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gd T cells, a specialized subset of T lymphocytes, have garnered significant

attention within the realm of cancer immunotherapy. Operating at the nexus

between adaptive and innate immunological paradigms, these cells showcase a

profound tumor discernment repertoire, hinting at novel immunotherapeutic

strategies. Significantly, these cells possess the capability to directly identify and

eliminate tumor cells without reliance on HLA-antigen presentation.

Furthermore, gd T cells have the faculty to present tumor antigens to ab T

cells, amplifying their anti-tumoral efficacy.Within the diverse and

heterogeneous subpopulations of gd T cells, distinct immune functionalities

emerge, manifesting either anti-tumor or pro-tumor roles within the tumor

microenvironment. Grasping and strategically harnessing these heterogeneous

gd T cell cohorts is pivotal to their integration in tumor-specific

immunotherapeutic modalities. The aim of this review is to describe the

heterogeneity of the gd T cell lineage and the functional plasticity it generates

in the treatment of malignant tumors. This review endeavors to elucidate the

intricate heterogeneity inherent to the gd T cell lineage, the consequential

functional dynamics in combating malignancies, the latest advancements from

clinical trials, and the evolving landscape of gd T cell-based oncological

interventions, while addressing the challenges impeding the field.

KEYWORDS
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1 Introduction

There is a distinct and conserved population of T lymphocytes called gd T cells, named

for the g and d chains making up the T cell receptor (TCR) that sets them apart from the

classical T cells (CD4+ and CD8+) that contain ab TCRs. They represent a distinctive

subset of T cells that exist in a transitional state between the adaptive and innate immune

systems (1–3). Functionally, there is compelling evidence to suggest that their antigen
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receptors exhibit greater specificity and diversity compared to the

surface antigen receptors found in ab T cells or B cells (4). gd T cells

play an important role as the first line of defense of the immune

system while also participating in the adaptive immune response.

Serving as a conduit between innate and adaptive immunity to elicit

potent reactions (5), gd T cells are viewed as promising

immunotherapeutic agents within the realm of cancer treatment,

offering a fresh perspective in the field of anti-tumor immunity

(6, 7).
2 Development and differentiation of
human gd T cells

In many mammalian species, gd T cells emerge as the primary

lymphocyte subset during fetal development (8, 9). Their receptor,

composed of a g and a d chain, is formed through somatic variable-

diversity-joining (V(D)J) recombination, similar to the segments of

a- and b-chains in ab TCRs (10). There are numerous

configurations for the T cell receptor’s gd variable region (Vg)
and delta chain variable region (Vd), and the fusion of these two

regions allows for the formation of a sizable collection of roughly

1020 TCR clonotypes (11), providing significant diversity to gd T cell

subsets.Human gd T cells are traditionally classified into three

primary subgroups: Vd1, Vd2, and Vd3, determined by the Vd
chain usage (12–14). Among the three main gd T cell subsets in

humans, Vd1 T cells predominantly pair with the Vg I family, which

includes (Vg2/3/4/5/8), and the Vd2 subset predominantly binds Vg
II (Vg9), typically Vg9Vd2 T cells (15). Unique tissue localization,

activation, and function are displayed by various gd T cell subsets

and their distribution within the human body can be distinguished

clearly (16–19). Vd1 T cells are predominantly located in epithelial

tissues, including the intestines and skin, as well as organs like the
Abbreviations: CAR-T cell, Chimeric antigen receptor-T cell; MHC, major

histocompatibility complex; IPP, isopentenyl diphosphate; DMAPP,

dimethylallyl diphosphate; HMBPP, (E)-4-hydroxy-3-methyl-but-2-enyl

pyrophosphate; HIV, human immunodeficiency virus; NAFLD, nonalcoholic

fatty liver disease; TCGA database, The Cancer Genome Atla database; HLA class

I, human leukocyte antigen; NKRs, natural killer cell receptors; TNF-a, tumor

necrosis factor a; TRAIL, Tumor necrosis factor‐related apoptosis‐inducing

ligand; NKG2D, Natural killer group 2, member D; VEGF, Vascular

endothelial growth factor; ANG-2, angiopoietin-2; SPM, small peritoneal

macrophages; MIF, Migration inhibitory factor; CTL, cytotoxic T lymphocytes;

GM-CSF, granulocyte-macrophage colony-stimulating factor; MDSC, myeloid

derived suppressor cells; TAN, tumor-associated neutrophils; NE, neutrophil

elastase; MMPs, metalloproteinases; ROS, reactive oxygen species; VEGFR2,

vascular endothelial growth factor receptor 2; AREG, amphiregulin; GvHD,

graft versus host disease; APCs, antigen-presenting cells; AML, Acute Myeloid

Leukemia; BTN3A, Butyrophilin 3 A; TAA, tumor-associated antigens; PSMA,

prostate-specific membrane antigen; HSCT, hematopoietic stem cell

transplantation; CR, complete remission; GBM, glioblastoma; PFS, progression-

free survival; OS, overall survival; NHL, non-Hodgkin lymphoma; ORR, overall

remission rate; iPSCs, pluripotent stem cells; PBMC, peripheral blood

mononuclear cells; PAgs, phosphate antigen; TCR, T cell receptor.
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spleen and liver. These cells have a vital function in safeguarding the

preservation of epithelial tissue integrity (20). Vd2 T cells, mainly

the Vg9Vd2T cell subset, account for approximately 60-95% of

peripheral gd T cells in the circulation (21). These cells make up

around 2-5% of the circulating CD3+ T cell population and play a

dual role as both effector cells and antigen-presenting cells (APCs)

(22). Vd3 T cells, which are infrequently observed in circulatory

systems, are notably prevalent in hepatic tissues, particularly in

individuals with infections or malignancies.
3 gd T cell in complex tumor
microenvironments

3.1 Recruitment of gd T cells to the
tumor microenvironment

The tumor microenvironment (TME) significantly influences

the activity of gd T cells across various cancers. In the complex

TME, gd T cells are recruited or activated toward the tumor site.

However, there also exists a synergistic or pleiotropic effect of tumor

cells and multiple factors in the TME, where infiltrating gd T cells

are activated or depleted, or polarized to a tumor-promoting

phenotype, thus supporting cancer progression (18).

Some investigators have analyzed the effect of the TME on gd T
cell recruitment in a preclinical transplantable B16 melanoma

model, where human Vd1 T cells use the CCR2/CCL2 pathway to

migrate toward the tumor, where they exert critical non-redundant

anti-tumor functions (23). Consistent with this study, Vd1 T cell

infiltration was abundant in breast and primary prostate cancers

with significantly upregulated CCL2 expression (24, 25).

Furthermore, in cases of hepatocellular carcinoma (HCC), tumor

cells harness the CCL4/CCL5 chemokine pathway, interacting with

the CCR1/CCR5 receptors, thereby orchestrating the mobilization

of gd T cells either from the peripheral blood or peritumor region to

the tumor region (26). In the TME of breast cancer, breast cancer

cells secrete IP-10, which mediates the transport and migration of

gd1 T cells to the tumor site via IP-10/CXCR3 (27, 28). It has also

been claimed that the CCR4/CCR8-CCL17/CCL22 pathway also

significantly induces Vd1 T cell migration. Meanwhile, high levels

of CCL17 and CCL22 were detected in a variety of tumors, such as

lung cancer, gastric cancer, B-cell non-Hodgkin’s lymphoma,

Hodgkin’s lymphoma, and peripheral T-cell lymphoma. In

lymphomas, CCL17 was specifically expressed in classical

Hodgkin’s lymphoma, whereas CCL22 was expressed in nodular

lymphocyte-predominant Hodgkin’s lymphoma and B-cell non-

Hodgkin’s lymphoma (29).
3.2 Heterogeneity of gd T cells in the
tumor microenvironment

Both in vivo and in vitro studies have revealed the multifaceted

roles of various gd T cell subtypes in modulating tumor cell

proliferation, underscoring their intricate contribution to the

dynamics of cancer progression. Flow cytometry and
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transcriptome analyses revealed that tumor-infiltrating

lymphocytes contained an average of 4% gd T cells, most of

which expressed Vd1. Among gd T cells in the TME, the Vd1 T

cell subset highly expresses CXCR1 and weakly expresses CCR5,

whereas Vg9Vd2 T cells show only strong expression of CCR5 (30).

Moreover, Vg9Vd2 T cells concurrently expressed CCR3 and

CXCR3, enabling them to initiate anti-tumoral responses in

peripheral tissues, especially during the metastatic processes (18).

Vg9Vd2 T lymphocytes have been identified to demonstrate

cytotoxic properties against breast cancer cells, enhancing apoptotic

pathways and attenuating angiogenic signaling processes (31).

Accumulated gd1 T cells in the breast TME are termed gd1 Tregs

(32, 33), and these breast tumor-derived gd Tregs suppress innate

and adaptive immunity by inducing immune senescence and

preventing dendritic cell maturation and activity (24, 34).

In the study of gd T cells in the TME of colorectal cancer (CRC),

the results showed that gd T cells were mainly detected in

paracancerous tissues but rarely in intra-tumoral tissues, and

there was no significant increase in the number of T cell

subpopulations of Vd1 and Vd2 in the CRC-infiltrating gd T cells,

but the main subpopulation was Vd1 T cells (35, 36). The shifted

balance between these subpopulations might hold implications for

the progression of colon cancer (37).

Transcriptomic analysis of the peripheral blood of leukemia

patients showed the presence of many tumor-infiltrating Vg9Vd2
cells, which positively correlated with the survival of these patients

(18, 38). But then a new finding emerged that patients with chronic

lymphocytic leukemia (CLL) had an increased percentage of Vd1
cells, which replaced Vg9Vd2 cells as the predominant gd T-cell

subtype in the peripheral blood (39). And the study noted that a

higher percentage of Vg9Vd2 cells was associated with a poor

prognosis in patients with untreated CLL, as these lymphocytes

exhibited signs of functional failure with reduced NKG2D

expression (40, 41).

Infusion of large numbers of gd T cells (Vd1 and Vd2 T cells)

into high-risk leukemia patients by allogeneic hematopoietic stem

cell transplantation (HSCT) contributes to the rapid control of

infections and leukemia relapse. In HSCT recipients, Vd2 and Vd1
T cells were found to be cytotoxic to primary acute leukemia cells,

whereas newly generated Vd1 and Vd3 cells in the TME underwent

an adaptive response driven by cytomegalovirus (CMV)

reactivation (42).
4 gd T cells funtional flexibility

Despite accounting for a relatively small proportion of total T

cells, gd T cells have a complex and crucial role in the onset and

progression of cancer. The function of gd T cells in the TME can be

altered by several circumstances to become either support tumor

growth or combat it. Subsets of gd T cells indirectly achieve anti-

tumor immunity by producing specific factors to promote Th1,

Th2, or Th17 differentiation (43–45) or cross-transmitting signals

with B cells (46, 47), natural killer (NK) cells (45), and dendritic

cells (48) in TME (49). There are also specific subpopulations of gd
T cells secrete a quantity of IL-17, which can directly act on
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epithelial cells to promote the progression of cancer, and gd T can

affect ab T cells through immune checkpoints, supporting the

creation of an immunosuppressive microenvironment that

promotes tumorigenesis (2, 50). This dual role may be attributed

to the inherent plasticity of gd T cells, which includes the

recruitment or residence of specific gd T cell subsets at the tumor

site and the ability to differentiate into different functional cell

subsets based on the TME (51, 52).
4.1 Anti-tumor function

In the realm of oncology, gd T cells serve as a robustly positive

prognostic indicator in most malignancies (47, 53, 54). Pan-cancer

analysis based on the TCGA database in 2015 showed that gd T cells

were the best predictor of the prognosis within a range of solid

tumors (50). gd T cells are crucial for cancer immune surveillance

and indeed studies have found that the incidence of cancers in mice

lacking gd T cells increases (55). Notably, gd T cells accumulate in

tumor-associated lymphoid tissues (38, 56) and can penetrate solid

tumor tissues (57, 58). They can naturally infiltrate into the tissues

of the whole body, including the lung, liver, and intestinal tract,

which can be difficult malignancies to penetrate therapeutically.

The gd TCR of Vg9Vd2 T cells is highly sensitive to tumor

perception. During the course of tumorigenesis, the intracellular

accumulation of phosphoantigens (pAgs) such as isoprenyl

diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) can

weakly activate these cells. Meanwhile, the exogenous pAg (E)-4-

hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) can be co-

locked intracellularly by transmembrane chymotrypsin 3A1

(butyrophilin 3A1, BTN3A1) and BTN2A1, and extracellularly

detached and bound to the gd TCR, resulting in efficient

activation of gd T cells (59, 60).

gd T cells have characteristics of both the innate and adaptive

immune systems and can act directly or indirectly on tumor cells

(Figure 1; Table 1). To directly attack cells, gd T cells rapidly migrate

into the local tumor microenvironment by recognizing NK cell

receptors on the cell surface. gd 1T cells and gd 2 T cells are both

capable of ex vivo lysing of tumor cells and express chemokine

receptors that enhance tumor homing (4). Activated gd T cells can

release granzyme and perforin to kill tumor cells directly (78). In

addition, different gd T cell subsets attach to tumor cells through the

death receptors TNF-related apoptosis-inducing ligand receptor

(TRAILR), CD95 (also known as FAS), and TRAIL and lyse

cancer cells (65, 79, 80). The cell surface receptors NKG2D (81)

and CD16 (48) also mediate the direct killing of gd T cells based on

antibody-dependent cytotoxicity and effector responses (48, 82).

Complementing their cytotoxic capabilities, gd T cells can also

secrete cytokines IFN-g and TNF-a, jointly suppressing tumor-

associated angiogenesis (83).In some hematologic tumors, gd T cells

have been found to be capable of immunosurveillance by NK-like

mechanisms (81, 84). Remarkably, around 80% of quiescent

circulating gd T cells express NK receptors. Most of these

cytotoxic Vg9Vd2 T cell clones express HLA class I inhibitory NK

cell receptors, such as CD94/NKG2A, KIR2DL1, KIR2DL2,

KIR3DL1, or KIR3DL2 (85). Intriguingly, the majority of the
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FIGURE 1

The anti-tumor function of gd T cells. gd T cells elicit antitumor immune responses through multiple pathways (1) Direct killing effect; (2) Secretion of
IFN-g and TNF-a; (3) Induced B cell transformation to secrete large amounts of Ig E and produce adaptive immune responses; (4) Eliciting CD8+ T
cell responses. TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; ADCC, antibody-dependent cell-mediated cytotoxicity;
CTL, cytotoxic T lymphocyte; NK, natural killer cell; DC, dendritic cells.
TABLE 1 Mechanisms of gd T cell effects on tumors.

Mechanism gd T cell subsets Cancer cell type Ref.

Anti-tumor

perforin and granzyme B secretion to induce cytotoxicity

Vd1 T cells primary multiple myeloma cells (61)

Vg9Vd2 T renal cell carcinoma (62)

CD56+ gd T-cell squamous cell carcinoma (63)

kill tumor cells via trans-antibody dependent cell mediated cytotoxicity
(ADCC)

Vg9Vd2 T breast cancer (64)

FasL- and TRAILR-mediated apoptosis of tumor cells
gd T cells PDAC (65)

gd T cells lung cancer cell lines (66)

cross-present tumor antigens and stimulate ab T cell activation and
proliferation

Vg9Vd2 T breast cancer stem-like cells
(67–
69)

co-stimulate NK cells via 4-1BB gd T cells
squamous cell carcinoma head and neck tumor cell

lines
(70)

Pro-tumor

promote angiogenesis and tumour cell proliferation
IL17 producing gd T

cells
gallbladder cancer, hepatocellular carcinoma

(71,
72)

mobilizes neutrophils and polymorphonuclear myeloid-
derived suppressor cells (PMN-MDSCs)

IL17 producing gd T
cells

colorectal cancer, hepatocellular carcinoma
(73,
74)

inhibit the activity of cytotoxic
CD8+ T cell

IL17 producing gd T
cells

pancreatic cancer (75)

(Continued)
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clones express several different receptors, which help them to

recognize different types of tumors (86). In breast cancer, Vd1T
cells residing at the tumor site recognize the tumor through innate

stimuli including NKG2D (87). Within the TMEs, gd T cells exert

intermediate anti-tumor effects by interacting with B cells, dendritic

cells, ab T cells, and NK cells. gd T cells can be used as antigen-

presenting cell to activate ab T cells (68). They can increase the

amount of IFN-g secreted by ab T to regulate the TME by inducing

recruitment of CTL, NK cells, and Th1, inducing M1-type

polarization of macrophages (12), activating dendritic cells to

induce their maturation (88), upregulating the expression of

MHC class I in tumor cells to improve anti-tumor immune

response (89) and preventing pro-tumor T helper cells from

functioning (Treg, Th17 and/or Th2). Additionally, epithelial Vg5
T cells induce B cell transformation and secretion of large amounts

of Ig E, CCR5-expressing Vg9Vd2 T cell subsets promote antibody

production and class switching (90), leading to the development of

an immediate adaptive immune response in skin malignancies

brought on by chemicals (91).
4.2 Pro-tumor function

Specific gd T cells within the tumor microenvironment are

known to secrete IL-17 (92), which promotes the emergence of

autoimmune and inflammatory disorders (93, 94). At the same

time, IL-17-producing gd T cells promote the growth of tumors in

a variety of ways. Recent studies have elucidated five key

characteristics that underscore the tumor-promoting roles of these

gd T cells (Figure 2; Table 1). Firstly, gd T cells have been shown to

have a pro-angiogenic effect (95). Vascular endothelial growth factor

(VEGF) and angiopoietin-2 (ANG-2) are angiogenic factors that gd T
cells can produce to promote angiogenesis (92, 96). Moreover,

Margarida Rei et al. discovered that small peritoneal macrophages

(SPM) were activated by IL-17-secreting Vg6 gd T cells, which

accelerated the progression of ovarian cancer. Migration inhibitory

factor (MIF) and IL-6 are two of the many tumor-promoting

mediators that SPM can generate. They may promote the

development of a variety of pro-inflammatory and pro-angiogenic

molecules, while also protecting tumor cells from death (96).

Secondly, these cells can prevent immune cells from performing

their anti-tumor immunological functions. Specifically, IL-17

production from gd T cells can directly suppress the anti-tumor

activities of CTL and Th1 cells. Additionally, a significant proportion

of gd1 Treg cells can be found in the human breast tumor
Frontiers in Immunology 05
microenvironment, and they exert potent inhibitory effects on the

proliferation of CD4+, CD8+, and Vg9Vd2 T cells by inducing

senescence in responding immune cells and impairing the

maturation and function of DCs (24, 27, 32). Elevated BMP2 in

Acute Myeloid Leukemia (AML) patients induces the production of

CD25+CD127lowVd2+ T cells (named Reg-Vd2). Reg-Vd2 cells

produce a number of regulatory cytokines rather than

inflammatory cytokines, and the anti-AML activity of effector Vd2
cells is significantly inhibited by Reg-Vd2 cells (97). Furthermore,

Vg1 gd T cells secrete IL-4 and decrease the NKG2D, perforin, and

interferon expression levels in Vg4 gd T cells (76).

Thirdly, gd T cells can directly construct a tumor

immunosuppressive microenvironment. In human colorectal

cancer, gd T cells are polarized by microorganisms present due to

disruption of the tumor epithelial barrier and inflammatory

dendritic cells (Inf-DCs) in the TME to produce cytokines such

as TNF-a, GM-CSF, IL-17 and IL-8. These cytokines recruit

myeloid derived suppressor cells (MDSC) into the TME, regulate

the development of tumor cells as well as induce Treg differentiation

(73). In addition, these cells encourage G-CSF-mediated tumor-

associated neutrophils (TAN) proliferation and accumulation in the

TME. These TAN, in turn, release a variety of cancer-promoting

factors, such as growth factors, neutrophil elastase (NE) and

metalloproteinases (MMPs), and produce reactive oxygen species

(ROS) . The se ac t i ons promote deve lopment o f an

immunosuppressive tumor microenvironment, inducing the

depletion of CD8+ T cells and supporting tumor metastasis,

tumor growth and invasion (31). Zhang et al. demonstrated that

the “gdT cell-IL17A-Neutrophil” axis in the breast cancer tumor

microenvironment promotes immunosuppression as well as

enhancing the breast cancer’s tolerance to high-dose anti-

VEGFR2 therapy (98).

In addition to this, there are two important protumor

mechanisms, IL-17 secreted by gd T cells modulates adhesion

molecules and upregulates endothelial cell permeability to

promote tumor metastasis (99). gd T cells also produce IL-22 and

amphiregulin (AREG), which directly induced tumor cell

proliferation (100).
5 gd T cell-based cancer therapy

gd T cells can directly identify and kill tumor cells therefore,

adoptive and in vivo-induced gd T cell expansion therapies are

promising avenues to explore for anti-cancer immunotherapy
TABLE 1 Continued

Mechanism gd T cell subsets Cancer cell type Ref.

Pro-tumor

regulatory in Vg4-mediated tumor immunity Vg1 gd T cells mouse melanoma
(76,
77)

suppress the activity of ab T cells and dendritic cells through induction of
senescence

Vg1 gd T cells breast cancer
(24,
32)
frontie
CG, control group; IQR, interquartile range; MRD, measurable residual disease.
rsin.org

https://doi.org/10.3389/fimmu.2023.1285801
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2023.1285801
purposes (101, 102). gd T cells may be more favourable for use in

adoptive cell immunotherapy compared to ab T cells as they react

more quickly to targets to produce effector factors, and they are

found in a range of organs (103). In the hypoxic tumor

microenvironment, gd T cells, particularly the Vd 1 subset, exhibit

greater tissue tendency and greater invasiveness compared to ab T

cells (104). Moreover, graft versus host disease (GvHD) and

allogeneic response risks can be decreased by using gd T cells’

MHC-independent identification of target cells (105). Currently,

various strategies are being used to activate and target gd T cells,

including drugs, antibodies, and genetic engineering. These

strategies aim to enhance the anti-tumor response of gd T cells

and use them to combat hematological or solid tumors, such as

B-cell malignancies (106).
5.1 CAR-gd T

CAR-T cell therapy is a type of immunotherapy that uses the

patient’s own immune cells to fight cancer. In this approach,T cells

are collected from the patient’s blood and genetically modified in

the laboratory to express chimeric antigen receptors (CARs) on

their surface. These CARs are designed to recognize specific

proteins, called antigens, on the surface of cancer cells. Once the

T cells have been modified, they are grown in large numbers and
Frontiers in Immunology 06
infused back into the patient’s body. The CAR-T cells can then seek

out and destroy cancer cells that express the target antigen (107).

In the context of CAR-gd T cells, diverse extracellular and

intracellular domains can be fashioned based on the target antigen,

the required co-stimulatory signal, and the signaling partner (108).

Some examples of CAR designs for gd T cells are: CD19-CAR, GD2-

CAR (109), CD20-CAR (110), NKG2D-CAR (111), CCR (chimeric

co-stimulatory receptor) (112), and NSCAR (non-signaling CAR)

(113). To generate CAR gd T cells, different methods of delivering

genes can be used, for example, retrovirus (114), lentivirus (115),

transposon (116), or mRNA electroporation (117). Traditional CAR-

ab T cell therapy has produced good clinical data in leukemia and

other hematological malignancies, but it has not achieved the same

success in solid cancer. In this regard, CAR-gd T cells might offer a

more promising avenue, as they have innate cytotoxicity capabilities,

can recognizemultiple antigens (118) and acquire the phenotypic and

functional properties of antigen-presenting cells (APCs) (59, 119). In

preclinical studies, CAR gd T cells have exhibited potential against a

diverse range of hematological and solid tumors, including B-cell

lymphoma (110), glioblastoma (120), melanoma (121), colorectal

cancer, and ovarian cancer (111). Nevertheless, several challenges

persist in the development and application of CAR gd T cell therapy

(122), such as reduced tumor-toxicity, homing, in vivo persistence,

heterogeneity, inter-donor variability, tumor microenvironment

adaptation, etc.
FIGURE 2

Pro-tumor functions of gd T cells. (1) Secretion of IL-17 induces tumor cells to express pro-angiogenic factors, as well as mobilizing SPM to
promote inflammatory response and angiogenesis. (2) Inhibition of anti-tumor immune response; (3) Construction of an immunosuppressive
microenvironment; (4) Secretion of IL-17 to upregulate AM and endothelial cell permeability, as well as production of IL-22 and AREG to directly
induce tumor cell proliferation. VEGFA, vascular endothelial growth factor A; ANG2, angiopoietin-2; SPM, small peritoneal macrophages; MDSC,
myeloid-derived suppressor cells; TAN, tumor-associated neutrophils; G-CSF, granulocyte colony-stimulating factor; NE, neutrophil elastase; MMPs,
matrix metalloproteinases; AM, adhesion molecule.
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5.2 Adoptive transfer and In vivo expansion
of gd T cells

Adoptive transfer of gd T cells is a form of cancer treatment that

involves the infusion of a patient’s own gd T cells that have been

expanded and activated outside the body. Nevertheless, previous

clinical trials utilizing autologous gd T cells sourced from cancer

patients have only demonstrated limited clinical efficacy (123).

Hence, current research is increasingly focusing on adoptive

transfer therapies with allogeneic Vg9Vd2 T cells (124), which

have been shown to enhance immune function, including CD4+ T

cell, CD8+ T cell, and NK cell counts in cancer patients, even leading

to total remission of recurrent hepatocellular carcinoma in one

notable case (125). Another study investigated the use of adoptive

cell therapy with IL-15-induced gdT cells in a patient-derived renal

cell carcinoma xenograft model. The study concluded that IL-15-

induced gd T cells effectively suppressed tumor growth in vivo and

prolonged the survival time of RCC-bearing patient−derived

xenograft (PDX) mice (126).

In vivo expansion of gd T-cells stands out as a unique approach
to cancer immunotherapy. Unlike the ex vivo expansion seen in

adoptive transfer, this method seeks to stimulate gd T-cells directly

within the patient’s body. This approach aims to enhance the anti-

tumor activity of gd T cells by using agents such as zoledronate,

phosphoantigens, or specific cytokines such as IL-15 or IL-2 (124).

In vivo expansion of gd T cells has been shown to induce tumor

regression and prolong survival in some animal models and clinical

trials. A pilot study evaluated the adoptive transfer and in vivo

expansion of haploidentical gd T cells in patients with advanced

hematologica l mal ignancies ine l ig ib le for a l logeneic

transplantation. Patients received peripheral blood mononuclear

cells from half-matched family donors, followed by zoledronate and

IL-2 to stimulate donor gd T cells in vivo. This resulted in significant

expansion of donor gd T cells, NK cells, and double-negative ab T

cells. Impressively, three out of four patients achieved complete

remission despite prior refractoriness (127).
6 Clinical trials: current state of
the art

At present, many preclinical studies have been conducted by

researchers that suggest that gd T cell therapy works well in multiple

tumor models. While treating advanced ovarian cancer, gd T cells
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function in the patient’s ascites and tumor by innate and adaptive

immunological methods, respectively. This may make gd T cells a

viable treatment option for advanced ovarian cancer (128). For

hematological malignancies, researchers have explored various

ways to treat tumors using gd T therapy. Ganesan et al. created a

Vg9/CD123 bispecific antibody that specifically triggers Vg9+ gd T

cells and causes cytotoxicity to the tumor in vitro. This antibody

efficiently induces Vg9+ gd T cells to engage with tumor cells. In

patients with AML, these cells possess a variety of strategies for

mounting an efficient immune response against overloaded tumor

cells (129). gd T cells can identify cancer antigens other than

peptides, so extending the pool of possible targets for tumor cell

eradication. Combining this feature, Xu et al. proposed a new TCR-

T platform. They designed the AbTCR with non-MHC-restricted

targets like CD19, which allows for the management of cytokine-

related toxicity beyond existing anti-CD19 CAR-T therapies and

provides comparable tumor suppression (115). Contrary to

conventional CD19 CAR-ab T, CAR-gd T cells may still be able

to target leukemia cells that lack the CD19 antigen and as such are

useful for cases in which the antigen has been lost (130).

Early clinical results have established the promising vista of gd T
cells therapies in leukemia and other hematological tumors and

solid tumors such as lung, gastric, and liver cancers. A landmark

study led by Zhinan Yin’s team monitored patients with advanced

liver and lung cancers over three years post-reception of allogeneic

gd T cell therapy. The team used allogeneic Vg9Vd2 gd T cells from

healthy human sources. By treating 132 patients with advanced lung

and liver cancer tumors with a total of 414 cell transfusions, their

study found that there was not a single case of serious side effects

from the allogeneic gd T cell transfusions and only some patients

developed transient, mild clinical reactions (125, 131). Furthermore,

the results highlighted a significant extension in survival among

eight liver cancer patients and ten lung cancer patients who

received ≥5 cell infusions (130). During this decade, dozens of

clinical trials have been approved and several products have

emerged as well (132). Numerous biotechnological enterprises are

channeling significant investments into this burgeoning domain

(Table 2). The gd T treatment proposed by French biologics

company ImCheck Therapeutics comprises a novel human-

derived anti-BTN3A antibody, ICT01. ICT01 is a monoclonal

antibody that specifically promotes Vg9Vd2 T cells targeting of

BTN3A, which is extensively expressed in diverse solid and

hematologic malignancies. ICT01 has been shown to have

antitumor activity in vitro and in vivo tumor models against a
TABLE 2 Clinical attempts at tumor immunotherapy using gd T cells.

Sponsor Product
name

Treatment strategy Target Indications Phase Clinical
Registration

Adicet Bio ADI-001 CAR-gd T cells CD20 B cell lymphoma Phase 1 NCT04735471,
(110)

CytoMed Therapeutics CTM-N2D allogeneic NKG2DL-targeting CAR
gd T Cells

NKG2DL Advanced Cancers Phase 1 NCT05302037

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1285801
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2023.1285801
TABLE 2 Continued

Sponsor Product
name

Treatment strategy Target Indications Phase Clinical
Registration

CytoMed Therapeutics CTM-N2D Haplo/NKG2DL-targeting CAR gd T
Cells

NKG2DL Solid tumors Phase 1 NCT04107142,
(117)

Beijing Doing Biomedical
Technology

Anti-CD19-CAR
gd T cells

CAR-gd T cells CD19 B cell lymphoma,
ALL, CLL

phase 1 NCT02656147

PersonGen BioTherapeutics modified CAR
-gd T cells

CAR-gdT cells CD7 relapsed or refractory
CD7+ T cell-derived

malignancies

Early
Phase 1

NCT04702841

Lava Therapeutics LAVA-051 gd bsTCE CD1d CLL, MM, AML Phase 2 NCT04887259,
(133)

Lava Therapeutics LAVA-1207 gd bsTCE PSMA mCRPC Phase 2 NCT05369000

ImCheck Therapeutics ICT01 activator
Vg9Vd2T cells

BTN3A
(CD277)

solid tumors, blood
cancers

Phase
2a

NCT04243499
NCT05307874,

(131)

Gadeta BV TEG002 autologous T cells transduced with a
specific gd TCR

HLA MM,
ovarian cancer

phase 1 NCT04688853,
(134)

Peking University ET190L1

ARTEMIS™ cell

AbTCR-T platform CD19 B cell lymphoma Phase 1 NCT03415399,
(129)

IN8bio INB-100 expanded/activated gd T cell infusion — leukemia Phase 1 NCT03533816

IN8bio INB-200 gene-modified autologous gd T cells — Glioblastoma Phase 1 NCT04165941,
(135)

TC BioPharm ImmuniCell® autologous gd T cells — Malignant Melanoma,
RCC, NSCLC

Phase 2 NCT02459067

TC BioPharm OmnImmune® allogeneic gd T Cell therapy — AML Phase
2b/3

NCT05358808

GammaDelta Therapeutics GDX012 allogeneic Vd1 T Cell therapy — AML Phase 1 NCT05001451,
(87, 136)

Acepodia Biotech ACE1831 allogeneic gd T Cell therapy CD20 B-NHL Phase 1 NCT05653271

302 Military Hospital of
China

Allogeneic gd T
cells

allogeneic gd T Cell therapy — HCC Phase 1 NCT04518774

Emory University Allogeneic
Expanded

gd T

allogeneic Expanded gd T Cells with
GD2 Chemoimmunotherapy

GD2 neuroblastoma Phase 1 NCT05400603

Chinese PLA General
Hospital Medical School of
Chinese PLA

ex vivo expanded
allogeneic gd T

cells

allogeneic gd T Cell therapy — Hematological
Malignancies

Phase 2 NCT04764513

Chinese PLA General
Hospital Medical School of
Chinese PLA

ex vivo expanded
allogeneic gd T

cells

allogeneic gd T Cell therapy — Solid Tumors Phase 2 NCT04765462

Wuhan Union Hospital,
China

Ex-vivo expanded
gd T cells

allogeneic gd T Cell therapy — AML Phase 1 NCT04008381

Fuda Cancer Hospital Vg9Vd2T allogeneic Vg9Vd2T — Lung Cancer Phase 2 NCT03183232,
(130)

Fuda Cancer Hospital Vg9Vd2T allogeneic Vg9Vd2T — Pancreatic Cancer Phase 2 NCT03180437

Fuda Cancer Hospital Vg9Vd2T allogeneic Vg9Vd2T — NSCLC Phase 2 NCT02425748

Fuda Cancer Hospital Vg9Vd2T allogeneic Vg9Vd2T — HCC Phase 2 NCT02425735

Fuda Cancer Hospital Vg9Vd2T allogeneic Vg9Vd2T — TNBC Phase 2 NCT02418481

(Continued)
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range of cancers. The study published preliminary data from the

first phase 1/2a clinical study on ICT01, revealing the value of the

potential clinical application of ICT01 in the care of people with

developing malignancies (133).

The Dutch biotech startup Lava Therapeutics have described a

humanized bispecific gd T cell binding antibody (gd bsTCE). gd bsTCE
directly induces the effective killing of tumor cells through its unique

targeting of Vg9Vd2 T cells and tumor-associated antigens (TAA).

Two of its company’s projects, LAVA-051, and LAVA-1207, have

entered clinical phase 2 trials. Multiple myeloma, chronic lymphocytic

leukemia, and acute myeloid leukemia all include the antigen CD1d,

which is recruited by LAVA-051 to gd T cells (137). LAVA-051 has

been given orphan drug status by the FDA for the treatment of (CLL)

based on preliminary data from the Phase 1/2a clinical study and has a

satisfactory safety and tolerability profile. Meanwhile, LAVA-1207 was

designed to be a gd bsTCE targeting prostate-specific membrane

antigen (PSMA), with its clinical study focusing on metastatic

castration-resistant prostate cancer.US-based biotech company

IN8bio has also updated positive data from its ongoing phase 1

clinical trial of the allogeneic gd T cell therapy INB-100 in high-risk

AML patients who have previously undergone haploidentical

hematopoietic stem cell transplantation (HSCT). From the data, all

three patients treated with INB-100 received at least 12 months of

follow-up which showed all three were in complete remission (CR).

Remarkably, 100% of evaluable-dose patients remained on study and

were in CR, with one patient having a progression-free disease course

of more than 3 years (NCT03533816).Another ongoing project, INB-

200, uses genetically modified autologous gd T cell immunotherapy for

the treatment of glioblastoma (GBM). Data according to the Phase 1

clinical trial of INB-200 for GBM showed that 100% of the six treated

patients exceeded the median and expected progression-free survival

(PFS). Two of the patients had exceeded the expected overall survival

(OS), and the medication was generally well-tolerated and robust.

Innovative developments in CAR-gd T-cell therapy is also

advancing at a rapid pace. The UK company TC Biopharm is

developing a new CAR-T therapy that takes advantage of the

inherent specificity of gdT cells for phosphorylated antigens

expressed only by cancerous and infected cells to develop the

ImmuniCAR. OmnImmune, is being tested in a Phase 2b/3

clinical trial, following a 50% CR in Phase 1b/2a clinical data for

this therapeutic candidate for AML. Concurrently, Adicet Bio

announced clinical data for its allogeneic CAR-gd T cell therapy

ADI-001 for relapsed or refractory B-cell non-Hodgkin lymphoma
Frontiers in Immunology 09
(NHL). Data from the study showed ADI-001 demonstrated a 75%

overall remission rate (ORR) and CR in eight patients who had

received multiple prior therapies, including those who relapsed after

using CAR-ab T therapy. Gadeta, a Dutch company, has also

innovated in CAR-gd T-cell therapy, designed to use ab T cells to

carry the T-cell receptor for gd T cells. The company’s TEGs

technology enables the efficient expression of gd TCR in ab T

cells, mediates tumor-specific proliferation of ab T cells, and

extensively infiltrates CD8+ effector T cells and CD4+ helper ab T

cells into tumors while not affecting normal organs.

Beyond the aforementioned therapeutic strategies, innovative gd T
cell-based treatments for diverse cancers are continually emerging.

Induced pluripotent stem cells (iPSCs) termed T-iPSCs were formed by

Watanabe et al. by rearranging the TCR g chain (Vg9) and TCR d chain
(Vd2) gene regions (gd T-iPSCs). Notably, these gd T-iPSCs can

differentiate into hematopoietic progenitor cells, which could

theoretically provide a more potent collection of cells for new cancer

research and a nearly infinite source of regenerating cells (138).

Similarly, Zeng et al. successfully reprogrammed the gd T-iPSC line

of Vg9Vd2 T cells and these cells were modified into NK-like gd T cells,

termed “gd natural killer T” (gd NKT) cells (139).
7 Limitations and potential of
gd T-cell therapy

It should be emphasized that gd T-cell therapy still has some

issues that need to be addressed. Firstly, the scarcity and low

efficiency of in vitro expansion remains a serious limitation to

entry of gd T cells into the clinical pipeline. Expanding a

considerable number of cell products through in vitro methods is

crucial for the success of gd T cell adoptive cell therapy. However,

the effectiveness of this approach is limited by the inherent

differences between donors (140). Recent research has shown that

the level of physical activity in a donor can be used as a gauge for

determining the in vitro expansion potential of their gd T cells

(124). The dominant subtype of gd T cells in the peripheral blood of

humans and other primates is Vg9Vd2 T cells, which account for

only 1-10% of circulating lymphocytes in peripheral blood (141,

142). Currently, gd T cells are largely obtained from peripheral

blood mononuclear cells (PBMC) or umbilical cord blood isolated

from healthy donors, followed by in vitro stimulation and

expansion using synthetic PAgs or bisphosphonates (143–148).
TABLE 2 Continued

Sponsor Product
name

Treatment strategy Target Indications Phase Clinical
Registration

H Lee Moffitt Cancer Center
and Research Institute

gd T infusion APC-expanded donor T-cells
administered as a single infusion after

an alloHCT

— AML Phase 1 NCT05015426

Institute of Hematology &
Blood Diseases Hospital

Ex-vivo expanded
allogeneic gdT

cells

ex-vivo expanded allogeneic gdT cells
obtained from a blood-related donor

— B-NHL, PTCL Early
Phase 1

NCT04696705
Abbreviations: ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; AML, Acute myeloid leukemia; mCRPC, Metastatic castration-resistant prostate
cancer; RCC, renal cell carcinoma; NSCLC, non-small-cell lung cancer; B-NHL, B-cell non-Hodgkin lymphoma; HCC, Hepatocellular Carcinoma; TNBC, triple-negative breast cancer; PTCL,
peripheral T-cell lymphoma.
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Gene modification and iPSCs techniques to produce specific gd T

cells in large quantities are major approaches of pharmaceutical

companies to improve production and create a more clinically

viable option (149). Efforts are underway to identify strategies

that amplify the potency of gd T cells in antitumor activities. For

instance, IL-15 which can render a more active phenotype,

greater proliferative capacity, and greater cytotoxicity in gd
T cells, is being investigated Combining IL-15 and gd T cell

immunotherapy may be able to enhance ant i tumor

immunotherapy (150). In this regard, more research is warranted

to examine the impact of diverse settings on the expansion of gd T

cells in vitro and to identify measures to promote the toxicity of

Vg9Vd2 T cells, including candidates IL-2, IL-15, vitamin C, and

TGF-b (126, 151, 152).

Another significant hurdle in advancing gd T cell therapies

pertains to the engineering of gd T cells (153). For immune cell

engineering, the most common method is to use lentivirus or

retrovirus transfection. However, compared with ordinary ab T

cells, due to the natural antiviral properties of gd T cells, viral

transfection of gd T cells is extremely difficult. It is also prone to the

loss of CAR genes in cells during culture (115).

The broad spectrum of gdT cells has to be taken into account when

talking about the potential of gdT cell therapy. The heterogeneity of gd
T cells we described previously includes different subpopulations that

mediate opposite immune responses to tumors. These subgroups are

widely distributed throughout the body (12, 16). In addition to the Vd2
T cell subpopulation, which is primarily present in peripheral blood

and has been developed for antitumor therapy, the Vd1 T cell

subpopulation, which is present in tissues, has demonstrated strong

cytotoxic potential against tumors when isolated from a variety of

human solid tumors, which may partially address the limitations of

current CAR-T therapies against solid tumors (37, 122). Combining

contemporary high-throughput technologies to grasp the different

subsets of gd T cells at the single-cell level, such as Vd1T cells (16),

with manipulations such as gene editing techniques to enhance the

immunological anti-tumor function of gd T cells, may increase their

potential application.It’s imperative to recognize that the tumor

microenvironment is replete with various inhibitory immune cell

populations. Immunosuppressive cytokines released by these cells

can cause gd T cells to become pro-tumor oriented and secrete IL-

17, which drives cancer progression. In certain instances, the leukemic

microenvironment adopts strategies to evade the anti-tumor response

of these lymphocytes, leading to their exhaustion or polarization into a

tumor-promoting phenotype (18). Confronted with these challenges,

targeted screening of anti-tumor subsets, exclusion of pro-tumor
Frontiers in Immunology 10
subsets, determination of how to prevent the initial tumor killer cells

from metamorphosis to promote tumor progression cells, or effective

depletion of specific pro-tumor gd T cell subsets, will be the focus of

future research.Much work remains, particularly with regards to

dissecting the multitude of subsets present in the body and

determining how best to promote their anti-tumor activity. Current

production bottlenecks further restrict their clinical application.

Nevertheless, with ongoing research, it is anticipated that gd T cells

will cement their place as a cornerstone of cancer immunotherapy in

the coming years.
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