfected CHO-K1 cells, which is in charge of the CB1R-induced

protective role on cell survival (245). The PI3K/Akt pathway is used

by rat oligodendrocyte progenitors to regulate cell differentiation

and improve cell survival against food restriction (258, 259). Similar

to this, HU-210, a selective CB1R agonist, protects against the

neurotoxin (S)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid in cultured rat cortical neurons by activating the PI3K/Akt

pathway but not the MAPK pathways (260). In various brain areas,

acute THC treatment in mice activated the PI3K/Akt pathway but

not the ERK1/2 pathway (260). Recent research on huntingtin

knock-in striatal neuronal cells showed that PI3K/Akt signalling

increased the expression of brain-derived neurotrophic factor

(BDNF), which allowed CB1R to defend neurons against

excitotoxicity (261). Additionally, it has been demonstrated that

CB1R-mediated PI3K/Akt activation influences oocyte maturation

and embryonic development (262).
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Treatment of Peripheral Blood Mononuclear Cells (PBMC) by

THC or CBD significantly reduced the mitogen-induced synthesis

of neopterin, a cellular immunity marker. However, the

pretreatment of PBMC with nanomolar doses of THC or CBD

increased the amount of Interferon‐gamma (IFN‐g) secreted in

response to phytohemagglutinin (PHA), micromolar dosages

effectively reduced the amount of this pro-inflammatory cytokine

produced as a result of activation (263). Additionally, the biphasic

effects of THC and CBD were seen in the mitogen-induced

breakdown of the tryptophan, which is mediated by indoleamine-

2,3-dioxygenase, and is a crucial adaptive immune defense

mechanism (263).
15 Challenges with use of
cannabinoids in animals

Major challenges and limitations that may have an impact on

the potential use of cannabinoids in animals are:
15.1 Cannabinoid’s stability and durability
during storage, heating, and exposure to
light and oxygen

Stability studies, a vital component of pharmaceutical research,

enable the capacity to assess the therapeutic effects of an active

pharmaceutical ingredient (API) or a finished pharmaceutical

output while taking numerous environmental factors into

account. Understanding CBD’s physical, chemical, and biological

properties as well as information on its stability and shelf life is

crucial to guarantee that it is utilized correctly in medicine. While

Carbone et al. (264) gave an essentially comprehensive overview of

THC degradation products. Cannabis resin and extract were shown

to be extremely sensitive to oxygen-induced disintegration, light,

and temperature (265). Layton et al. (266) concentrated more on

the identification of degradation products generated by the

aforementioned conditions, however because of the length of the

experiment and the use of methanolic matrices, the results are not

totally pharmaceutically acceptable.

It was important to discover an efficient, sensitive, and selective

analytical approach for the detection and quantification of CBD and

its potential degradation products in order to assess the impact of

heat, humidity, oxygen access, matrix, and light. The literature

mentions a few studies where cannabinoids were measured in

cannabidiol-rich products using a combination of ultra-violent

detection coupled with electrospray ionization tandem mass

spectrometry (UV and MS/MS), while cannabinoids were

analyzed in different matrices using isocratic and gradient elution

profiles (267–269). It is challenging to separate cannabinoids under

isocratic conditions because of their unique physical and chemical

properties (268, 270). The results of the stability study on CBD

powder were supported by an experiment on stability that

examined how dried cannabis plant material would react to

greater temperatures. They demonstrated that heat exposure at
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37°C and 50°C results in a considerable loss of cannabinoids in the

first 10 weeks, even if the CBD content in all of the stored materials

remained largely steady without any evident deterioration for 100

weeks (271).

Because of the possibility for change when a by-product is saved

in light exposure, photostability studies, which are necessary to

determine CBD’s overall light sensitivity, are critical. Cannabinoids

are least stable in photons, according to some scientists, although

this also depends on other circumstances including the chemicals in

which they are saved, temperature, O2 access, and many other

aspects (272). THC and CBD were stable for 6 days when exposed

to both naturally occurring and artificial if stored in both crude

extract and solution for, indicating that light-exposed samples

stored in different solvents degraded quicker than ones held in

the dark. The key inference that can be made is that while prolonged

exposure to light alone does not significantly alter the CBD

concentration, light may hasten the process of degradation when

paired with other factors like as the solvent employed, high

temperature, and the presence of oxygen.
15.2 Problem in maintaining homogeneity
in cannabinoids content in final products

During cannabis extraction operations, specific chemicals and

solvents are routinely used, including propane, water,

hydrocarbons, ethanol, butane, acetone, isopropanol, and hexane

(273, 274). In addition to being employed by illegal extraction

operations, these solvents are also used to lower production

expenditure and retain terpenes that were already expended (275,

276). According to a current study of fifty-seven cannabis samples,

more than 80 percent of the concentrates tested included residual

solvents (277). This resulted from the use of chemicals in machine

operations and product packaging when processing cannabis (278).

Terpenes are being added to tinctures, vape oils, lotions, meals, and

beverages by manufacturers of cannabis concentrates and derivative

goods to improve flavor, assert health advantages, or recreate the

original terpene profile that was lost during the cannabis extraction

process. To modify the product’s viscosity and reduce production

costs, medium-chain triglycerides, propylene glycol, or

polyethylene glycol are also added to vape oil (279). Whether

they are synthetic, botanical, or cannabis-derived, these additional

terpenes represent another potential source of leftover solvents in

cannabis-infused products. Additionally, throughout the vaping

process, additional terpenes and thinning/cutting agents may

collaborate or experience thermoxidative degradation to create,

among other things, analytes used in residual solvent compliance

testing (280). Although they fall outside the current compliance

rules, residual solvents created in this way are nevertheless a

significant public health concern. The bulk of published residual

solvents test regulations refer to USP 467, the standard for

pharmaceutical goods in the industry (280). The testing

methodologies defined in USP 467 have been utilized for many

years, and the usual solvents encountered in drug components,

excipients, and final products were clearly recognized.
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Analytical technologies are established to know potential of

Cannabis sativa and its derivative products as pollutants. However,

there would be a continual urge to develop the universal

methodology to cannabis testing as more testing data are

gathered, more proficiency testing programs are assessed. This

would continue to support consumer safety and lead the

development of laws and testing standards for goods derived

from hemp. Consider potency as an illustration; it continues to be

a key factor in the cannabis industry’s widespread consumer

preference (280). Testing labs and their support services will

continue to face challenges as the market for cannabis derivatives

develops due to tighter regulatory oversight and an increase in the

variety of matrices. Additionally, as other cannabinoids, such as 8-

THC, come under regulatory oversight, new laboratory tools may

be required to satisfy method specificity criteria. For the other test

techniques mentioned in this article, comparable sets of difficulties

exist (280).

It is also important to remember that secondary metabolites of

interest in cannabis go beyond terpenes and cannabinoids.

Flavonoids are one of several additional compounds of interest

that could be used in cannabis testing (281). When these criteria

become reality, the analytical testing community will need to use

what it has learned about cannabis’ difficulties as a matrix to build

appropriate testing procedures. Fortunately, significant

advancements have lately been achieved in our comprehension of

the constraints placed on analytical testing of cannabis and its

byproducts. This is a direct result of regulatory changes that have

allowed cannabis science to enter the commercial market. When

there are monetary benefits, there will be increase in effective testing

regimes, though not beyond increasing pains because of delay in the

accessibility of the crucial testing framework (280).
15.3 Lack of global standardized regulation
on the use of hemp and cannabinoids

There are many CBD products available, some of which are

marketed as medicines for various conditions as well as other items

that are produced and disseminated without regulations and

frequently have unproven ingredients (282). The U.S. Food and

Drug Administration has sent manufacturers 2 major series of

caution notifications for false medical assertions (explaining health

assistance and wellbeing without any supporting data) and false

production claims (marketing products as having a certain

concentration of CBD when testing shows that it doesn’t (282).
16 Prospects of using cannabinoids as
potential feed additive in animals

The hemp plant can be used to produce a variety of feed

materials, including hemp seed meal/cake, Cannabis sativa seed

oil, and the entire herb (including Cannabis sativa seed shives, fresh

or dried). Cannabis sativa flour (ground dried Cannabis sativa

leaves) and Cannabis sativa protein segregates (from seeds) are
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other goods. All animal species could utilize hemp seed and hemp

seed cake as feed, and the EFSA set up most incorporation values in

the whole feed for each species, such as 3 to 7 percent for chickens, 2

to 5 percent for Sus domesticus, 5 percent for cattle, and 5 percent

for aquatic species for hemp Cannabis sativa. Additionally, feed

conversion ratio studies show that hemp and its derivatives can be

used as a suitable supply of vital lipids and crude protein for cattle

diets (283).

Due to its high fiber content, the entire hemp plant, including

the stem and leaves, is regarded as an acceptable source of food for

ruminants (and horses). All species of animals can be fed on

Cannabis sativa seed and Cannabis sativa seed cake. When

introducing such goods into the total feed, a number of particular

species constraints (fiber for hens, FA for Sus domesticus, etc.)

should take into account. Hemp seed contains a part of rumen-

indigestible protein, which is favorable for ruminants (97).

According to information from feeding trials, hemp seed cake

might be utilized up to 20 percent in the diets of laying hens; it is

therefore determined that no more than 10 percent can be used in

the diets of hens for weight gain. Although there is null information

on pigs, it is anticipated that 10 percent Cannabis sativa seed cake

and 5 percent Cannabis sativa seed could be utilized in pig complete

feed. According to data, dairy cows can get a total mixed ration that

contains 14 percent hemp seed cake. Comparable research on the

upbringing of calves and fattening of cattle revealed that one to 1.4

kg of Cannabis sativa seed cake could be given per day (97).

Because hemp products are extremely limited in terms of

quantity and price, the maximum integration rates in the

formulation of compound feeding stuffs are probably lower than

the aforementioned values; as a result, it is difficult to determine

what they would be (47). The following maximal assimilation values

in feed could be accepted in normal manufacturing and production

if considerable volumes of hemp products are locally accessible: Pigs

2 to 5 percent hemp seed/hemp seed cake; ruminants’ 5 percent in

the routine daily feed; fish 5 percent; poultry for increase in weight 3

percent and laying poultry 5 to 7 percent. It must be highlighted

that these values or numbers cannot be viewed as cumulative as the

concurrent application of hemp by products would vastly outweigh

available resources. Entire herb (or portions of it, like leaves) may be

eaten as forage by ruminant.
17 Conclusion and future prospects

The present study concluded that hemp or its cannabinoids

possess excellent potential to modulate health and performance of

animals. The active cannabinoids have shown excellent antioxidant

and immune-modulatory activities making them promising dietary

additives especially under oxidative stress and disease conditions,

respectively. Besides the leaves and seeds of Cannabis sativus, its by-

products (oil cakes etc.) also are being used in animal feeds as

supplements. Different treatment strategies (e.g ensiling or solid-

state fermentation) have been used to avoid some adverse effects of

Cannabis feeding on animals. However, further studies are required

to optimize best feeding levels of hemp and cannabidiols in animal

diets to get desirable outputs in terms of better health and
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production of animals. Moreover, in-depth research will be

needed to understand the therapeutic efficacy of cannabinoids on

various health aspects in diverse animal species, examining optimal

dosage and administration methods, exploring potential side effects

and safety profiles, and delving into the underlying mechanisms of

cannabinoid action. Additionally, long-term impacts and feasibility

of incorporating cannabinoids into veterinary practices could be the

crucial aspects for future research.
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CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype
through the regulation of lipolysis and energy balance. FASEB J (2005) 19(11):1567–
9. doi: 10.1096/fj.04-3177fje
Frontiers in Immunology 21
162. Herling AW, Kilp S, Elvert R, Haschke G, Kramer W. Increased energy
expenditure contributes more to the body weight-reducing effect of rimonabant than
reduced food intake in candy-fed wistar rats. Endocrinology (2008) 149(5):2557–66.
doi: 10.1210/en.2007-1515

163. Bensaid M, Gary-Bobo M, Esclangon A, Maffrand J, Le Fur G, Oury-Donat F,
et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA
expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol
Pharmacol (2003) 63(4):908–14. doi: 10.1124/mol.63.4.908

164. Gasperi V, Fezza F, Pasquariello N, Bari M, Oddi S, Agrò AF, et al.
Endocannabinoids in adipocytes during differentiation and their role in glucose
uptake. Cell Mol Life Sci (2007) 64:219–29. doi: 10.1007/s00018-006-6445-4

165. Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al.
Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac
effects via AMP-activated protein kinase. J Biol Chem (2005) 280(26):25196–201. doi:
10.1074/jbc.C500175200

166. Brugman S, Ikeda-OhtsuboW, Braber S, Folkerts G, Pieterse CM, Bakker PA. A
comparative review on microbiota manipulation: lessons from fish, plants, livestock,
and human research. Front Nutr (2018) 5:80. doi: 10.3389/fnut.2018.00080

167. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular
analysis of commensal host-microbial relationships in the intestine. Science (2001) 291
(5505):881–4. doi: 10.1126/science.291.5505.881

168. Rudrappa T, Czymmek KJ, Pareı ́ PW, Bais HP. Root-secreted Malic acid
recruits beneficial soil bacteria. Plant Physiol (2008) 148(3):1547–56. doi: 10.1104/
pp.108.127613

169. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota.
Pathogens (2013) 3(1):14–24. doi: 10.3390/pathogens3010014

170. Rodriguez C, Mayo JC, Sainz RM, Antolıń I, Herrera F, Martıń V, et al.
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