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Genetic and immunological
insights into COVID-19 with
acute myocardial infarction:
integrated analysis of mendelian
randomization, transcriptomics,
and clinical samples

Zequn Zheng1,2, Yueran Zhou1,2, Yongfei Song3,
Pengxiang Ying1,4 and Xuerui Tan1,2*

1Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou,
Guangdong, China, 2Clinical Research Center, First Affiliated Hospital of Shantou University Medical
College, Shantou, Guangdong, China, 3Ningbo Institute for Medicine &Biomedical Engineering
Combined Innovation, Ningbo, Zhejiang, China, 4Centre for Precision Health, Edith Cowan University,
Perth, WA, Australia
Background: Globally, most deaths result from cardiovascular diseases,

particularly ischemic heart disease. COVID-19 affects the heart, worsening

existing heart conditions and causing myocardial injury. The mechanistic link

between COVID-19 and acute myocardial infarction (AMI) is still being

investigated to elucidate the underlying molecular perspectives.

Methods: Genetic risk assessment was conducted using two-sample Mendelian

randomization (TSMR) to determine the causality between COVID-19 and AMI.

Weighted gene co-expression network analysis (WGCNA) and machine learning

were used to discover and validate shared hub genes for the two diseases using

bulk RNA sequencing (RNA-seq) datasets. Additionally, gene set enrichment

analysis (GSEA) and single-cell RNA-seq (scRNA-seq) analyses were performed

to characterize immune cell infiltration, communication, and immune

correlation of the hub genes. To validate the findings, the expression patterns

of hub genes were confirmed in clinical blood samples collected from COVID-19

patients with AMI.

Results: TSMR did not find evidence supporting a causal association between

COVID-19 or severe COVID-19 and AMI. In the bulk RNA-seq discovery cohorts

for both COVID-19 and AMI, WGCNA’s intersection analysis and machine

learning identified TLR4 and ABCA1 as significant hub genes, demonstrating

high diagnostic and predictive value in the RNA-seq validation cohort. Single-

gene GSEA and single-sample GSEA (ssGSEA) revealed immune and

inflammatory roles for TLR4 and ABCA1, linked to various immune cell

infiltrations. Furthermore, scRNA-seq analysis unveiled significant immune

dysregulation in COVID-19 patients, characterized by altered immune cell

proportions, phenotypic shifts, enhanced cell-cell communication, and

elevated TLR4 and ABCA1 in CD16 monocytes. Lastly, the increased expression
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of TLR4, but not ABCA1, was validated in clinical blood samples from COVID-19

patients with AMI.

Conclusion: No genetic causal link between COVID-19 and AMI and

dysregulated TLR4 and ABCA1 may be responsible for the development of

immune and inflammatory responses in COVID-19 patients with AMI.
KEYWORDS

COVID-19, acute myocardial infarction, causal relationship, TLR4, ABCA1,
immune dysregulation
Background
Cardiovascular disease stands as the foremost cause of global

mortality, with a substantial portion of deaths attributed to ischemic

heart disease. The emergence of COVID-19, stemming from the

SARS-CoV-2 virus, has introduced new complexities in the

management of cardiovascular conditions (1). While COVID-19

primarily impacts the respiratory system, it also poses potential

cardiovascular challenges, including myocarditis, heart failure,

stress cardiomyopathy, acute myocardial infarction (AMI), and

arteriovenous thrombosis (2, 3). Reports indicate varying

prevalence rates of acute myocardial injury linked to COVID-19,

spanning from 5% to 38%, with a concurrent rise in mortality (4).

Notably, AMI, a form of heart attack that occurs when there is a

sudden and severe reduction in blood flow to a part of the heart

muscle, has been frequently observed among COVID-19 patients

(5, 6). Among over 3000 COVID-19 inpatients, AMI emerged as the

most prevalent atherothrombotic complication, manifesting in 8.9%

of cases (7). Although a meta-analysis did not find a statistically

significant difference in AMI admission rates during the pandemic

(8), several cohort studies, including a comprehensive investigation

in Sweden, have indicated that COVID-19 independently poses a

notable risk for AMI (9, 10).

The precise underlying mechanisms of COVID-19-induced

AMI remain uncertain. A hypothesis suggests that the excessive

inflammatory immune response and cytokine storm triggered by

SARS-CoV-2 might contribute to the development of systemic

multisystemic complications, including AMI, resulting in an

unfavorable prognosis for COVID-19 patients (11). Further

investigation is needed into the communication between viral

antigens and the release of cytokines and proinflammatory

factors. Moreover, genome-wide association studies (GWAS) on

COVID-19 have progressively revealed genomic loci associated

with disease susceptibility and severity that are suggestive of

underlying biological processes involving inflammatory signaling,

immune metabolism, and blood coagulation (12, 13). Yet, the

understanding of these genetic markers has not fully clarified the

complex biological interactions between COVID-19 and its

associated conditions. Whether these genetic factors play a role in

the development of AMI remains uncertain.
02
In this study, we employed Mendelian randomization (MR) to

deduce the potential causality between COVID-19 and AMI. This

approach helps mitigate biases from observational studies and

guards against the influence of reverse causality (14).

Additionally, we utilized transcriptomics data including bulk

RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-

seq) to identify plausible central molecules regulating the

connection between COVID-19 and AMI. For validation, we

collected clinical blood samples from COVID-19 patients with

AMI. Our intention through these analyses is to offer genetic and

immunological insights into COVID-19 with AMI.
Materials and methods

GWAS data sources

In the latest round (round 7; release date: April 8, 2022) of the

GWAS on COVID-19 susceptibility and severity, as published by the

COVID-19 Host Genetics Initiative (https://www.covid19hg.org), we

obtained exposure-related data. The dataset encompassed a total of

2,597,856 individuals for COVID-19 susceptibility and 1,086,211

individuals for severe COVID-19 outcomes. The outcome GWAS

data were sourced from Coronary ARtery DIsease Genome wide

Replication and Meta-analysis (CARDIoGRAM) plus The Coronary

Artery Disease (C4D) Genetics (CARDIoGRAMplusC4D) consortium

(http://www.cardiogramplusc4d.org) and previously published related

studies (15–17). The CARDIoGRAMplusC4D database incorporates

the GWAS meta-analysis of coronary artery disease (CAD) conducted

by Nikpey et al., which encompassed 184,305 CAD and 171,875 AMI

cases (15), followed by a subsequent meta-analysis performed by

Aragam et al. with an expanded cohort comprising 1,165,690

participants (16). In addition, the recently published GWAS by

Hartiala et al. on 831,000 myocardial infarction subjects was

included in our study (17). All the datasets included in our study

pertained to European populations or populations predominantly of

European descent. For clarity, we refer to COVID-19 and severe

COVID-19 exposures as “Covid” and “Sevcovid,” respectively, while

outcomes are designated by the names of the researchers: Aragam,

Hartiala, and Nikpey. Ethical approval was unnecessary since our study

involved reanalyzing publicly available and previously published data.
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MR analysis

We extracted single nucleotide polymorphisms (SNPs) as MR

instrumental variables (IVs) in the GWAS of Covid and Sevcovid

according to genome-wide significance (P < 5 × 10-8) and

independence (LD r2 = 0.001 and kb = 10000). These IVs were

chosen based on their strong correlation with the exposure but not

with the outcome while being independent of potential

confounders. Robust IVs correlation was confirmed with F-

statistics exceeding 10. To satisfy the independence and exclusion

restriction assumption of MR, SNPs associated with age, smoking,

alcohol consumption, body mass index, blood glucose, lipid levels,

and other confounders potentially affecting AMI were screened

using the PhenoScanner online tool to not be considered as IVs. The

TwoSampleMR package was utilized for two-sample MR (TSMR)

and sensitivity analysis. Heterogeneity among the IVs was assessed

with Cochran’s Q-statistic, and potential horizontal pleiotropy was

examined using the Egger intercept test (P < 0.05). All analyses were

conducted using R software (version 4.2.2).
Bioinformatics data and clinical blood
sample sources and processing

Independent RNA-seq datasets were accessed from the Gene

Expression Omnibus (GEO) database. The bulk RNA-seq dataset

was selected based on the presence of cases and controls, with each

group containing at least 10 samples. The selected datasets for

discovery cohorts were GSE66360 for AMI and GSE179850 for

COVID-19, comprising 50 controls and 49 AMI patients, and 16

controls and 31 COVID-19 patients, respectively. Additionally, 17

AMI and 7 control samples from GSE60993 were merged with

GSE97320 to create a pooled expression profile (GSEmer).

GSEmer with 20 AMI cases and 10 control samples and

GSE179627, which consisted of 48 COVID-19 patients and 22

controls, were used as validation cohorts. Batch normalization was

applied to eliminate batch effects resulting from different

annotation platforms. For the scRNA-seq dataset, an integrated

dataset was formed by selecting two patient samples

(GSM4557331 and GSM4557332) and two control samples

(GSM4557337 and GSM4557338) from GSE150728 to check the

immune response in the periphery to severe COVID-19. In

addition, clinical peripheral blood samples were collected from

10 COVID-19 patients with AMI and 10 healthy individuals with

the approval of the Ethics Committee of Ningbo University

Affiliated Li Huili Hospital. Peripheral blood mononuclear cells

(PBMCs) were harvested using Ficoll-Paque PREMIUM

(#17544203, Cytiva, USA), and total RNA was isolated using the

TransZol Up kit (#ET111-01-V2, TransGen, Beijing, China) and

amplification was detected by reverse transcription-quantitative

polymerase chain reaction (RT-qPCR).
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RT-qPCR

Reverse transcription was performed on 1 mg of RNA template

from each sample using the HiScript III All-in-one RT SuperMix

Perfect for qPCR kit (R333-01, Vazyme, Nanjing, China) as per the

instruction manual. The cDNA that resulted was employed as a

template for real-time PCR analysis. The ChamQ Universal SYBR

qPCR Master Mix (Q711-02, Vazyme, Nanjing, China) and gene-

specific primers were used for real-time PCR. An Applied

Biosystems 7500 real-time PCR machine was used for the

amplification. An initial denaturation phase of 2 minutes at 95°C

was followed by 40 cycles of denaturation at 95°C for 10 seconds

and annealing/extension at 65°C for 1 minute. Relative

quantification was achieved by the 2-DCq method, with b-actin as

the housekeeping gene. The following primer sequences were used:

TLR4: AGACCTGTCCCTGAACCCTAT (forward primer) and

CGATGGACTTCTAAACCAGCCA (reverse primer), ABCA1:

ACCCACCCTATGAACAACATGA (forward primer) and

GAGTCGGGTAACGGAAACAGG (reverse primer), ACTB:

CATGTACGTTGCTATCCAGGC (forward primer) and

CTCCTTAATGTCACGCACGAT (reverse primer).
Analysis of differential expression

Gene expression information was normalized and differentially

expressed genes (DEGs) were obtained with the “LIMMA” package

(version 4.2.1). DEGs were determined as |LogFC| > 0.5 for

GSE66360 and |LogFC| > 1 for GSE179850. The R package

“ggVolcano” was used for volcano mapping.
Weighted gene co-expression network
analysis (WGCNA) and determination of
shared genes

WGCNA was conducted with the R package “WGCNA” (version

1.71). The analysis involved determining a suitable soft threshold

(power) to transform the correlation matrix into an adjacency matrix

for the construction of a co-expression network. The generation of a

topological overlap matrix (TOM) with specific parameter values

(minModuleSize = 30 and mergeCutHeight = 0.2) was undertaken to

quantify similarity. Hierarchical clustering dendrograms were utilized

to visualize genes based on TOM dissimilarity. Correlations between

module eigengenes (MEs) and interested traits were assessed to identify

modules associated with the disease. Gene significance (GS) and

module membership (MM) correlation were employed to identify

relevant modules. Shared genes related to AMI and COVID-19 were

determined by extracting and intersecting the genes frommodules that

positively correlated with the MEs of clinical features. The R package

“UpSetR” was utilized to visualize specific shared genes.
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Functional and pathway
enrichment analysis

Gene Ontology (GO) and KEGG enrichment analyses were

conducted on the shared genes identified in the WGCNA analysis

t h r o u g h t h e o n l i n e p l a t f o rm S an g e r b o x ( h t t p : / /

www.sangerbox.com/tool). A significance threshold of P < 0.05

and FDR < 0.20 was applied.
Prioritization and validation of common
key genes

A protein-protein interaction (PPI) network was built with the

“STRING” database, and hub genes were identified by Cytoscape’s

plugin cytoHubba (version 3.9.1). Four algorithms (DMNC, MCC,

MNC, and Degree) were used to predict the top 5 hub genes.

Machine learning algorithms, Least Absolute Shrinkage and

Selection Operator (LASSO) and Support Vector Machine

Recursive Feature Elimination (SVM-RFE), were employed to

further identify the most significant hub genes. The LASSO

regression model was constructed using the “glmnet” package,

with optimal l values determined based on lambda.min. This

allowed for the selection of feature genes with non-zero

coefficients. On the other hand, the “caret” package, known for its

feature selection capabilities, including the SVM-RFE algorithm,

was employed. The “rfe” function within this package facilitated the

creation of RFE models utilizing the “svmRadial” method to

generate feature genes. The resulting genes were intersected to

find common genes.
Construction of the diagnostic and
predictive model

Gene expression levels of common hub genes were extracted

from the validation cohort. Statistical analysis was performed using

the “ggplot2” package to illustrate expression differences between

groups. The “pROC” package determined the optimal expression

cut-off value, generating receiver operating characteristic (ROC)

curves for the area under the curve (AUC) calculation. A combined

diagnostic ROC curve was constructed via a multivariable logistic

regression model. Micro- and macro-averaged ROC curves for

multivariable prediction were produced using the “multi_roc”

function. Furthermore, a prognostic nomogram model was

established using the “lrm” and “regplot” packages to assess

predicted disease risk based on gene expression. Nomogram

performance was evaluated using Harrell’s concordance index (C-

index). Decision curve analysis (DCA) utilized the “decision_curve”

function from the “rmda” package, encompassing simple models

with individual genes and complex models incorporating gene

pairs. The analysis was designed as a “case-control” study, with

the threshold range set from 0 to 1.
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Single-gene gene set enrichment analysis
(GSEA) and single-sample GSEA (ssGSEA)

GSEA allows the function of molecules to be explored in gene

sets with the same expression pattern. To perform single-gene

GSEA in a list of 428 genes from the turquoise module of

COVID-19, we first used the “cor” function in R to calculate

batch correlations between the selected hub genes and the other

genes. The resulting list of genes was then ordered by correlation

coefficients and used for single-gene GSEA analysis. This analysis

was achieved with the “GSEA” function in the package

“clusterProfiler”, annotated as “c2.all.v7.0.entrez.gmt”. The

resulting pathways that contained the hub gene were then

visualized. Scores from ssGSEA were calculated using the “gsva”

function in the package “GSVA” (version 1.46.0), with the method

specification set as “ssgsea” (18).
scRNA-seq analysis pipelines

The R package “Seurat” (version 4.3.0) was utilized for scRNA-seq

data preprocessing and analysis. Data scaling, transformation, and

quality checking were all part of the preparation stages. Cells with fewer

than 200 or more than 6,000 unique genes, as well as those exceeding

20% mitochondrial content, were excluded. The four samples were

merged into an integrated dataset, and the “Harmony” function was

applied to remove batch effects. Variable genes were identified using

the “SCTransform” function, and the first 20 principal components

(PCs) derived from linear principal component analysis of these

variable genes were utilized for nonlinear (UMAP) dimensionality

reduction. Cell identity was determined by identifying DEGs for each

cluster through the “FindAllMarkers” function, and manual

verification was performed based on CellMarker2.0 (19) and

PanglaoDB (20). The “FetchData” function was employed to extract

gene expression values for statistical analysis and visualization in

GraphPad Prism (version 9.2).

For cell-cell communication analysis within the PBMCs dataset,

the “celltalker” package (version 0.0.7.9000) and “cellchat” package

(21) (version 1.6.1) were utilized. Ligand-receptor interactions were

identified in the disease or healthy control dataset based on cell types.

Ligand-receptor interactions specific to disease or healthy control

datasets were identified based on cell types. Interactions involving at

least 100 cells, ligand expression between 1000 and 20000 counts, and

interactions with FDR < 0.05 were considered significant. The three

interactions with the highest interaction ratio for each cell type were

selected for visualization in a circular plot, where ligands were

denoted in blue and receptors in red. In the “celltalker” package,

the “computeCommunProb” function was used for inferring

interaction strength, and the “computeCommunProbPathway”

function provided insights into communication at the signaling

pathway level. The “aggregateNet” function enabled the calculation

of the aggregated cell-cell communication network, and the

“netAnalysis_computeCentrality” function facilitated the

determination of network centrality scores.
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Results

TSMR and sensitivity analysis

TSMR was employed to ascertain if COVID-19 serves as a

heritable causal risk factor for AMI. Following the exclusion of

rs554833 due to its strong association with the outcome, a total of

14 appropriate IVs were analyzed for Covid on three AMI GWAS

cohorts (Details of the IVs are available in Table S1). In the case of

Sevcovid, strongly outcome-associated rs550057 was excluded, and

an additional two SNPs (rs289705 and sr17279437) incompatible

with Aragam’s GWAS were also removed. Consequently, a final

selection of suitable IVs was made for the Aragam, Hartiala, and

Nikpey cohort, encompassing 26, 28, and 28 IVs, respectively

(Details of the IVs are available in Table S2). Inverse variance

weighted (IVW) results indicated that the odds ratio (OR) and 95%

confidence intervals (95% CIs) for Covid across the three outcomes

GWAS were 1.004 (0.923-1.092) (P = 0.933), 0.965 (0.880-1.060) (P

= 0.459), and 1.070 (0.935-1.224) (P = 0.329) (Figures 1A, S1A).

Similarly, when conducting the IVW analysis with Sevcovid as the
Frontiers in Immunology 05
exposure variable, the results suggested three ORs and their

respective 95% CI: 0.992 (0.970-1.014) (P = 0.472), 0.964 (0.936-

0.993) (P = 0.016), and 0.973 (0.936-1.012) (P = 0.169) (Figures 1B,

S1B). Sensitivity analysis including heterogeneity and pleiotropy

assessment further confirmed the stability of the results (Table 1).

Collectively, these findings suggest that there is no genetically

inferred causal association between COVID-19 and AMI.
Identification of DEGs in COVID-19
and AMI

The GEO database was used to retrieve the datasets used in this

investigation, including the discovery cohort, validation cohort, and

scRNA-seq dataset (Figure 2A). The datasets were processed using

pre-defined criteria, and DEGs were found and visualized using

volcano plots in the discovery cohort. COVID-19 was determined

to have 1187 DEGs, with 679 up-regulated and 508 down-regulated

genes (Figure 2B). In the case of AMI, 1176 DEGs were found, with

703 being up-regulated and 473 being down-regulated (Figure 2C).
A

B

FIGURE 1

Two-sample Mendelian randomization (TSMR) analyses of COVID-19 and the risk of acute myocardial infarction (AMI). Summary statistics of
genome-wide association studies in the COVID-19 (Covid) (A) or severe COVID-19 (Sevcovid) (B) cohorts were used for exposure and summary
statistics of genome-wide association studies (GWAS) in the coronary artery disease (CAD) or AMI cohorts (Aragam, Hartiala, and Nikpey) were used
for outcome analyses. The risk of exposure versus outcome was presented as odds ratio (OR). SNP, single nucleotide polymorphism; IVW, Inverse
variance weighted; 95%CI, 95% confidence interval.
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Characterization of COVID-19 and AMI-
associated gene modules

WGCNA was used to study the link between DEGs and clinical

traits and also to discover co-expressed gene modules. We selected

optimal bs of 11 and 5 for the construction of COVID-19 and AMI

scale-free networks, respectively. Gene clustering on TOM-based

dissimilarity for co-expression networks yielded 8 modules for

COVID-19 (Figure 2D) and 6 modules for AMI (Figure 2E).

After the exclusion of the grey module, module correlation

analysis showed that three modules (turquoise, magenta, and

pink) were strongly positively correlated with COVID-19, with

the turquoise module (428 genes) showing the greatest

significance (Figure 3A). Similarly, three modules (turquoise,

brown, and green) were positively correlated with AMI, with the

turquoise module (432 genes) being the most correlated

(Figure 3A). Genes included in the turquoise module also

correlated significantly with the gene significance (Figures 3B, C).

These findings imply that the gene set in the turquoise module may

play a critical biological role in both COVID-19 and AMI.
Identification of genes shared by disease-
associated modules

To investigate disease-shared genes, we took the intersections in

six modules positively associated with AMI and COVID-19

(Figure 3D). A total of 48 intersecting genes were identified, with

two turquoise modules sharing 36 genes (Figure 3E). Subsequently,

the fold change values of the 48 genes in their respective expression

matrix were extracted (Figure 4A). By excluding 4 genes, YBX3,

RBM38, ANCA, and BLVRB, with opposite expression trends, we

found that when compared to control samples, practically all of

these genes showed persistently high expression in AMI and
Frontiers in Immunology 06
COVID-19 (Figure 4A). The 44 shared genes were subject to

subsequent analysis.
GO function and KEGG pathway
annotation of shared genes

We used GO function and KEGG signaling pathway

enrichment analyses to discover the biological activities of the 44

genes shared by AMI and COVID-19 patients. The top 6

significantly enriched GO terms, including biological process (BP)

(Figure 4B), molecular function (MF) (Figure 4C), and cellular

component (CC) (Figure 4D) are presented. BP enrichment analysis

showed that these genes were linked to immune cell activation

pathways (Figure 4B), while MF, which provided the highest

significant enrichment pathway, was linked to glucose metabolism

(Figure 4C). The top three significant signaling pathways identified

by KEGG analysis included the metabolic pathways and the HIF-1

signaling pathway (Figure 4E).
Identification of the most significant hub
genes among the shared genes

To find hub genes, a PPI network was built utilizing the shared

genes. The network consisted of 41 nodes and 19 edges (Figure 5A).

Four algorithms (MCC, Degree, DMNC, and MNC) were employed

to determine the top 5 hub genes in the network, yielding 7

overlapping genes: PYGL, MGAM, TLR4, CXCL1, HK3, ABCA1,

and SAT1 (Figure 5B). Machine learning algorithms such as LASSO

and SVM-RFE were used to screen feature variables from the set of

7 overlapping hub genes to identify the most significant hub genes.

LASSO identified two genes with non-zero coefficients, TLR4 and

ABCA1, while SVM-RFE also indicated TLR4 and ABCA1 as the
TABLE 1 Sensitivity analysis results of Mendelian randomization for COVID-19 on acute myocardial infarction (AMI).

Exposure Outcome
Heterogeneity Pleiotropy

Method Q-value P-value Method Value P-value

Covid

Aragam
MR Egger 27.386 0.007

Egger intercept -0.001 0.783
IVW 27.567 0.010

Hartiala
MR Egger 9.185 0.687

Egger intercept -0.001 0.800
IVW 9.252 0.754

Nikpey
MR Egger 9.156 0.690

Egger intercept 0.004 0.545
IVW 9.545 0.731

Sevcovid

Aragam
MR Egger 67.934 4.47E-06

Egger intercept -0.004 0.277
IVW 71.439 2.35E-06

Hartiala
MR Egger 50.190 0.003

Egger intercept -0.006 0.174
IVW 53.954 0.002

Nikpey
MR Egger 46.157 0.009

Egger intercept -0.007 0.213
IVW 49.045 0.006
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most relevant genes among the top 5 selected variables (Figure 5C).

We investigated these genes’ expression patterns further in the

validation cohort and discovered that two genes, TLR4 and ABCA1,

showed statistical differences in both the COVID-19 and AMI

cohorts (Figure 5D). Therefore, TLR4 and ABCA1 were

determined to be the most significantly correlated genes in

common with COVID-19 and AMI.
Diagnostic and predictive value of TLR4
and ABCA1

The discriminative ability of TLR4 and ABCA1 between illness

and control groups was assessed using ROC curves. The results

showed that TLR4 and ABCA1 had moderate to good diagnostic

values in COVID-19 and AMI, with TLR4 performing better than

ABCA1 (AUC in COVID-19: TLR4, 0.836; ABCA1, 0.775. AUC in

AMI: TLR4, 0.875; ABCA1, 0.730.) (Figure 6A). Logistic regression-

based multivariable diagnoses yielded AUCs of 0.837 and 0.887 for

the two genes in COVID-19 and AMI, respectively (Figure 6B).
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Furthermore, micro- and macro-averaged ROC curves were used to

evaluate the diagnostic utility of COVID-19 with AMI, indicating a

stable performance in the validation cohort, with a macro/micro

mean AUC of 0.86 (Figure 6C). Nomogram models indicated the

value of the two genes in predicting disease risk, with C-index for

AMI and COVID-19 were 0.905 and 0.837, respectively

(Figure 6D). Additionally, DCA was implemented to assess the

clinical utility of various models in predicting disease outcomes.

The net benefit curves plotted at different thresholds revealed clear

separation from the extreme curves, indicating the clinical relevance

of the models. The complex model combining TLR4 and ABCA1

consistently outperformed the four simple models, exhibiting

higher net benefit within the threshold range of 0 to 1 (Figure 6E).
Immunological correlation of
TLR4 and ABCA1

To further explore the relevance of TLR4 and ABCA1 to

immunity, immune cell infiltration was measured through the
A

B

D E

C

FIGURE 2

Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) in COVID-19 and AMI. (A) Details of the GEO
datasets involved in this study. (B) Volcano plot of DEGs in COVID-19 patients. (C) Volcano plot of DEGs in AMI patients. (D) Hierarchical clustering
tree representing module-identification in COVID-19 co-expression patterns. (E) Hierarchical clustering tree representing module identification in
AMI co-expression patterns.
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ssGSEA score. Compared to healthy controls, the disease ssGSEA

score showed that COVID-19 was most significantly associated

with memory CD4 T cells (P < 0.0001) (Figure 7A), whereas AMI

was most significantly associated with myeloid-derived suppressor

cells (MDSC) (P < 0.01) (Figure 7B). Importantly, both COVID-19

and AMI were significantly associated with monocyte (P < 0.01 and

P < 0.05) (Figures 7A, B). Furthermore, the results of the single-gene

GSEA suggest that similar to GO enrichment analysis, TLR4 and

ABCA1 were primarily associated with the activation of metabolic,

immune, and inflammatory responses (Figure 7C). The heat map of

gene-immune cell relationship revealed a positive link between

ABCA1 and TLR4 in COVID-19 and AMI, particularly TLR4

with a range of immune cells including NK cells, neutrophils,

eosinophils, dendritic cells, and macrophages (Figure 7D). These

findings suggest that TLR4 and ABCA1 may play crucial roles in

controlling the immunological response to COVID-19 and AMI,
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presumably by activating metabolic, immune, and inflammatory

pathways and by modulating the infiltration of specific immune

cell types.
Immunological cell profiling and
expression patterns of TLR4 and ABCA1 in
scRNA-seq data

To investigate the expression patterns of ABCA1 and TLR4 in

immune cells, we analyzed scRNA-seq data from PBMCs of COVID-

19 patients and healthy controls. Four samples from disease and

healthy controls were merged into a single integrated Seurat object

containing 32462 cells and 36921 genes. We identified 14 distinct

cell clusters with specific cellular identities using dimensionality

reduction and graph-based clustering (Figures 8A, B).
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C

FIGURE 3

Shared genes of COVID-19 and AMI patients identified in disease-associated modules. (A) Correlation of module eigengenes (MEs) in COVID-19 and
AMI patients. (B) Correlation between gene significance (GS) and MEturquoise membership in COVID-19 patients. (C) Correlation between GS and
MEturquoise membership in AMI patients. (D) Identification of the intersection genes in each module positively associated with COVID-19 and AMI.
(E) Specific presentation of the intersecting genes by UpSetR. Each shared genetic symbol between the modules of the disease is presented.
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Grouped dimensionality reduction revealed significant phenotypic

differences between COVID-19 patients and controls, most

notably in monocytes, T cells, and NK cells (Figure 8C). COVID-

19 patients showed a reduction in T cells and NK cells, along with an

increase in monocytes and dendritic cells (DCs) (Figures 8C, D).

Moreover, B lymphocytes in COVID-19 patients exhibited a shift

toward mature phenotypes (Figure 8D), consistent with previous

reports (22).

Cell-cell communication analysis indicated that compared with

healthy controls (Figure 9A), severe COVID-19 cases (Figure 9B)

had increased intercellular signaling and enhanced communication

between CD14 monocytes and CD16 monocytes. The integrated

cell-cell communication network analysis revealed that CD14

monocytes and NK cells exhibited the highest degree of

communication weight, while platelets enhanced communication

with other cell types in COVID-19 (Figure 9C). The chemokine

ligand (CCL) signaling pathway was identified as a central

contributor to intercellular communication between different cell
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populations (Figure 9D). Additionally, TLR4 and ABCA1 showed

significant upregulation specifically in CD16+ monocytes of

COVID-19 patients (Figure 9E), suggesting their potential

involvement in the immune response during COVID-19.
Identification of high expression of TLR4 in
clinical blood samples from patients with
COVID-19 complicating AMI

To examine the clinical significance of our findings, PBMCs

were collected from COVID-19 patients with concurrent AMI and

from healthy individuals. Gene expression levels were measured in

these distinct groups. Consistent with our analysis of single-cell

data, the results from PBMC analysis corroborated our findings.

Particularly, TLR4 exhibited a significant upregulation in the PBMC

samples from the patients (Figure 9F), emphasizing the crucial

involvement of TLR4 in the disease’s pathogenesis.
A B
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C

FIGURE 4

Fold change in expression of shared genes for COVID-19 and AMI and their functional and pathway enrichment analysis. (A) Shared gene expression
fold changes (Log2FC) (disease vs. control). Four genes with opposite expression trends are marked in red. (B) Enriched Gene Ontology (GO)
biological process (BP) of shared genes. (C) Enriched GO molecular function (MF) of shared genes. (D) Enriched GO cellular component (CC) of
shared genes. (E) KEGG pathway enrichment analysis of shared genes.
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Discussion

The co-occurrence of COVID-19 and AMI may involve a

cascade of responses triggered by SARS-CoV-2 infection causing

systemic inflammation, immune cell hyperactivation, and a

cytokine storm, which contribute significantly to the morbidity

and mortality (2, 23). Within this intricate interplay, the

comprehensive comprehension of the precise correlation between

COVID-19 and AMI presents a formidable scholarly pursuit.

Therefore, we employed TSMR for genetic inference to investigate

whether COVID-19 potentially is a causal risk effect for AMI, and

investigated the molecular mechanisms underlying their

simultaneous occurrence using bioinformatics analysis. A brief

research workflow is summarized in Figure 10.
Frontiers in Immunology 10
MR for genetic causal inference

The TSMR results indicated that neither COVID nor severe

COVID-19 exhibits significant causal effects on the three AMI

GWAS, suggesting that there is no evidence of genetic variation

associated with COVID-19 influencing the occurrence of AMI,

indicating the absence of a causal relationship. We applied the

largest and latest available exposure and outcome GWAS statistics

and rigorous screening criteria for IVs, but this MR study was based

only on a European population and the IVs used for exposure may

not be suitable proxies for inferring causality, although sensitivity

analyses suggested that the results were generally reliable.

Furthermore, while MR is valuable for addressing confounding

factors and unveiling causal relationships, it falls short of capturing
A
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D

C

FIGURE 5

Identification of hub genes in shared disease genes. (A) Protein-protein interaction (PPI) network of disease-shared genes. (B) Venn diagram of
intersecting hub genes identified by the 4 algorithms of cytoHubba from the PPI network and the merged networks of hub genes. (C) Machine
learning algorithm based on Least Absolute Shrinkage and Selection Operator (LASSO) (left) and Support Vector Machine Recursive Feature
Elimination (SVM-RFE) (right) to select the most significant feature genes from intersecting hub gene. LASSO identified 2 genes with non-zero
coefficients, whereas SVM-RFE identified and selected the top 5 feature genes. (D) Expression values of intersecting hub genes in the validation
cohorts of COVID-19 (COVID-19, n=48; CTL, n=42) and AMI (AMI, n=20; CTL, n=10). Statistically significant differences in both COVID-19 and AMI
(P < 0.05) are marked as red. ns: non-significant.
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the intricate biological processes that underlie disease interactions

(24). In light of these considerations, we also conducted an

investigation using public bioinformatics data to explore shared

molecular biological mechanisms between COVID-19 and AMI.

We identified two disease-shared genes, TLR4 and ABCA1,

especially TR4, highlighting their potential central role involved

in immune and inflammatory responses. We found that TLR4 and

ABCA1 were associated with the infiltration of various immune

cells and were highly expressed in CD16 monocytes in severe

COVID-19 patients. These findings suggest that TLR4 and

ABCA1 may play important roles in the development of COVID-

19 with AMI.
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TLR4 in COVID-19 and AMI

Recent studies within the last decade have underscored the

significance of immune and inflammatory responses in the

advancement of atherosclerosis. This shift in understanding has

transformed the characterization of acute coronary syndrome from

lipid deposition to an inflammatory disorder (25–28). Viral

infections have been shown to disrupt plaque stability, incite a

cytokine storm, and prompt immune cell polarization toward an

unstable phenotype (29, 30). Severe COVID-19 cases exhibit

aberrant immune responses, compromised innate-adaptive

crosstalk, and alterations in peripheral blood cell composition,
A B
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C

FIGURE 6

Diagnostic value of TLR4 and ABCA1 genes in COVID-19 with AMI and their single-gene GSEA analysis. (A) ROC analysis of TLR4 and ABCA1 genes
in COVID-19 and AMI. (B) ROC analysis of TLR4 combined with ABCA1 in COVID-19 and AMI. (C) Macro- and micro-averaged ROC analysis of TLR4
combined with ABCA1 in COVID-19 with concurrent AMI. (D) Nomogram predicting risk for AMI and COVID-19 by ABCA1 and TLR4. (E) The decision
curve analysis (DCA) model derives the net benefit. The complex model (Complex) was constructed by incorporating TLR4 and ABCA1 as joint
predictive factors.
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including elevated CD14+ and CD16+ monocytes and reduced

overall B cells (31, 32). The immune cell-expressed pattern

recognition receptor (PRR) TLR4 plays a pivotal role in innate

immunity and the inflammatory response to diverse pathogens (33,

34). It transcriptionally activates nuclear factor-kB (NF-kB) via

myeloid differentiation primary response 88 (MyD88) or Toll/

interleukin-1 (IL-1) receptor (TIR) domain-containing adapter-

inducing IFN-b (TRIF), resulting in the generation of

proinflammatory cytokines and chemokines, such as innate

immune sensor genes, NOD-like receptor protein 3 (NLRP3)
Frontiers in Immunology 12
(35–37). Augmented TLR4 expression in COVID-19 has been

linked to viral protein interactions, NF-kB activation, and cardiac

complications like hypertrophy, inflammation, and fibrosis (38, 39).

The manipulation of the TLR4 signaling pathway has emerged as a

potential therapeutic avenue for mitigating COVID-19

complications (40, 41).

Distinctive features of severe COVID-19 cases in comparison to

healthy controls and mild COVID-19 patients encompass

heightened TLR4 activity (42). Our investigation likewise revealed

an elevation in TLR4 levels in the blood samples of COVID-19
A

B

DC

FIGURE 7

Immunocorrelation and immune cell infiltration analysis using single-gene GSEA and ssGSEA methods. (A) Box plot of immune scores for COVID-19
and healthy controls. (B) Box plot of immune scores for AMI and healthy controls. (C) Single-gene GSEA analysis of TLR4 and ABCA1. Signaling
pathways involving TLR4 or ABCA1 are shown. (D) Heat map of the correlation between ABCA1 and TLR4 and immune cell infiltration. * P < 0.05, **
P <0.01, *** P < 0.001, **** P < 0.0001.
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patients with AMI. The hyperinflammatory response instigated by

TLR4 activation may provide a plausible rationale for AMI

occurrences in COVID-19 patients.

TLR4, exclusively expressed on the cell membrane, plays a

pivotal role in orchestrating the immune response against Gram-

negative bacteria by recognizing bacterial lipopolysaccharides (LPS)

(43). In the context of COVID-19, various TLRs can discern a wide

array of infection-related elements, encompassing viral pathogen-

associated molecular patterns (PAMPs) and host-derived damage-

associated molecular patterns (DAMPs), to induce innate immune

activation (37). Structural proteins and glycolipids from the SARS-

CoV-2 virus are proposed as PAMPs capable of engaging TLR4,

initiating an innate immune response, especially in the early stages

of SARS-CoV-2 infection (43, 44). Recent findings have highlighted
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a direct interaction between the spike trimer of SARS-CoV-2 and

TLR4, resulting in heightened TLR4 expression in monocytes (43),

corroborating our scRNA-seq analysis. An in-silico suggests a

stronger binding affinity of the SARS-CoV-2 spike protein to

TLR4 when compared to other TLRs and the well-established

entry receptor for SARS-CoV-2, angiotensin-converting enzyme 2

(ACE2) (11, 45). Additionally, in vitro assessments confirm that the

spike protein trimer can induce the production of inflammatory

cytokines through TLR4, akin to the effects of LPS stimulation (43).

This trimer’s interaction with TLR4 may also upregulate ACE2

expression, potentially facilitating viral entry and exacerbating

hyperinflammation (46). The interplay between the spike protein

and TLR4, along with the heightened expression of genes linked to

TLR4 signaling in COVID-19, underscores a captivating role for
A B

D

C

FIGURE 8

Immunological cell profiling of scRNA-seq data from peripheral blood samples of severe COVID-19 patients. (A) UMAP dimensionality reduction
embedding for the integrated dataset of scRNA-seq data from all profiled samples (n = 32,462 cells) colored by inferred cluster identity. (B) UMAP
embedding of the integrated dataset colored by orthogonally generated clusters labeled by manual cell type annotation. (C) UMAP grouped by
donor of origin (COV1: COVID-19 sample #1; COV2: COVID-19 sample #2; CTL1: healthy control sample #1; CTL2: healthy control sample #2. (D)
Bar chart representing the count of various cell types across different samples. pDC, plasmacytoid dendritic cell.
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these receptors and their inflammatory cascade in disease etiology

(23). However, the precise reasons behind TLR4’s robust

recognition of SARS-CoV-2, which contains a substantial amount

of single-stranded RNA (ssRNA), remain enigmatic. Theoretically,

these ssRNA segments could be recognized by intracellular TLR7/8

to initiate antiviral immune responses (45, 47, 48). Nevertheless, the

concept of immune responses primarily depending on host-virus

interactions at the cell surface and downstream pro-inflammatory
Frontiers in Immunology 14
signal transduction suggests that intracellular TLR7/8 may not play

a predominant role in this process (11, 45). The interactions

between SARS-CoV-2 and TLRs are highly complex and warrant

further investigation.

Positioned at the crossroads of thrombosis and the innate

immune response, TLR4 emerges as a potential therapeutic target

for SARS-CoV-2-related complications in light of the presented

evidence (23, 46, 49).
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FIGURE 9

Analysis of immune cell-cell communication and expression patterns of TLR4 and ABCA1. (A) A circular plot of cell-cell communication patterns in
scRNA-seq samples from healthy controls. (B) A circular plot of cell-cell communication patterns in scRNA-seq samples from severe COVID-19
patients. (C) An aggregated cell-cell communication network shows the number of interactions or total interaction strength between any two cell
groups. (D) The signaling network of CCL (chemokine ligand) pathways and their communication patterns among different cell populations. (E) Violin
plots colored by the donor of TLR4 and ABCA1 expression values for each cell type. (F) Identification of ABCA1 and TLR4 gene expression in
peripheral blood from clinical patients with COVID-19 complicated with AMI by RT-qPCR, and healthy individuals served as controls. Ten samples
each from disease and control were analyzed and each sample was repeatedly measured four times (Disease, n=40; CTL, n=40).
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ABCA1 in COVID-19 and AMI

ABCA1, an ATP-binding cassette transporter highly prevalent

in monocytes/macrophages, facilitates the elimination of

cholesterol from foam cells, thereby exhibiting anti-atherosclerotic

and cardioprotective effects (50, 51). Elevated ABCA1 levels have

demonstrated potential cardioprotective attributes during AMI,

while its deficiency may enhance immune cell activation and

post-AMI repair processes (52). These observations highlight the

multifaceted involvement of ABCA1 in AMI pathology.

Atherosclerosis, characterized by cholesterol accumulation in

arterial walls leading to atherosclerotic plaques, constitutes a

chronic inflammatory response. The process entails the continual

infiltration of monocytes, which differentiate into macrophages and

foam cells (28). Research indicates that the efflux of sterols

facilitated by ABCA1 and ABCG1 influences the expression of

inflammatory cytokines and chemokines in macrophages, as well as

lymphocyte proliferative responses (53). Disruption of lipid

transport due to the cytokine storm in COVID-19 might

contribute to systemic inflammation. Modifications induced by

COVID-19 in the quantity and composition of high-density

lipoprotein (HDL) could diminish its anti-inflammatory and

antioxidant characteristics, potentially leading to inflammation in

virus-affected organs (54). Furthermore, genetic deficiency in

ABCA1 has been linked to intensified inflammatory responses,

particularly in the presence of LPS or other toll-like receptor

(TLR) ligands that activate the TLR4/NF-kB pathway (55).

Nonetheless, we found no significant increase in ABCA1 levels in

PBMCs from clinical COVID-19 patients with AMI. Similarly,
Frontiers in Immunology 15
previous examinations probing ABCA1 expression in AMI

patients have not unveiled substantial differences in ABCA1

mRNA and protein levels (56). Consequently, further

experimental evidence is imperative to ascertain the potentially

pivotal role of ABCA1 in COVID-19-related AMI.
Strengths and limitations

This study has several strengths. First, it employs multiple

methods and data sources to investigate potential causal links and

molecular mechanisms between COVID-19 and AMI. Second, the

findings provide novel insights into this topic from genetic and

immunologic perspectives. Third, it provides potential biomarkers

and therapeutic targets for the diagnosis and treatment of COVID-

19-associated AMI. However, some limitations should also be

recognized. Functional experiments were not conducted to verify

the causal roles of TLR4 and ABCA1. The analysis was restricted to

transcriptomic data from peripheral blood cells. Moreover, genetic

variation and the impact of the molecular changes in AMI during

COVID-19’s dynamic progression, including disease evolution and

recovery, were not further explored. Furthermore, confining MR

analysis to European populations restricts the generalizability of the

conclusions worldwide, and it is essential to replicate the study

using data from diverse racial and ethnic groups. Future GWAS

studies employing diverse quantitative criteria could potentially

establish whether COVID-19 is merely an incidental bystander or if

it contributes to AMI development via intermediate factors.

Investigating the functions of key molecules may enhance our
FIGURE 10

Workflow diagram of the study. Two-sample Mendelian randomization (TSMR) was used to infer causality between COVID-19 exposure and AMI
outcome, and transcriptomics of bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) and clinical blood samples from COVID-19
patients with AMI were analyzed to investigate the immunological mechanisms of the disease. GWAS, genome-wide association studies; IVs,
instrumental variables; IVW, Inverse variance weighted; OR, odds ratio; GEO, Gene Expression Omnibus database; DEGs, differentially expressed
genes; WGCNA, weighted gene co-expression network analysis; power, soft threshold; PPI, protein-protein interaction; RT-qPCR, reverse
transcription-quantitative polymerase chain reaction; ssGSEA, single-sample gene set enrichment analysis; ROC, receiver operating characteristic;
DCA, decision curve analysis.
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comprehension of the immune dysregulation observed in COVID-

19-related AMI, and thus provide prognostic indicators or

therapeutic targets for clinical decision-makers.
Conclusions

In summary, our MR analysis found no causal link between

COVID-19 and AMI, indicating no statistical association between

genetic variants influencing COVID-19 susceptibility and AMI

development. Furthermore, we identify TLR4 and ABCA1 as

potential contributors to the immune-related pathogenesis of

COVID-19 with AMI. The dysregulation of TLR4 and ABCA1

may provide novel insights into the immune dysregulation and

inflammatory response seen in COVID-19 and AMI cases.
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