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The success of immunotherapy approaches, such as immune checkpoint

blockade and cellular immunotherapy with genetically modified lymphocytes,

has firmly embedded the immune system in the roadmap for combating cancer.

Unfortunately, the majority of cancer patients do not yet benefit from these

therapeutic approaches, even when the prognostic relevance of the immune

response in their tumor entity has been demonstrated. Therefore, there is a

justified need to explore new strategies for inducing anti-tumor immunity. The

recent connection between the formation of ectopic lymphoid aggregates at

tumor sites and patient prognosis, along with an effective anti-tumor response,

suggests that manipulating the occurrence of these tertiary lymphoid structures

(TLS) may play a critical role in activating the immune system against a growing

tumor. However, mechanisms governing TLS formation and a clear

understanding of their substantial heterogeneity are still lacking. Here, we

briefly summarize the current state of knowledge regarding the mechanisms

driving TLS development, outline the impact of TLS heterogeneity on clinical

outcomes in cancer patients, and discuss appropriate systems for modeling TLS

heterogeneity that may help identify new strategies for inducing protective TLS

formation in cancer patients.
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Introduction

Cancer development is an evolutionary, multi-step process that can take several

decades in humans. Throughout this period, the transformed cells continually interact

with their local microenvironment, including the immune system. It is now firmly

established that this interaction comprises several hallmarks of cancer that initially

appear contradictory, as tumor-associated immune responses can either result in the

rejection or progression of tumors (1, 2). On one hand, chronic inflammation triggered by

environmental and lifestyle factors can give tissues enough plasticity to suppress their
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1286850/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1286850/full
https://orcid.org/0000-0002-1672-7234
https://orcid.org/0000-0002-7529-1952
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1286850&domain=pdf&date_stamp=2023-12-04
mailto:weigert@biochem.uni-frankfurt.de
mailto:Kristina.Koop@uk-erlangen.de
https://doi.org/10.3389/fimmu.2023.1286850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1286850
https://www.frontiersin.org/journals/immunology


You et al. 10.3389/fimmu.2023.1286850
default tumor-suppressive nature and induce somatic mutations in

local cells (3–5). Moreover, continuous low-grade inflammation

may sustain tumor growth. Through this, several processes,

including hypoxia, metabolic adaptations, interaction with dying

cells or cellular debris, and negative feedback signals that

physiologically limit autoimmunity during infection, educate

immune cells to actively support tumor growth (4, 6, 7). On the

other hand, altered self-cues, including neo-epitopes and stress-

related cell surface molecules, can be recognized by the immune

system, leading to tumor rejection (8–10). This process is likely

the rule rather than the exception in humans, leading to the

eradication of early cancerous lesions or keeping them in check.

Tumors that survive these interactions often develop a highly

immunosuppressive phenotype, enabling them to progress

towards clinically relevant stages (8, 9, 11–15).

Evidence of active anti-tumor immunity was long debated but is

now unchallenged due to clinical efficacy of immune checkpoint

blockade (ICB), at least in some tumor entities (16, 17). Even in

tumors where ICB shows low efficacy, bioinformatic analyses have

demonstrated the prognostic and predictive relevance of the

immune response in cancer patients (18, 19). Here, immune cell

populations and activation states that correlate with positive or poor

prognosis across different tumor types have been defined (20). Both,

the density and anti-tumor activity of cytotoxic lymphocytes such

as gd T cells, CD8+ T cells, T helper 1 (TH1)-polarized CD4+ T

cells, memory T cells or NK cells, as well as tumor-associated B cells,

and some activated myeloid cell subsets, are associated with a

favorable outcome for patients. In contrast, immunosuppressive

myeloid cells including macrophages and immature myeloid-

derived suppressor cells, as well as lymphocytes such as

regulatory T cells (Treg) or TH17-polarized CD4+ T cells,

often indicate poor prognosis (21–23). Given this association

of immune quality with patient prognosis, mechanisms that

shape protective versus tumor-promoting immunity are being

intensively investigated. Besides counteracting tumor-promoting

immunosuppressive cells, it is crucial to understand the

characteristics determining if protective immunity is induced and

persists in cancer patients. It is undisputed that cancer is a systemic

disease and that the education of the immune system by cancer

antigens in the periphery is an important requirement to induce

anti-tumor adaptive immune responses both at baseline and during

immunotherapy (24, 25). The generation of an efficient adaptive

immune response against cancer typically occurs in secondary

lymphoid organs (SLO), where antigens are presented to CD4+ T

and CD8+ T cells by mature dendritic cells (DCs) (26, 27).

However, when applying spatial analysis criteria to the determine

prognostic role of immune cells in cancer, the concept emerged that

adaptive immunity can, to a significant degree, also develop locally

in newly formed TLS (27, 28). Understanding the principles guiding

the formation of these structures and understanding their

heterogeneity across cancer types may, thus, be instrumental to

harness the full power of the immune system in the fight against

cancer. This will be particularly important in patients that currently

do not benefit from cancer immunotherapy.
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What are TLS

TLS are ectopic hematopoietic aggregates that emerge in sites

normally lacking lymphoid organs. TLS have certain developmental

and structural similarities with SLO such as lymph nodes, the

spleen, tonsils, Peyer’s patches, and mucosa-associated lymphoid

tissues, but they also exhibit important differences (Figure 1). SLO

are encapsulated, and therefore physically separated from their

neighborhood, while TLS lack a solid capsule and are directly

exposed to the inflammatory milieu in which they develop.

Additionally, TLS development pathways seem to be more

versatile. Unlike SLO, TLS form in response to chronic

inflammation though a process called lymphoid neogenesis (29).

This occurs in various disease settings including infection, anti-

transplant immunity, autoimmunity and cancer, usually in an

antigen-dependent manner. Importantly, TLS seem to necessitate

sustained inflammation and may disassemble once inflammation

resolves (30–32). Antigen-dependent immune responses within

TLS, under the conditions described above, can be both protective

and detrimental for the host, depending on the quality of the

immune response within TLS. However, the latter seems to

dominate during auto-immunity and anti-transplant immunity

(33). Particularly in cancer, this contrast seems to hinge on the

balance between regulatory T cells and effector lymphocytes,

although this relationship is not yet fully understood (34–37).

TLS exhibit varying cellular compositions, even within a single

tissue, reflecting their maturation status, which appears to be

disease-relevant, as outlined in more detail below (32, 38). TLS

predominantly consist of B cells, T cells, DCs, follicular dendritic

cells (FDCs), and sometimes high endothelial venules (HEVs).

Their composition can range from loose clusters of lymphocytes

and occasional myeloid cells to highly organized structures with

distinct T and B cell zones and the formation of germinal centers

(GCs), where high-affinity antibodies are generated (39). There is

still much left to be understood regarding the processes guiding TLS

formation and composition, and how the outcome of these

processes is associated with disease activity and therapy response.

Various challenges, such as limited human tissue availability,

especially during the early stages of TLS formation, and the

scarcity of robust and reproducible mouse models of TLS

development, complicate investigations into these matters. These

issues impede the design of longitudinal studies to precisely

monitor the stages of TLS formation in cancer. Furthermore,

there is still a lack of standardized markers useful for determining

disease-relevant determinants of TLS heterogeneity. Additionally,

while their role as disease biomarkers and their prognostic value for

therapy response is evident, it is not fully understood if they directly

impact on disease activity, particularly in cancer. Despite these

limitations, TLS appear to exemplify the connection between auto-

inflammation and anti-tumor immunity. Therefore, understanding

TLS formation in cancer may not only benefit cancer patients by

serving as biomarkers and therapeutic targets but may also be

essential in modulating their formation during infection and

chronic inflammatory reactions. In the following pages, we will
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summarize the current knowledge concerning TLS development,

the impact of TLS heterogeneity on cancer development and

therapy, and outline and discuss suitable models to study

lymphoid neogenesis in cancer.
TLS development

To understand the degree of heterogeneity observed in recent

studies regarding TLS formation, a comparison with SLO formation

can be instrumental. While there are evident similarities in the

sequential events leading to SLO and TLS formation, the diversity at

each stage is notably amplified in the case of TLS 31, 32) (Figure 1).

This is illustrated by findings showing that TLS can develop in mice

and humans, even in the absence of SLO (40–42).

Even though SLO formation is not uniform due to variations in

the tissue environment where they develop, common patterns

haven been identified by studying genetically modified mice

lacking SLO (43–46). Elaborate mechanistic hypotheses

explaining SLO development have been extensively reviewed

elsewhere (47–49). In brief, SLO formation requires a stepwise

interaction between lymphoid tissue organizer (LTo) and lymphoid
Frontiers in Immunology 03
tissue inducer (LTi) cells. The latter belong to the innate

lymphocyte lineage and differentiate from CD3- CD4+/- CD127+

CD45+ innate lymphoid progenitors in the fetal liver, regulated by

the nuclear hormone receptor retinoic acid related orphan receptor

gt (RORgt) and the transcription inhibitor Id2 (45, 50). During

embryogenesis, LTi cells are initially recruited to lymph node

Anlagen by CCL21-expressing lymphatic endothelial cells and/or

mesenchymal cells that produce CXCL13 under the influence of

retinoic acid, which can itself be produced by nerve cells (46, 51).

Juxtacrine signaling between lymphotoxin expressed on LTi cells

and the LT-b receptor expressed on LTo cells further induces

chemokine production and adhesion molecule expression by LTo

cells, leading to the recruitment of more LTi cells. This initiates a

positive feedback loop, resulting in the remodeling of the lymphatic

vasculature (52) and the stromal compartment, along with the

formation of a capsule. Only after these structures are formed,

lymphocytes are abundantly recruited through newly formed high

endothelial venules (HEV), and a stable cellular architecture is

established (31, 51).

The initial stages of TLS formation parallel SLO development in

the sense that interaction between inducer and organizing cells,

which then recruit lymphocytes, appears critical. However, both
FIGURE 1

Mechanisms of secondary lymphoid organ (SLO) versus tertiary lymphoid structure (TLS) formation. The development of SLO (left) requires
interaction between initial lymphoid tissue organizer (LTo) cells and lymphoid tissue inducer (Lti) cells, followed by activation of further LTO cells,
and feed-forward recruitment of LTi cells. This ultimately leads to the establishment of a reticular and vascular structure that is populated by
lymphocytes. In the case of TLS, diverse cells can fulfill the task of LTi cells, triggered by factors in the tumor microenvironment. These cells interact
with diverse other cells that show LTO functionality and recruit lymphocytes. Eventually, such lymphoid aggregates may or may not be
supplemented with follicular dendritic cells (FDC) and high endothelial venules (HEV) that are instrumental for the formation of a germinal center
reaction. DAMPs, danger-associated molecular patterns; TH17, T helper 17; ILCs, innate lymphocytes; NK cells, natural killer cells; FRC, fibroblastic
reticular cells, TGF, transforming growth factor; TNF, tumor necrosis factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1286850
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


You et al. 10.3389/fimmu.2023.1286850
inducer as well as organizing cells are not as strictly defined as

during SLO generation. In TLS, the role of organizing cells is often

assumed by activated local fibroblasts producing chemokines such

as CCL19, CCL21, CXCL12, and CXCL13, along with adhesion

molecules that recruit B cells and T cells to form initial loose

aggregates (31, 32, 53, 54). Moreover, other cells, including

macrophages, DCs, and CD8+ T cells, have been shown to

produce CXCL13 for recruitment of lymphocytes as well (55–57).

Additionally, CCL19+ DCs have been correlated with the presence

of TLS and other lymphoid aggregates in breast cancer (58). The

activation of these diverse LTo-like cells in TLS can occur via

various sources and mediators other than specialized innate

lymphocyte LTi cells. Several mediators derived from such cells

have been identified, although what triggers the activation of LTi-

like cells initially remains largely unknown. Factors in the tumor

micromilieu, such as DAMPs and mediators from dying cells, likely

play a role. Various cytokines such as IL-13, IL-17, IL-22, and type 1

interferons from cells substituting for LTi can activate stromal cells

to support TLS formation (53, 59–62). In colorectal tumor models,

IL-36 production by macrophages and endothelial cells has been

shown to be involved in TLS formation (63, 64). IL-36 activates

fibroblasts during intestinal inflammation (65). Whether IL-36 acts

via fibroblasts to promote TLS development is yet to be determined.

Conversely, fibroblasts were observed to induce CXCL13 in T cells

through TGF-b production (66, 67).

Finally, similar to SLO formation, activation of the LT-b
receptor on stromal cells by both, lymphotoxin and and

alternative ligand, LIGHT, promote TLS development (61, 68–

73). However, the early events during lymphoid neogenesis can

occur independently of LT-b receptor signaling (53, 61, 74). Similar

to SLO, signals from nerve cells may play a role in activating stromal

cells (74). LT-b receptor signaling seems particularly necessary for

later stages of TLS maturation. For instance, a combination of

antiangiogenic and immune-modulating therapies provoked the

generation of HEV via lymphotoxin/LT-b receptor interaction (75).

The formation of HEV is viewed as a sign of TLS maturation

(31). However, the maintenance of HEV can occur independently of

LT-b receptor, requiring the presence of T and NK cells and/or

cytokines such as IL-36 (63, 75, 76). Also the generation of FDCs,

involved in GC reactions for optimized antibody production (77),

was found to depend on LT-b receptor signaling (78).

These findings indicate that key principles and cellular

interactions are similar between TLS and SLO formation. The

relative heterogeneity of involved cells and mechanisms for TLS

formation in cancer may still be underestimated, given the diversity

of immune environments even within a single tumor. Although TLS

were shown to form 3D intercommunicating networks in colorectal

tumors, individual networks within a single tumor exhibited

different cellular compositions (38). Given the multitude of

signals that are able to induce TLS formation, the question

remains why TLS are not always formed during carcinogenesis.

One explanation would be the presence of TLS-restricting signals in

cancer, as is the case under homeostatic conditions. Identifying such

signals in the future may open new avenues for TLS induction. The

potential predictive and therapeutic value of such strategies is

summarized in the following chapters.
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TLS in cancer

The majority of current literature suggests that a high density of

TLS is associated with favorable outcomes in solid tumors.

However, some investigations have identified TLS density as a

marker of disease progression with adverse prognostic

implications. There is a lack of systemic studies to define the

heterogeneity of TLS, further exacerbated by the absence of

uniform scoring criteria (79), hampering the evaluation of TLS in

cancer. To perform a rigorous assessment of TLS, certain elements

should be carefully considered at the very least: the composition and

maturation of TLS, the size of TLS, the density of TLS, and the

location of TLS.
The cellular heterogeneity of TLS

Typically, TLS are believed to promote anti-tumor immunity by

recruiting immune cells and activating adaptive immunity. As a

result, TLS are highly correlated with improved survival outcomes

in many cancers, such as breast cancer (80–82), hepatocellular

cancer (HCC) (83), colorectal cancer (CRC) (84, 85), melanoma

(86), gastric cancer (87, 88), head and neck squamous cell cancer

(HNSCC) (89, 90), lung cancer (79, 91) and sarcoma (92). However,

it has also been reported that TLS show little correlation with overall

survival or are even correlated with high pathologic grade and poor

outcomes in malignant diseases, such as breast cancer (80) and

HCC (93), posing an obvious contradiction to the previously

mentioned studies in these entities. Recent studies indicated that

the discrepancy was attributed to the heterogeneity and spatial

distribution of TLS in these tumors. As mentioned earlier, unlike

SLO, in most tissues, TLS are characterized by CD20+ B cells (B-cell

zone) surrounded by CD3+ T cells (T-cell zone), with no capsular

involvement (94, 95). This specific anatomical structure facilitates

direct interactions between immune cells and the tumor

microenvironment. The composition of immune cells in TLS may

vary in different tumors or even within single tumors (38). The

complex lymphoid aggregates which make up TLS are composed of

various immune cells and stromal cells. The immune cells include B

cells, T cells, FDCs, and myeloid cells such as other DC subsets and

macrophages. The stromal cells, such as follicular reticular cells,

fibroblasts and vascular cells (e.g. forming HEVs), are believed to

maintain the integrity of the non-capsulated structure and mediate

the recruitment of immune cells. We will primarily focus our

discussion on the role of B cells, T cells and HEVs from TLS in

solid tumors.
B cells and TLS maturation

Extensive clinical and experimental evidence suggests that B

cells play a crucial role in the cancer microenvironment, indicating

a positive correlation with patient outcomes in various tumors (96–

99). It is speculated that B cells in TLS also play a beneficial role by

mediating antigen presentation, facilitating T cell activation and

development, and producing tumor-specific antibodies in GC
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reactions, while contributing to GC formation themselves. GC

formation appears as a potent criterion for predicting if TLS are

prognostically relevant, serving as a marker for TLS maturation.

The maturation of TLS is believed to be essential for activating

immunity in cancer and indicating immune therapy efficiency in

solid tumors (100). The maturation of TLS has been categorized

into three phases: early TLS (eTLS, lymphocyte aggregates),

primary follicle-like TLS (pTLS, immature TLS without GCs),

secondary follicle-like TLS (sTLS, well-developed lymphoid

structures with GCs) (101, 102). An immunostaining panel,

including CD20, CD21 and CD23, has been devised to identify

the status of TLS in metastatic melanoma. Mature TLS were defined

as the presence of CD20+, CD21+ and CD23+ lymphoid aggregates

(101). Recent mass cytometry studies confirmed this classification:

early lymphoid aggregates lacking organization or GC function

were CD20+CD21-CD23-, non-GC TLS were CD20+CD21+CD23-

(organized but lacked GC functionality), and GC-containing TLS

showed GC organization and functionality associated with the

expression of all three markers (CD20+CD21+CD23+) (103).

CD23 was even suggested as a useful single marker for mature

TLS, at least in breast cancer (104). Interestingly, in a lung cancer

cohort, lymph node (LN) metastasis was associated with reduced B

cell infiltration and fewer GC formations in TLS. GC+ TLS, rather

than non-GC TLS, predicted better outcomes in lung cancer (105).

So far, the maturation status of TLS, particularly GC formation (38),

has been investigated in various solid tumors, such as esophageal

cancer (102), CRC (106), lung cancer (107) and melanoma (101,

108), with the presence of GC+ TLS predominantly associated with

a favorable outcome in cancer patients. The relevance of GC

formation indicates a strong contribution of B cells to the

beneficial impact of TLS in cancer. Although growing evidence

suggests an important role of B cells in anti-tumor immunity and

immunotherapy (109–111), the role of B cells in TLS towards

clinical relevance is still understudied. Helmink and colleagues

found that in an immune checkpoint blockade (ICB) trial in

melanoma patients, B cells and TLS were more abundant in

responders than non-responders. Similar B cell enrichment

together with TLS abundancy pattern were validated in a renal

cell carcinoma (RCC) ICB trial (109). In a lung adenocarcinoma

cohort, a TLS-linked B-cell signature predicted beneficial outcomes

in patients treated with PD-1 or PD-L1 inhibitors (112). In

summary, mature TLS correlated with B cell presence appears to

be involved in anti-tumor immunity and may confer beneficial

immunotherapy response and favorable prognosis, although

causality remains to be determined. Further studies investigating

B cell heterogeneity in TLS may yield even better markers compared

to the three-gene (CD20, CD21, CD23) signature. Hereby,

establishment of a memory B cell response is likely required to

confer long-lasting protection (105).
Divergent role of T cells in TLS

In addition to B cells, the presence of TLS is highly associated

with tumor-infiltrating T cells (113). These cells have been extensively
Frontiers in Immunology 05
studied in the context of basic tumor biology and treatment response,

especially in cancers such as CRC (114, 115), breast cancer (116, 117),

and lung cancer (118–120). It is well documented that intraepithelial

CD8+ T cells, in particular, are associated with a favorable prognosis

in solid tumors, including ovarian cancer (121), breast cancer (122),

and CRC (123). Additionally, tumor-infiltrating T cells in the stroma

also correlate with improved survival in cancer patients. A

standardized methodology for assessing stromal tumor-infiltrating

T cells in breast cancer was first proposed in 2014 by the International

TILsWorking Group (124). The model was subsequently modified to

evaluate tumor-infiltrating T cells in other cancers as well (125, 126).

These studies demonstrated that the presence of tumor-infiltrating T

cells remained a powerful predictive factor for most malignancies.

Chaurio and colleagues identified that TLS formation was dependent

on the CXCL13 pathway in CD4+ T cells, with blocking CXCL13

hindering TLS assembly and subsequently promoting tumor growth

(127). Additionally, CD8+ T cells were found to be an important

source of CXCL13, mediating immune cell recruitment into TLS and

enhancing the sensitivity to immunotherapy in lung cancer (56).

Similarly, in another six cohorts of human cancer, a high density of

CD8+ tumor-infiltrating T cells was associated with increased B cell

recruitment and TLS formation (128). These studies emphasized that

T cells play a crucial role for TLS formation and anti-tumor

immunity, two phenomena which may, but do not necessarily have

to be functionally connected. However, in a cohort of advanced CRC

(129), a high ratio of tumor-infiltrating T cells in TLS was associated

with tumor recurrence, suggesting a potential deleterious role of

tumor-infiltrating T cells in tumor progression. Interestingly, in

advanced lung adenocarcinoma, Tregs in TLS were found to

suppress anti-tumor immune responses, despite TLS promoting T

cells trafficking and activation of the tumor microenvironment (34).

In non-small cell lung cancer patients, stromal Tregs suppressed the

proliferation of other CD4+ T cells, and a high density of stromal

Tregs and Treg cells in TLS correlated with poor outcomes (36). In a

prospective study on sarcoma, high Treg numbers in TLS predicted

poor responses to ICB treatment, and patients with Treg-enriched

TLS had worse survival outcomes (130). These results suggest that

not only the functional polarization of tumor-infiltrating T cells per se

but also within TLS is an important criterion in tumor

immunogenicity during tumor progression. Comprehensive

quantification of tumor-infiltrating T cell subsets in TLS should be

considered to evaluate their prognostic value in different cancer types.

Additionally, the phenotypes and functional properties of suppressive

Tregs in TLS and their potential association with TLS maturation

require further investigation. Interestingly, in tumors of pancreatic

ductal adenocarcinoma (PDAC) patients that had received

neoadjuvant chemotherapy, a lower proportion of B cells and a

higher proportion of regulatory T cells within intratumoral TLS were

observed. These TLS were smaller with a reduced maturation level

and immune cell activation, leading to a lack of prognostic value of

TLS presence in this cohort. (131). Importantly, not only Tregs but

also T cell exhaustion phenotypes may be linked to TLS maturation.

In breast cancer, while tumors with enhanced exhausted-like T cells

contained higher levels of CXCL13-expressing T cells, their presence

correlated with more immature rather than mature TLS (132).
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Role of HEV in TLS formation

HEVs play an active role in the formation of TLS, boosting anti-

tumor immunity by facilitating immune cell trafficking from the

peripheral blood to the tumor microenvironment (133–136). A

recent study demonstrated that around 40% of lymphocytes entered

tumor sites through HEVs during ICB treatment, highlighting

HEVs as the primary route for lymphocyte entry into tumor

lesions (137). Furthermore, HEVs have been identified as a

positive factor for immunotherapy and have shown correlation

with improved survival outcomes for melanoma patients. Another

study in melanoma and NSCLC indicated that a high HEV score

was among patients responding better to ICB, supporting the

significance of HEV as an important prognostic factor for

immunotherapy (75). However, HEVs also promote tumor

metastasis by providing exit points for disseminating tumor cells

in murine models and human cancers (138–141). LN metastasis is

among the strongest prognostic indicators for clinical outcome of

malignant tumors. Regional LN irradiation improves the survival

outcome for both early-stage and advanced tumors (142, 143). A

recent study indicated that HEV-associated genes were not only

linked to high aggregates of T cells and B cells in TLS but also

correlated with longer survival in breast cancer (144). Zhan and

colleagues performed immunohistochemistry on 203 CRC samples,

categorizing them into high and low HEV/TLS groups based on the

average area of HEV/TLS (145). A high proportion of HEVs in TLS

was associated with a favorable prognosis of CRC suggesting

enhanced anti-tumor immunity in the high HEV/TLS groups.

HEVs remain an important and complex component in TLS, and

further research is necessary to understand the mechanisms of

immune cell trafficking and tumor cell dissemination through

HEVs. Moreover, studies addressing the molecular mechanisms

of HEV generation in TLS are required. In conclusion, markers for

the cellular composition of TLS that are linked to TLS maturation

and offer insights into their prognostic and therapeutic potential are

emerging. However, to utilize to full potential of these markers,

further issues need addressing, including standardized protocols for

TLS quantification.
Quantification of TLS

Numerous studies have attempted to investigate the size and

number of TLS that predict outcomes in solid tumors. However,

most studies face limitations due to inconsistent definitions of TLS,

distinct quantification methods, retrospective approaches, and

single-center experiences. Consequently, the development of an

integrative methodology and standardized scoring system to

identify the size and density of TLS remains a subject of debate.

Pathological evaluations, including Hematoxylin and Eosin (H&E)

staining (102, 146–151), fluorescence immunohistochemistry (f-

IHC) (53, 152) and multiplex IHC (101, 109), have been shown to

be the most straightforward and reliable methods to quantify TLS in

tumors. Of note, the majority of studies involved both quantitative

and qualitative analyses (153–156). Rakaee and colleagues

established three models to quantify TLS in NSCLC. The semi-
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quantitative method categorized the TLS into four groups based on

the number of TLS in the tumor. The quantitative method counted

the absolute number of TLS in the tumor and adjacent tissues. The

final model compared the GC+ TLS group with the GC- TLS group

(79). In a human melanoma study, the counts and area of TLS were

normalized to tissue area for quantifying the density of TLS in

tumor sections (157). In a cohort of 1924 gastrointestinal cancer

patients, a machine-learning model was developed based on

histopathology images. The overall TLS score was defined as the

sum of a weighted linear eTLS area, pTLS area and sTLS area

normalized by tumor area (155). Considering the relative value of

maturation of TLS, the final weights of TLS were optimized by Cox

regression analysis in the TCGA stomach adenocarcinoma cohort.

Patients with high TLS scores exhibited significantly improved

overall and disease-free survival compared to those with low

TLS scores.

Recently, large scale gene expression analyses, such as RNA-

sequencing and spatial transcriptomics, have been implemented to

study the landscape of TLS in cancer. TLS-signature genes,

including CD79B, CD1D, CCR6, LAT, SKAP1, CETP, EIF1AY,

RBP5, and PTGDS, were identified through significance analysis of

microarrays, underlining the importance of TLS in melanoma

metastasis and immunotherapy (158). High expression of these

nine-gene TLS signatures correlated with better overall survival and

positive responses to ICB in melanoma. More importantly, the

nine-gene TLS gene signature has been recently validated in high-

grade serous ovarian cancer, demonstrating better disease-free

survival for patients with high TLS scores (159). In CRC and

metastatic CRC, 12 chemokines including CCL2, CCL3, CCL4,

CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11,

and CXCL13, were closely associated with TLS formation. The

geometric mean of the above 12 genes was calculated to evaluate

TLS in tumor (156, 160). Single cell RNA-sequencing combined

with bulk RNA-sequencing of HNSCC revealed CXCR3, CCR7,

CCR6, CXCR5, and CCR1 as TLS-associated chemokine receptors,

largely dentifying the receptor counterparts to the identified

chemokine signature (161). Similar TLS gene signatures have

been defined for other solid tumors to predict survival and

responses to immunotherapy (89, 162–164). Presently, there is no

standardized methodology for quantifying TLS in cancer. However,

it is believed that a combination of histology and gene expression

analysis would provide a better understanding of TLS composition

and function in cancer. Emerging markers, such as the presence of

Tregs or HEVs, might also be considered for such analyses. Yet,

distinguishing “high” and “low” or defining a specific “cut-off” point

in the data is often not objective and challenging to apply uniformly

across different sites.
Location of TLS

Besides precise quantification, the spatial distribution of TLS

within tumors might add another layer of complexity. Hereby, TLS

can be distributed across tumor nests (T-TLS), the peritumoral area

(P-TLS) and tumor stroma (S-TLS) (95). The prognostic value of

TLS density in solid tumors has been shown, though inconsistently.
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Discordance in prognosis may be partially due to different spatial

distributions of TLS. However, results across multiple studies were

mixed: some studies demonstrated that P-TLS rather than T-TLS

were positively correlated with favorable prognosis, while others

showed contradictory results. Moreover, the exact delimitation of

the three regions remains controversial. An evaluation of the

prognostic value of TLS in patients with non-metastatic CRC

revealed that high P-TLS contributed to favorable outcomes for

patients with CRC, while T-TLS did not significantly correlate with

clinical outcomes. The TLS and tumor stroma percentage,

representing S-TLS, showed a negative correlation with overall

survival for patients (85). Conversely, in CRC liver metastasis, P-

TLS were negatively correlated with relapse-free and overall

survival, whereas T-TLS were significantly correlated with better

outcomes (156). Similarly, Ding et al. found in a cohort of 962

intrahepatic cholangiocarcinomas (CCA) patients from three

cancer centers across China that T-TLS were associated with a

favorable prognosis, whereas P-TLS indicated a worse outcome

(165). Additionally, a high T-TLS score correlated with better

prognosis and response to immunotherapy in CCA patients

(166).For breast cancer patients, the presence of P-TLS was linked

to worse clinical outcomes (167). It has been reported that T-TLS

indicated a lower risk of early recurrence in HCC (83), and an

enhanced response of ICB in resistant tumors (168). In summary,

the majority of literature supports the notion that T-TLS are

associated with positive prognostic effect in cancer. Notably,

variable definitions and cut-offs may cause confusion when

discussing P-TLS and S-TLS. Studies have tended to conflate P-

TLS and S-TLS, resulting in limited reports on S-TLS in tumor-

immune contexture. However, definitions of P-TLS and S-TLS in

cancers remain underexplored. Researchers have adopted a similar

definition of P-TLS in CRC, defining the area up to 7 mm from the

infiltrative edge (106, 156, 169). Sofopoulos and colleagues defined

P-TLS in the area 5 mm away from the tumor invasive margin

(167). In the CCA cohort, the peri-tumor region was defined as a

normal tissue area 5 mm away from the tumor edge (165). In HCC,

the peritumoral area was also considered as the region 5 mm distant

from the invasive tumor border (170). These studies again suggest

that P-TLS do not always play a protective role in solid tumors,

which can be attributed to factors such as tumor types,

heterogeneity, status, and staging.

In summary, T-TLS provide an important niche for supporting

anti-tumor immunity and are associated with improved clinical

outcomes in many tumors. However, the value of P-TLS and S-TLS

in determining prognosis remains a subject of debate. Standardized

scoring systems of T-TLS, P-TLS and S-TLS are critical to evaluate

their functions across different cancer types and cancer stages.

Moreover, the reasons for the association of spatial distribution of

TLS with clinical outcome in cancer patients need to be studied. The

influence of the highly suppressive stromal microenvironment may

be at work. Recent multiplexed 3D reconstructed imaging in CRC

has revealed that TLS can form interconnected, graded networks,

suggesting communication in such larger networks. Additionally,

within a single tumor, these networks show diverse cellular

compositions (38). Thus, not only the 2D localization but also the
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interconnectedness of TLS might become an important criterion in

the future. Whole-body imaging techniques applied to analysis of

TLS in mouse models might aid in studying this aspect (171).

Finally, TLS have been shown not only to form at primary but also

secondary metastatic sites, which likely significantly affects

patient prognosis.
TLS in metastatic cancers

Metastases continue to be the primary cause of cancer mortality,

accounting for nearly 90% of cancer-related deaths (172). Studies

have shown the formation of TLS at metastatic sites such as the liver

and lungs (173). While the majority of literature supports the theory

that TLS in metastatic sites contribute to anti-tumor immunity (27),

it remains unclear whether there is TLS heterogeneity between

primary tumors and metastatic sites. Reliable data concerning the

role of TLS at metastatic sites are scarce. In a cohort of CRC and

RCC metastases, metastasis-associated TLS exhibited a high degree

of similarity with TLS in primary tumors, including their density

and cellular composition (174). This suggests either a dominant role

of the primary tumor cells in TLS formation, or alternatively

suggests a prominent role of systemic tumor-associated immunity

in TLS development at different sites. The former assumption is

supported by the fact that CRC lung metastases exhibited more

abundant TLS in lung stroma compared to RCC lung metastases,

which was in line with increased TLS formation in primary CRC

lesions. Furthermore, both CRC and CRC lung metastases displayed

a significant increase of CD3+, CD8+ T cells, and DCs in TLS. In

CRC liver metastases, TLS at the tumor-liver interface,

characterized by CD45+CD20+ B cell aggregates, indicated a

reduced risk of tumor relapse and a favorable overall survival

(175). Similarly, Ahmed and colleagues found that TLS at

invasive margins, rather than tumor lesions, were correlated with

better survival in CRC liver metastases (176). In a cohort of patients

with omental metastases from high-grade serous ovarian cancer, B

cells in lymphoid aggregates showed enhanced anti-tumor

immunity, particularly boosted by chemotherapy (177). In

cutaneous melanoma metastases, patients with positive TLS

exhibited improved overall survival. Interestingly, the maturation

of TLS was not related to survival outcome, while CD20+CD21+ B

cells in TLS correlated with a worse prognosis in metastatic

melanoma (101). In a cohort of patients with breast cancer

metastases consisting of 355 metastatic samples from the lung,

liver, brain, and ovary, no TLS were found in brain and ovarian

metastases. The presence of TLS at metastatic sites was an

independent factor for a favorable prognosis (178). However, two

studies on lung metastases from CRC indicated that the presence of

TLS at metastatic sites had no prognostic value (84, 179). These

studies suggest that the complex immune contexture of TLS in

metastatic cancers is determined by both primary tumor and

metastatic lesions. While the majority of data indicate that TLS

play a beneficial role in metastatic cancers, some uncertainties and

controversies persist. Taken together, TLS formation appears to be

relevant in the tumor microenvironment of metastatic cancers.
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Further research is required to enhance our understanding of the

mechanisms behind TLS formation and their action in metastatic

cancers, and the interrelationship between TLS at primary and

secondary sites.
Clinical trials related to TLS

A range of clinical trials have underscored the viability of

immunotherapy in enhancing patient outcomes, encompassing

ICB, cancer vaccines, adoptive cellular therapy, and small molecule-

based immunomodulators (180, 181). It is well documented and

validated that the combination of immunotherapy and chemotherapy

can lead to an improved pathological complete response and

enhanced surgical feasibility post neoadjuvant treatment (182–185).

Furthermore, adjuvant chemotherapy and immunotherapy

substantially improved postoperative DFS and have been

considered as a standard of care for select patients (186–188). The

induction of TLS during chemoimmunotherapy and its positive effect

on patients has raised particular interest (189, 190). However, the

significance of TLS in cancer treatment has long been overlooked

because studies typically focused on a single cell population, such as

lymphocytes, macrophages, and fibroblasts, rather than lymphoid

aggregates. Although much remains unknown about TLS in cancer

treatment, recent clinical trials suggest TLS as a crucial participant in

the tumor microenvironment and demonstrate a close correlation

between the presence of TLS and sustained clinical benefits (Table 1)

(198, 201, 202).

Lutz and colleagues conducted a phase 2 study of neoadjuvant

and adjuvant vaccines with irradiated, granulocyte-macrophage

colony-stimulating factor–secreting, allogeneic PDAC vaccine

(GVAX) +/- low dose cyclophosphamide. They found that TLS

formed in 85% of participants two weeks after vaccination.

Inhibition of the Treg pathway and activation of the IL-17 pathway

within the TLS were associated with improved survival for PDAC

patiens (191). Notably, PDAC with intratumoral TLS formation

exhibited an enhanced PD-1/PD-L1 pathway, suggesting that

vaccine-treated PDAC was converted into an immunogenic tumor,

potentially benefitting from anti-PD-1/PD-L1 ICB. Similarly, in a

phase 1, open-labeled clinical trial on high-grade cervical

intraepithelial neoplasias, patients received a DNA vaccine targeting

HPV16 E7, followed by a boost injection of vaccinia targeting HPV16

and HPV18 E6 and E7. Abundance of organized TLS was noticed in

the proximity of vaccinated intraepithelial lesions rather than

unvaccinated lesions (192). More importantly, histological

alterations were closely associated with a gene signature of immune

activation, indicating the induction of a robust tissue-localized

immune response. TLS formation was also observed in

neoadjuvant chemoimmunotherapy in patients with operable

malignancies. A pilot study of metastatic RCC showed that

tremelimumab with and without cryoablation increased TLS

formation in patients with clear cell histology compared with

baseline (196). In another study using nivolumab in patients with

metastatic RCC, a significant enrichment of TLS was observed in
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responders rather than non-responders, showing a trend for

improved outcomes (199). Similarly, Ho et al. reported the results

of a single-arm phase 1b trial of neoadjuvant cabozantinib and

nivolumab in patients with locally advanced HCC. They confirmed

that enriched TLS formation was associated with improved responses

to neoadjuvant treatments (197). Cascone and colleagues designed a

neoadjuvant clinical trial comparing nivolumab + chemotherapy

given as a dual therapy or in combination with ipilimumab as a

means to estimate the major pathological response in NSCLC

patients. Among 22 patients in the dual-therapy group, 7 patients

exhibited a major pathologic response (32.1%), whereas 11 patients

had a major pathologic response in the triple-therapy group

consisting of 22 patients (50%). Increased TLS formation was

observed in the triple-therapy group, suggesting immune activity

and a close correlation with enhanced pathologic response (200).

Since the major pathologic response was defined as more than 90%

tumor regression in the context of chemotherapy, Cottrell et al.

proposed to establish novel immune-related pathologic response

criteria that highlighted the quantification of TLS in neoadjuvant

chemoimmunotherapy (193). Importantly, the new criteria were

shown to be reproducible and consistent among pathologists. In a

single-arm trial of advanced urothelial cancer, 24 participants were

treated with 2 doses of ipilimumab and 2 doses of nivolumab, and

were evaluated for surgical resection within 12 weeks after initiation

of neoadjuvant treatment. A pathological complete response occurred

in 46% patients, and TLS were observed upon immunotherapy in

responding patients (190). In-depth analysis of the immune

contexture of resected samples was conducted to assess the

significance of TLS for predicting responses to immunotherapy in

urothelial cancer. Compared with deeper TLS, superficial submucosal

tissue was characterized by enhanced T-helper cell infiltrations,

abundant early TLS, and rare occurence of mature TLS.

Interestingly, an increased enrichment of Foxp3+ T-cell-low TLS

cluster was observed in unresponsive tumors, whereas a high

abundance of macrophage-low TLS cluster was identified in treated

tumors (194). The heterogenic TLS clusters were considered as

promising biomarkers for predicting responses to immunotherapy

in urothelial cancer. Furthermore, the composition of TLS was altered

after neoadjuvant immunotherapy in patients with high-risk prostate

cancer. Both B and T-cell densities in TLS were significantly reduced

in patients receiving one dose of rituximab before prostatectomy

(195). The studies mentioned above determined TLS formation as

one among various parameters. Notably, a multi-cohort phase 2

study of pembrolizumab combined with chemotherapy in patients

with sarcoma specifically assessed the prognostic significance of TLS

and showed substantially improved outcomes in a cohort of sarcoma

patients positive for TLS. The 6-month non-progression rate and

objective response rate were 40% and 30%, respectively, in the cohort

of TLS-positive patients, which were approximately 10-fold higher

than in all-comer cohorts (92). Undoubtedly, the presence of TLS

may provide a new perspective to assess the response to

chemoimmunotherapy and the prognosis of patients. However,

determining TLS formation in cancer patients remains a long way

from being adopted in clinical practice, despite the evidence that it is
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intrinsic to immune responses to neoadjuvant and adjuvant

treatment in clinical trials. A limited number of clinical trials

specifically investigating the role of TLS in cancer are currently

ongoing or under development (Table 1). The data emerging from

these studies are expected to facilitate the clinical translation of TLS

towards patient management. Future trials should consider the

complex aspects of TLS biology outlined above, including TLS

composition, size, maturation, localization, interconnectedness and

appearance at different sites. However, determining which of these

above-mentioned parameters are the most promising will need to be

established in pre-cinical studies, for which reliable mouse models for

studying TLS formation are needed. The currently available models

and their suitability are discussed in the following paragraphs.
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Modelling TLS formation

The arsenal of experimental models for studying cancer has

significantly expanded in recent years, thanks to improved

mathematical and bioinformatics modeling tools and human

tissue cultures, such as tumor slice cultures or patient-derived

organoids (203–205). However, these techniques currently have

clear limitations when attempting to model the spatiotemporal and

cellular complexity of TLS formation. For instance, modelling TLS

in organoid cultures would not only require the population of these

cultures with patient-derived PBMCs to avoid alloreactions, but

also a pre-population with fibroblasts and potentially endothelial

cells. While these steps have been realized individually, combining
TABLE 1 Clinical trials related to TLS.

Study
duration

Patient
No.

Study
type

Phase Trial ID Treatment Cancer type Reference

Concluded trials

2008.07-
2019.02

87 Interventional phase 2 NCT00727441 GVAX vaccine PDAC (191)

2008.11-
2023.08

75 Interventional phase 1 NCT00788164 HPV vaccine cervical
intraepithelial neoplasia

(192)

2014.09- 45 Interventional phase 2 NCT02259621 neoadjuvant anti-PD-1 NSCLC (193)

2018.01-
2021.09

54 Interventional phase 1 NCT03387761 neoadjuvant anti-PD-1 and anti-
CTLA-4

urothelial cancer (190, 194)

2013.07-
2019.04

18 Interventional phase 1 NCT01804712 neoadjuvant anti-CD20 prostate cancer (195)

2016.03-
2022.06

29 Interventional phase 1 NCT02626130 anti-CTLA-4 and cryoablation Metastatic RCC (196)

2018.05-
2021.10

15 Interventional phase 1 NCT03299946 neoadjuvant anti-PD-1 and tyrosine
kinase inhibitor

HCC (197)

2015.06-
2021.08

227 Interventional phase 2 NCT02406781 anti-PD-1 and chemotherapy sarcoma (92)

2016.11-
2022.03

45 Interventional phase 2 NCT02901899 anti-PD-1 and chemotherapy ovarian cancer (198)

2016.01-
2021.06

730 Interventional phase 2 NCT03013335 anti-PD-1 Metastatic RCC (199)

2017.06- 101 Interventional phase 2 NCT03158129 neoadjuvant anti-PD-1, anti-CTLA-4
and chemotherapy

NSCLC (200)

2016.05-
2022.09

24 Interventional phase 2 NCT02592551 neoadjuvant anti-PD-L1 and anti-
CTLA-4

malignant
pleural mesothelioma

(201)

2015.11-
2019.06

87 Interventional phase
1/2

NCT02541604 anti-PD-L1 multiple tumors from
pediatric patients

(202)

Ongoing trials

2023.09- 102 Interventional phase 2 NCT05888857 anti-PD-1 and anti-CTLA-4 solid tumors N.A.

2024.01- 120 Interventional phase 2 NCT06084689 MDM2 inhibitor and anti-PD1 solid tumors N.A.

2022.03- 80 Interventional phase 2 NCT04874311 anti-PD-L1 and chemotherapy sarcoma N.A.

2022.12- 66 Interventional phase 2 NCT04968106 anti-PD-1 and chemotherapy sarcoma N.A.

2020.02- 67 Interventional phase 2 NCT04095208 anti-PD-1 and anti-LAG-3 sarcoma N.A.

2021.07- 173 Interventional phase 2 NCT04705818 anti-PD-L1 and EZH2 inhibitor solid tumors N.A.
MDM2, mouse double minute 2 homolog; LAG-3, lymphocyte-activation gene 3; EZH2, enhancer of zeste homolog 2; N.A., not applicable.
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them poses major logistical and technical challenges (206).

Therefore, we focus our attention on mouse models of TLS

formation in the following chapters.

The generation of murine models that mimic the development

of solid cancer is complex. If the tumor cells exhibit rapid growth

kinetics, the tumor burden will likely reach unacceptable levels

before TLS can develop. Conversely, if the mutational burden is low

and tumors develop slower, the availability of tumor antigens

necessary for activation of the adaptive immune system and the

development of TLS is limited (207). Nevertheless, there are

autochthonous tumor models with spontaneous development of

carcinomas, including mature TLS within the tumor or in close

proximity, resembling lung adenocarcinoma (208, 209), PDAC

(210), and HCC (93). To mimic the human situation, such

genetically engineered mouse models (GEMMs) contain multiple

mutations, such as overexpression of oncogenes (e.g. Kras) or

deletion of tumor suppressors (e.g. p53), which are also present in

the corresponding human cancer. Most importantly, tumor growth

in these models can be modified via TLS-associated factors. These

models are also suitable for developing new immune-based therapy

options utilizing the power of TLS, including sensitizing tumors to

ICB or CAR-T cell therapy (73). Autochthonous animal models

that allow a stringent analysis of organized TLS formation for CRC,

breast cancer, and melanoma have not been reported so far.

Besides autochthonous models, orthotopic tumor models have

been used to study TLS development. This involves the injection of

cancer cells from murine or human origin into recipient mice,

either WT or immunodeficient, specifically into the tissue the tumor

originated from. A more frequent approach is the heterotopic

transplantation of tumor cells into recipient mice, such as the s.c.

or i.p. injection of B16 melanoma cells. However, evidence that the

localization or transplantation site of a tumor matters emerged

from the finding that orthotopic transplantation of murine lung

adenocarcinoma cells into C57BL/6 mice resulted in the activation

of the adaptive immune system, while s.c failed to induce activated

CD8+ T cells (208). Moreover, s.c. transplantation of tumor cells led

to the accumulation of immune cells but did not allow the

formation of mature TLS (210). GEMM models have already

enabled the identification of factors necessary for TLS formation

including lymphotoxin and CXCL13 (209, 211). Additionally,

genetic modification of tumor cells in vitro enables the adaption

of (orthotopic) transplantable models to a specific question, for

example, the addition of artificial antigens such as OVA to increase

immunogenicity and/or TLS formation. Through these means,

tailored mouse models specifically for investigating TLS biology

may be developed in the future.
TLS in lung adenocarcinoma models

The investigation of lung adenocarcinoma (LUAD) using

GEMMs showed the necessity for multiple genetic alterations to

resemble the human disease, including TLS formation. Initially, a

mouse model with a Lox-Stop-Lox Kras G12D mutation was used

in combination with an intranasal or intratracheal application of an

adenovirus or lentivirus containing a Cre recombinase for targeted
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mutation in the lung (K mice) (212). DuPage et al. observed

enhanced tumor growth upon an additional deletion of p53 (KP

mice) within 2-3 weeks (213, 214). Using the KP mice, Joshi et al.

detected low- and high-grade lung adenocarcinomas after 20-24

weeks, but without TLS formation or TLS precursor (34). After

depletion of regulatory T cells, the tumor burden was significantly

increased, coinciding with TLS detection, emphasizing the

significance of intrinsic anti-inflammatory mechanisms. In 2022,

Boumelha et al. further developed the KP mice by introducing an

overexpression of the APOBEC family of single-stranded

deaminases (APOBEC3B) to generate mice with enhanced

mutational burden (KPA mice) (208). Increased mutations

produce neoantigens, enabling the immune system to recognize

the tumor. Consistent with Joshi et al., there was no observed

ectopic immune cell accumulation in KP, nor in the KPA mice, at

least in proximity to the tumor. To assess whether immune cells

altered tumor growth, they created a KPA mouse line on a Rag1-/-

background (KPAR mice), but the tumor load remained unchanged

and even led to a lethal tumor load in about 14 weeks without

activating an anti-tumor response (208). The authors attributed the

absent immunogenicity to the subclonal mutations caused by

ectopic APOBEC expression. Therefore, they subsequently

generated single-cell cloned lines from KPAR tumors and found

that upon i.v. injection KPAR tumors developed in the lungs of

C57BL/6 mice. Most importantly, the orthotopic tumors induced an

anti-tumor response, including CD4+ and CD8+ T cells, as well as

NK-cell infiltration. Interestingly, the authors observed the

expression of a viral glycoprotein from the murine leukemia

retrovirus in the KPAR cells and concluded that endogenous

retroviral antigens can trigger effective CD8+ T cell responses.

Finally, the tumor growth of KPAR tumors was reduced upon

ICB. In a recently published study, the KPAR orthotopic model was

used to demonstrate B cell accumulation near the tumor (209). Ng

et al. detected mature TLS containing GCs and serum antibodies

against KPAR cells expressing endogenous retrovirus envelope

glycoproteins. Furthermore, the titer against the virus antigens

increased upon ICB with anti-PD-L1 antibodies, shedding light

on the dependence of effective anti-tumor B cell responses on viral

antigens. The expression of retroviral antigen was also detected in

LUAD patients as a prerequisite for response to ICB therapy. In

addition, they demonstrated the curative effect of CXCL13 therapy

in combination with ICB to enhance anti-tumor immunity in the

KPAR orthotopic model. In summary, GEMMs, which contain

multiple mutations similar to human LUAD tumors, have been

highly useful in investigating the effect of immunotherapy concepts

such as ICB in combination with soluble factors that enhance TLS

formation. In addition to GEMMs, the i.v. injection of B16

melanoma cells is widely used as a model for melanoma

metastasis in the lung, as most, if not all, injected tumor cells

accumulate in the lung and induce the formation of lymph node-

like structures that include HEVs (215). The B16 melanoma cell line

originated from a spontaneous tumor in a C57BL/6J mouse (216).

Nevertheless, this transplantation model may not actually be a

model for LUAD or lung metastasis, as all B16 tumors should be

considered as primary tumors that do not accurately mimic human

LUAD (217).
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Pancreatic ductal adenocarcinoma
TLS models

To model PDAC, either GEMMs or orthotopic transplantation

models have been employed. Much like the KP model in the lung, a

mouse strain expressing the mutated Kras G12D in pancreatic

ductal cells (LSL-KrasG12D/+;Pdx-1-Cre; KC mice) was

developed, resulting in a low tumor load after 5 months (218).

Subsequently, after the additional depletion of p53 (LSL-KrasG12D/

+;LSL-Trp53R172H/+;Pdx-1-Cre; KPC mice), KPC mice developed

tumor-associated TLS, including GC B cells (219, 220).

Interestingly, Spear et al. did not observe TLS formation in an

orthotopic PDAC model where a KPC-derived cell line from liver

metastasis was injected into the pancreas (220). This absence was

likely due to the highly proliferative nature of this model, resulting

in tumor formation within two weeks. Tseng et al. implanted KPC-

tumor cells into the pancreas of syngeneic mice without detecting

prominent TLS (221). However, transplantation of KPC-tumor cells

into Rag-deficient recipients resulted in lower survival compared to

immunocompetent mice, suggesting anti-tumor responses by B and

T cells primed in SLOs. The KP model, involving spontaneous

tumor formation, was combined with DNA vaccination against a-
enolase, whose expression is increased in PDAC cells. This

vaccination induced the formation of GC B cells and recruitment

of T cells into the tumor, thereby fostering TLS formation (222).

Additionally, in a model of s.c. transplantation of a human PDAC

cell line, coupled with intratumoral injection of CCL21, Turnquist

et al. observed increased accumulation of T cells, DCs, and NK

cells, forming a pre-TLS structure. This indicated the importance

of chemokine guided migration into the tumor, which may

show potential for immunotherapy (210). Of note, the

overexpression of lymphotoxin in the pancreas during steady-

state successfully induced the formation of TLS, suggesting

potential for including this construct in KP and KPC models in

the future (223). Using an orthotopic transplantation of KPC tumor

cells, the i.v. treatment with nanoparticles containing the

antifibrotic compound a-mangostin and a plasmid encoding

LIGHT resulted in reduced tumor growth. This was accompanied

by reduced activated fibroblast numbers, decreased collagen

deposition, normalized tumor vasculature, and most importantly,

the induction of organized TLS in the tumor (224). These results

highlight the intriguing role of extracellular matrix organization in

TLS formation. In summary, KP and KPC mice are valuable tools

for studying TLS formation, especially concerning DNA vaccines

and chemokine therapy. Future studies will reveal if these models

can be utilized to study the interplay between TLS and ICB.
Hepatocellular carcinoma
models show immunosuppressive
features of TLS

The tumorigenesis of HCC was investigated in GEMM by

Finkin et al. (93). The authors developed two models of

inflammation-driven HCC in mice with an overactive NF-kB
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signaling pathway, a typical feature of human HCC. IKKb(EE)
Hep mice display a hepatocyte-targeted, constitutively active NF-kB
pathway after breeding them with a suitable deleter strain

(Albumin-Cre mice). Within 7 months, typical hallmarks of liver

inflammation, including an accumulation of macrophages, liver

damage, hepatocyte proliferation, and structured TLS with B and T

cells as well as HEVs, were detected. After 20 months, all mice

developed HCC, indicating that TLS were formed prior to

tumorigenesis. Next, the authors generated Alb-IKKb(EE) mice

with constitutively active NF-kB signaling in hepatocytes without

the requirement of a Cre recombinase. These mice showed

accelerated tumor and TLS growth within 9 months.

Interestingly, on a Rag1-/- immunodeficient background, Alb-

IKKb(EE) mice showed a drastically reduced tumor burden,

illustrating the pro-tumorigenic effect of the adaptive immune

system. In fact, TLS, located in proximity to the tumor but not

within the tumor, served as a niche for forming HCC progenitor

cells that later egressed and developed into HCC. In summary, the

overexpression of the NF-kB signaling pathway in a spontaneous

model of HCC mimicked human disease and was suitable for

analyzing new concepts of immunotherapy, including interference

with TLS formation (225). Future studies are required to develop a

relevant model for intratumoral TLS formation that does not show

the tumor-supportive features discussed above.
TLS formation in colorectal
carcinoma models

To investigate spontaneous tumorigenesis in the intestine, the

APCmin model carrying a mutant allele of the APC locus, similar to

the mutation in humans, is frequently used, and the accumulation

of immune cells in proximity to adenomas and/or tumors is

described (our own observations and (226)). In addition, the

(repetitive) i.p. injection of the carcinogen azoxymethane (AOM)

can be used to induce colon tumorigenesis in mice harboring

different alterations in intestinal epithelial cells, such as the

deletion of p53 (227). However, a targeted analysis of TLS

formation in such models is currently lacking.

The most common model used to investigate inflammation-

driven tumor formation that mimics tumorigenesis in patients with

inflammatory bowel diseases is the AOM/DSS model, where the

animals receive one injection of AOM and three repetitive cycles of

dextran sodium sulfate salt (DSS) in the drinking water (228). Our

own observations (Figure 2A) clearly show the formation of

organized TLS in the AOM/DSS model, but information how TLS

formation occurs and whether it can be manipulated, e.g., by ICB in

this model, is lacking. Interestingly, a recent study showed that the

intestinal microbiota plays an important role during tumorigenesis

and can also affect TLS formation in the AOM/DSS model (229).

The authors detected increased anti-tumor immunity and reduced

tumor growth upon the introduction of Helicobacter hepaticus

(Hhep) into C57BL/6 animals in the AOM/DSS model. In fact,

Hhep induced the expansion of T follicular helper cells, leading to

the formation of organized TLS in proximity to the tumor. These
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results indicate that the microbiota has the power to induce the

formation of TLS in an inflammatory environment. Importantly,

the formation of TLS appeared to be rather independent of

tumorigenesis per se but was still useful in inducing an anti-

tumor immune reaction.

In addition to the models indicated above, the orthotopic

injection or enema of genetically engineered tumor organoids is a

novel approach to mimic the mutational cascade in human CRC.

These models overcome the limitation of AOM and AOM/DSS

tumors, which do not induce metastases (230). Again, TLS

formation in orthotopic colon tumors has not been described so

far. However, patient-derived organoids (PDO) transplanted into

the caecum of humanized mice generated tumors that formed

metastases in the liver and peritoneum, but only the growth of

the primary tumor and liver metastases were diminished upon ICB

treatment (anti-CTLA4, anti-PD-1), a phenomenon also observed

in CRC patients (231). The authors detected structured TLS in the

primary tumor and the liver metastases but not in the peritoneum.

The TLS contained T cells and B cells, showing an IFN-g signature
and CXCL13 expression. Therefore, alterations in tumor growth

upon ICB were correlated with the presence of TLS. In summary,

although many GEMMs and GEMM-derived organoids are

available to model CRC, they are presently underused to

investigate TLS during tumorigenesis in vivo.
Evidence for early TLS formation in
breast cancer models

For investigating the development of breast cancer an

autochthonous mouse was developed in 1992 by fusing the mouse

mammary tumor virus (MMTV) long terminal repeat promotor

with the polyomavirus middle T antigen (PyMT), resulting in

tumor formation in mammary glands and lung metastasis (232).

While PyMT is not a human oncogene, MMTV-PyMT mice

develop similar features, especially compared to end-stage human

breast tumors: such as the loss of estrogen receptor and

progesterone receptor expression, as well as overexpression of

ErbB2 and Cyclin D1 (233). Our own observations (Figure 2B)

suggest the formation B and T cell aggregates at the tumor margins

but not within tumors. A detailed investigation of structured TLS

formation in this model is currently lacking. Interestingly, a
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combined anti-angiogenic and anti-PD-L1 therapy approach in

PyMT mice induced the formation of intratumoral HEVs, which

might serve as a prerequisite for TLS formation (234). Furthermore,

a more recent detailed analysis of this model with anti-angiogenic

and anti-PD-L1 treatment showed the transition from tumor

endothelial cells into HEVs based on LT-b receptor signaling by

NK and CD8 T cells, thus promoting the expansion of anti-tumor

effector T cells (75). Future investigations are essential to confirm

the formation of TLS in the PyMT model, as well as in other breast

cancer models, such as the inducible expression of viral antigens in

mammary epithelial cells (235), aiming to mimic human breast

cancer. The PyMT model produces immunologically rather cold

tumors that do not respond well to ICB (236, 237), despite frequent

mutations in this model (233). Therefore, strategies to overcome

immunosuppressive mechanisms in this model are likely necessary

to enable the investigation of TLS formation.
TLS formation in models of melanoma

An autochthonous model for melanoma was established in 2009

by inducing the expression of a constitutively active BRAF mutation

at position 600 (BRAFV600E/+) under the control of the inducible

keratinocyte-specific Cre recombinase Tyr::CreERT2 (238). These

animals showed highly pigmented lesions, but did not develop

malignant melanoma. Therefore, the authors generated a new

mouse line by introducing the tumor suppressor Pten with floxed

Exon 4 and 5 (BRAFV600E/+ PTEN-/- Tyr::CreERT2). Upon

repetitive topic application of Tamoxifen, these mice developed

melanoma with metastases in lymph nodes and lungs (238). In

these melanomas, tumor infiltrating lymphocytes, including CD4+

T cells, CD8+ T cells, Tregs, and DCs, were found, but organized

lymphoid structures in situ were not investigated (239). Another

group observed the early influx of Tregs at the onset of melanoma

development, followed by CD8+ T cells (240). Upon the depletion

of Tregs, they observed an increased activity and clustering of

tumor-infiltrating lymphocytes. This illustrates that Tregs can

prevent the development of anti-tumor immunity and the

formation of TLS. For the development of differentiated TLS, the

formation of PNAd+ HEVs is crucial as they enable the influx of

immune cells directly into the TLS. Peske et al. did not detect HEV

formation in the BRAFV600E/+ PTEN-/- Tyr::CreERT2 mouse model
A B

FIGURE 2

TLS heterogeneity in cancer mouse models. (A) TLS in different maturation stages in a tumor-bearing mouse in the AOM/DSS model of CRC.
(B) Early lymphocyte aggregates in the PyMT mouse model of invasive mammary carcinoma.
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(76). In summary, this autochthonous melanoma model in its

current form is not suitable for a comprehensive analysis of TLS.

Integrating a strategy for inducible depletion of Tregs might

optimize the model towards this goal.
Using transplantation models to study
TLS formation

The transplantation of tumor cells i.p, i.v., or s.c. into

immunocompetent as well as in immune-deficient animals has

proven to be a useful method for investigating anti-tumor

immune mechanisms, including ICB (241), and the formation of

TLS. Various cell lines have been used, depending on the specific

research question. The most frequently used cancer cell line is the

B16 melanoma cell line that was isolated from a spontaneous

melanoma in a C57BL/6 mouse (216). B16 cells produce melanin,

making them easy to track in the host. Numerous sublines were

created expressing artificial antigens or tumor-associated antigens.

In general, transplantation of tumor cells offers several advantages,

as tumors develop rapidly within two weeks and can be transfected

to induce model antigen expression or harbor mutations that are

similar to human cancers. The choice of the recipient mouse line

allows the investigation of the role of different immune cells. For

example, Rag1-/- mice lack B and T cells, whereas µMT mice lack

only B cells. Furthermore, the choice of immunocompetent mouse

lines harboring a specific knockout, such as deficiency to produce

lymphotoxin, can help analyze the role of individual factors during

TLS formation (211). It may be surprising that such rapid models

are suitable to study TLS formation. However, rapid development of

TLS in mice triggered by chronic inflammation that is not related to

tumor formation is well established (31, 32). Often, s.c. injection of

tumor cells into mice may trigger acute inflammatory reactions

rather than mirror the tumor immune co-evolution seen in

humans. Therefore, it remains to be determined if TLS emerging

under such conditions accurately reflect the situation in human

tumors. Along these lines, the method of application appears to be

crucial in investigating TLS formation in transplantation models.

Two studies reported TLS formation upon B16-OVA melanoma

cell transplantation i.p., but not s.c (76, 242). It was further

described that fibroblasts in B16-OVA i.p. and s.c. tumors

showed differential expression of adhesion molecules. When

Icam1+Vcam+ fibroblasts were transplanted together with B16-

OVA cells s.c., TLS formed, but not when Icam1+Vcam- fibroblasts

were used (54). Most importantly, organized TLS were only

detected after ICB, confirming the importance of reducing anti-

inflammatory pathways to induce effective anti-tumor immunity

(54). The importance of CCL21 for TLS formation was

demonstrated in the B16 melanoma model upon s.c .

transplantation with different sublines over- or under-expressing

CCL21 (243). B16 tumors with high CCL21 expression induced TLS

formation but a successful anti-tumor response was prevented due

to the infiltration of suppressive immune cells such as Tregs. This

illustrates the complex interplay of chemokines required for the

formation of immunogenic TLS. In another study, B16 cells were
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injected i.v. into syngenic mice, resulting in the formation of

pulmonary tumors (215). The authors created a fusion protein of

a chimeric anti-GD2 antibody fused to lymphotoxin and

demonstrated its effectiveness in reducing the growth of lung

tumors by inducing peritumoral TLS, including T cells, B cells,

and HEVs. Interestingly, tumor-specific T cells were detected,

indicating the effective activation of naïve T cells within the TLS.

The potency of lymphotoxin was further highlighted by

transplantation of B16 cells expressing GD2 into lymphotoxin-

deficient mice (211). Despite the absence of secondary lymphoid

organs, TLS were formed upon treatment with the fusion protein.

In a different approach, genetic manipulation of DCs to produce

Tbet (DC.Tbet) was reported as a useful tool to induce TLS (63).

The authors induced tumors by s.c transplantation of MCA205

sarcoma cells. After seven days, they performed a therapeutic

injection of DC.Tbet cells i.t. and observed reduced tumor growth

and the development of anti-tumor immunity in association with

TLS formation, including the accumulation of T cells, B cells, NK

cells, DCs, and PNAd+ HEVs. Interestingly, DC.Tbet cells already

secreted CCL19, CCL21, LIGHT/TNFSF14, and lymphotoxin,

thereby inducing TLS formation even in lymphotoxin-deficient

mice transplanted with MCA205 sarcoma cells and treated with

DC.Tbet cells. DC.Tbet cells further produced high levels of IL36g,
and upon transplantation of MC38 colorectal cancer cells into IL36

receptor-deficient mice, the formation of TLS was impaired. These

studies indicated a novel role for IL36 in anti-tumor immunity

during TLS formation.

We do not offer a complete list of all transplantable tumor

models that develop TLS, but rather aim at highlighting models that

are particularly useful for investigating TLS formation. While many

studies describe the induction of successful anti-tumor immune

responses without focusing on TLS formation (244, 245), the

diversity of tumor cells and recipient mice, particularly when

considering genetic modification of one or both, makes s.c. and

i.p. transplantation models valuable tools to investigate at least early

mechanisms of TLS formation.
Conclusions

The data summarized above establishes the prognostic

relevance of TLS for cancer patients, while outlining the

challenges that lie ahead when considering TLS formation as a

reliable prognostic and therapeutic goal. While the suitability of TLS

as biomarkers in different tumor entities is solidifying, the signals to

initiate, sustain, but also prevent TLS formation, and the cellular

interactions within TLS, are poorly understood. Such knowledge

would be necessary to envision targeted induction of TLS in cancer

and prevent their undesired formation in other contexts. Along

these lines, an important aspect to consider is the potential auto-

immune reactions that may be triggered when TLS are

therapeutically induced. While the antigen-dependence of TLS

formation may be a limiting factor for such side-effects, recent

studies have indicated that TLS may also form due to chronic
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inflammation and aging without the requirement of specific

antigens (32). The requirement of a sufficient degree of ongoing

inflammation for TLS formation not only emerges from cancer

mouse models, such as the PyMT model discussed earlier, but also

from clinical observations. For instance, tobacco exposure, which

triggers inflammatory reactions, has been connected to increased

TLS abundance and CCL21 in lung adenocarcinoma patients,

correlating with the response to immunotherapy (246). Moreover,

cancer patients undergoing corticosteroid treatment exhibited

impaired TLS maturation or formation (190, 247). Other

inflammatory triggers, such as dying cells or related DAMPs

commonly found in tumors and induced in response to tumor

therapy, may also affect TLS development (69).

There are critical questions in the TLS field that we feel need

specific attention (Figure 3). Particularly TLS heterogeneity

concerning maturation state, location, interconnectivity, and

cellular composition, both globally and in discrete tumor niches

at primary and metastatic sites, needs consideration. The impact of

these parameters on anti-tumor immunity and disease progression

requires further clinical and pre-clinical investigation. Moreover,

standardized, clinically applicable methods of TLS detection need to

be established. Importantly, it is not entirely clear if TLS are simply

indicative of the local immune response in a tumor or if they

represent relevant anti- or pro-tumor entities by themselves.

Understanding this issue is vital not only for targeted TLS

induction but may also be of interest when aiming at avoiding
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auto-inflammatory side-effects of immune activation against

tumors. Suppressing TLS may, in some cases, reduce auto-

immune side-effects rather than affecting anti-tumor

immune responses.

Addressing these questions requires longitudinal and spatial

analyses to compare intra- and extra-tumoral immune responses,

preferably in suitable mouse models that closely replicate tumor

development in humans. Such experiments would yield strategies to

selectively induce or deplete TLS without hampering local extra-

TLS immune responses as well as SLO-dependent adaptive

immunity. Another pressing question is identifying the signals

and cellular composition that render TLS activating versus

suppressive. Understanding the signals that induce or suppress

Treg formation/activity in TLS and targeting these mechanisms

could potentially revert suppressive TLS into immune-stimulatory

powerhouses. Phenotypes and functional properties of suppressive

Tregs in TLS and their putative association with TLS maturation

require further investigation.

Finally, not all tumors seem permissive for TLS formation,

suggesting that homeostatic signals may limit TLS induction even in

the presence of inflammatory stimuli. Cytokine receptor

antagonists, as shown for IL-36RA (63), or cytokine and

chemokine decoy receptors (248) might be potential candidates.

Blocking these mediators and receptors may, thus, trigger TLS

formation even in non-permissive environments. However, the

potential risk of auto-inflammatory side-effects also requires
FIGURE 3

Open questions concerning tertiary lymphoid structures (TLS) in cancer. The impact of the intra- and inter-tumor heterogeneity of TLS on anti-
tumor immunity and patient prognosis is not fully understood. Important parameters appear to be not only the number of TLS and their localization.
Cellular composition such as the relative abundance of regulatory T cells (Tregs) and maturation status such as the presence or absence of germinal
centers (GCs) as well as interconnectivity throughout tumors may play a role. Moreover, signals that on the one hand induce and on the other
restrict TLS formation, and the cells providing these signals, need to be identified and/or better characterized. This is also relevant on the context of
organ specificity. Finally, the fundamental question if TLS are causally involved in anti-tumor immunity or represent a bystander phenomenon is still
unanswered. This is only relevant to be able to understand the impact of TLS on anti-cancer therapy responses, and if induction of TLS formation
would induce unacceptable auto-immune side-effects. Research towards answering these open questions will require suitable pre-clinical models.
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investigation. To this end, optimal tumor (mouse) models to study

TLS formation that mimic both, the time scale and cellular

complexity of tumor formation in humans need to be developed

and cross-validated. Such studies will reveal the true benefit of

interfering with TLS formation in cancer patients.
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