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Lung cancer is the leading cause of tumor-induced death worldwide and

remains a primary global health concern. In homeostasis, due to its unique

structure and physiological function, the lung microenvironment is in a state of

immune tolerance and suppression, which is beneficial to tumor development

and metastasis. The lung tumor microenvironment is a more complex system

that further enhances the immunosuppressive features in the lungs. NK cells are

abundantly located in the lungs and play crucial roles in lung tumor surveillance

and antitumor immunity. However, the immunosuppressive microenvironment

promotes significant challenges to NK cell features, leading to their

hypofunction, exhaustion, and compromised antitumor activity. Thus,

understanding the complex interactions among the lung microenvironment,

lung tumor microenvironment, and NK cell exhaustion is critical for the

development of effective cancer immunotherapeutic strategies. The present

review will discuss NK cell hypofunction and exhaustion within the lung

microenvironment and lung tumor microenvironment, focusing on lung

tissue-specific factors, including key cytokines and unique environmental

components, that modulate NK cell activation and function. Understanding the

functional mechanisms of key factors would help to design strategies to reverse

NK cell exhaustion and restore their antitumor function within the lung

tumor microenvironment.
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Introduction

Lung cancer is a disease with very high morbidity and mortality

worldwide in both sexes (1). In addition, the lung is the primary site

for disseminated tumor seeding (2). The continuous interaction on

the open surface and rich capillary network of the lungs brings a

higher chance of making tumors “seed” into the lungs, and the

immunosuppressive microenvironment of the lungs provides “soil”

for tumor growth, so the lung becomes a high incidence site of

tumors in situ and metastases. For example, breast cancer with very

high morbidity in the world has lung metastasis in 60-70% of

relapsed patients (3). Natural killer (NK) cells are an important

innate lymphocyte population that are abundant in the lungs and

play critical roles in the antitumor immune response. NK cells

mediate antitumor effects by producing effector cytokines or

exerting direct cytotoxic activity (4). However, NK cells in the

lungs display inactivated and hypofunctional features (5). When the

tumor microenvironment is formed in the lungs, NK cells are

getting exhausted (6, 7). This review summarized the roles of the

main lung-specific components that can modulate NK cell

hypofunction and exhaustion in both the lung microenvironment

and lung tumor microenvironment. Furthermore, future studies on

promising antitumor strategies will also be discussed.
The lung is a unique, complex, and
delicate organ

As the main organ for oxygen and carbon dioxide exchange, the

lung is essential for mammalian survival. The surface area of the

lower respiratory tract is approximately one hundred square meters

in a healthy adult. Furthermore, the alveoli are the terminal units of

the respiratory tract tree, and they are highly vascularized and have

thin-walled architecture. The surface area of capillaries

encompassing the alveoli is approximately 140 square meters.

Moreover, the basement membrane of the alveolocapillary, which

is the interface of alveolar epithelium and capillary endothelium, is

only approximately 0.3 mm in thickness. To meet the active

metabolic demands of the body, the distal airway of a healthy

human adult needs to filter approximately ten thousand liters of air

every day, and the pulmonary capillaries need to handle

approximately 5 liters of blood every minute. Meanwhile, the

large thin tenuous lung barrier is persistently exposed to different

kinds of allergens, particles, and pathogens inhaled from the air and

carried from the blood (8). Thus, the unique physiological functions

and structures determine that the lung is a complex and

delicate organ.

The physiological functions and the complex environment of

the lungs require that the immune response in the lungs must be

fast and efficient but tightly controlled to protect the tenuous lung

barrier from excessive immune responses and inflammation and

maintain immune homeostasis (9–11). The lung possesses a unique

immune regulatory network that consists of structural cells and

resident immune cells. All these cells are involved in the mounting

of the lung-specific microenvironment (12).
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Lung immune cells in homeostasis
and disease

The lung has a unique set of immune cells, including innate and

adaptive immune cells that are located within the lung niche and

mediate the lung-specific immune response in homeostasis and

disease (12). In the lungs, the particles, allergens, and pathogens

from the inhaled air are removed mainly by lung-resident

macrophages and dendritic cells (DC). Alveolar macrophages

(AMs) are found in the alveoli, where they are composed of 90-

95% of immune cells in the steady state in mice (13). Another type

of lung-resident macrophage is interstitial macrophages (IMs),

which are divided into two subsets. Lyve1hi IMs are closely

located with blood vessels and play a crucial role in maintaining

blood vessel integrity and anti-fibrotic activity. Lyve1lo IMs are

situated close to lung nerve bundles and display higher antigen-

presentation capacities (14). Lung resident DCs are mainly located

at the basolateral side of the epithelium and are important for

initiating appropriate immune responses to inhaled antigens (13).

In addition, different types of lymphocytes/lymphoid cells are found

in the lungs at steady state, including T cells, B cells, NK cells, and

innate lymphoid cells (ILCs). Increased evidence has shown that

lung-resident memory T and B cells, approximately 80% of

lymphocytes in total in mouse lungs, play an important role in

protecting against respiratory reinfection (15). ILCs also mediate a

protective immune response from pathogens and promote tissue

repair and homeostasis after infections (16), although the total lung

ILC population is approximately 20–30 thousand cells in naive

mouse lungs and only 0.1% of all CD45+ cells in human lungs (17).

Furthermore, as a critical part of lymphocytes, lung NK cells are

crucial effector lymphocyte populations in antitumor and anti-

infection immune responses (18, 19). In this review, we will focus

on lung NK cells and discuss their phenotype and function in the

lung microenvironment.
The lung microenvironment shapes
the specificity of lung NK cells
in homeostasis

As important innate lymphocytes, NK cells are widely

distributed in lymphoid and non-lymphoid tissues and play a

crucial role in immune surveillance (20, 21). The lung is an

important barrier of the body and is full of interactions between

immune cells and foreign pathogens. NK cells are abundant in the

lungs of both humans and mice (22, 23), indicating the significance

of lung NK cells. There are high percentages of NK cells among

lymphocytes in the lungs, approximately 10% in mice and 10-20%

in humans, compared to other lymphoid and non-lymphoid organs,

such as lymph nodes, bone marrow, spleen, blood, and liver (24–

26), and the cytokine interleukin (IL)-15 derived from epithelial

cells and alveolar macrophages might contribute to the high

percentages of NK cells in the lung microenvironment (27, 28).

In normal lungs, NK cells are located in the lung interstitium.

NK cells infiltrate into the alveoli and are observed in the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1286986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1286986
bronchoalveolar fluid (BAL) during respiratory infection and in

lung inflammatory diseases (29). In 1980, the antitumor function of

NK cells was proven by three independent groups at almost the

same time (30–32). Talmadge et al. found that NK cells have an

important function in controlling tumor growth and metastasis in

an NK cell-deficient mouse model (30). Karre et al. reported that

NK cell-deficient mice display low in vivo resistance to syngeneic

leukemias (31). Roder et al. observed that patients with

dysfunctional NK cells have a profound defect in their ability to

spontaneously lyse various tumor cells in vitro (32). Since then, an

increasing number of studies have confirmed that NK cells have

antitumor effects in multiple different tumors (33). In lung cancer

patients, a correlation between tumor-infiltrating NK cells and a

better prognosis has been observed (34, 35). In the Kras-driven

spontaneous lung cancer and lung tumor implantation mouse

model, NK cells showed antitumor effects. In both studies, mice

lacking NK cells showed a higher tumor burden (36, 37). In

addition to their antitumor function, NK cells are involved in

immune responses to lung infections. In humans, increased

respiratory viral infections are associated with dysfunction of NK

cells (38, 39). However, studies with mouse models show that lung

NK cells have a protective role in controlling viral and bacterial

burden after infection (40). On the other hand, NK cells also

contribute to inflammation-mediated damage and exacerbate the

pathology of infection (41). The different functions of NK cells are

driven by the local lung tissue microenvironment.

Lung NK cells display unique features compared to NK cells in

other tissues: i) Lung NK cells maintain a more mature phenotype.

In human lungs, NK cells are found in the parenchyma, and most of

them display a fully differentiated CD56dimCD16+ phenotype.

However, NK cells in the liver and other lymphoid organs display

a CD56brightCD16– phenotype (19, 42). Similarly, in mouse lungs,

most NK cells exhibit a mature CD27-CD11b+ phenotype (24); ii)

The majority of lung NK cells are not tissue-resident. In both

humans and mice, only a few lung NK cells express CD49a, which is

a tissue-resident NK marker, indicating that lung NK cells mainly

circulate between blood and the lungs (5, 19); iii) Lung NK cells

display an inhibitory phenotype. In mice, compared to NK cells

isolated from the spleen and bone marrow, lung NK cells express

lower levels of activation-related molecules, such as CD69, NKp46,

and NKG2D, and higher levels of inhibitory receptors CD94 and

NKG2A (24). In humans, lung NK cells also express killer Ig-like

receptors (KIRs), indicating that lung NK cells are quiescent in a

steady state (5); iv) Lung NK cells are hypofunctional. In the 1980s,

human NK cells were found to be functionally important in the

lungs (42). Lung NK cells showed impaired cytotoxic abilities

compared to NK cells from peripheral blood. The main structural

cells (lung epithelial cells) and resident immune cells (alveolar

macrophages) in the lungs are involved in the process of NK cell

hypofunction (43–46). The key environmental components in the

lungs, such as prostaglandin E2 (PGE2), TGF-b, and pulmonary

surfactant, are the main mediators and are responsible for impaired

NK cell functions (46). Recently, further studies have shown that
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PGE2 produced by lung fibroblasts is the main mechanism to

explain the inhibition of NK cell functions (2). However, the

inhibitory phenotype of NK cells in homeostasis could be

reversed after respiratory viral or bacterial infection, and NK cells

have the potential to be activated rapidly and involved in

immunopathology in an inflammatory lung microenvironment

(24). Overall, the particular phenotype and special features of

lung NK cells under physiological conditions are shaped by the

unique lung microenvironment and are beneficial for avoiding

unnecessary inflammation and maintaining immune homeostasis

in the lungs.
The lung tumor microenvironment
causes exhaustion of lung NK cells

NK cells play critical roles in tumor surveillance and antitumor

immunity in the circulating system and multiple organs (47). NK

cells can be activated directly to eliminate target cells without

priming (20). NK cells perform their effector function in several

different ways. After activation, NK cells can directly kill

transformed cells or tumor cells by producing perforin and

granzyme B (48, 49) or by inducing target cell death through

tumor necrosis factor (TNF)-a, Fas ligand (FasL), and TNF-

related apoptosis-inducing ligand (TRAIL) (50–52). In addition,

NK cells can eliminate transformed cells or tumor cells through

antibody-dependent cell-mediated cytotoxicity (ADCC) in the

presence of antibodies (53). Furthermore, NK cells can secrete

different cytokines and chemokines that subsequently promote

other immune cells to exert antitumor functions (54).

However, in the condition of lung cancer, NK cells display an

exhaustion status with an altered phenotype and impaired effector

function. In mice, NK cells could prevent lung tumor initiation in a

Kras-driven lung cancer model. However, once the tumor enters the

promotion and progression stage, NK cells exhibit an exhausted

phenotype with low cytotoxicity and viability (36). Similarly,

intratumor NK cells show an exhausted phenotype, lower IFN-g
production, and impaired cytotoxic function in patients with non-

small cell lung carcinoma (NSCLC) (7, 55–57). Most recently, Tang

et al. analyzed human NK cells from 716 patients across 24 tumor

types by integrative single-cell sequencing and found that NK cells

display tumor-type preferences and are associated with both

intrinsic organ properties and factors from the tumor

microenvironment. The proportions of CD56dimCD16hi NK cells

are significantly decreased in lung cancer compared with noncancer

lungs. Further transcriptomic feature analysis in this study has

shown that a subset of tumor-associated NK cells is enriched in

tumors and displays exhaustion features and impaired antitumor

functions in multiple cancers, including lung cancer (58). Thus,

understanding the mechanisms and key factors that promote NK

cell exhaustion in the lung tumor microenvironment would provide

new directions for antitumor strategies.
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Unique components of the lung
microenvironment and lung tumor
microenvironment promote lung NK
cell exhaustion

Based on the special structure and composition of structural

cells and immune cells, the lungs have many unique intrinsic

features. For example, the expression of PGE2 in the lungs is

relatively higher than that in other tissues (2). Furthermore, the

expression of TGF-b in the lungs is high during lung development

(59). There are also other unique chemical conditions, such as high

levels of oxygen (60, 61), low levels of glucose (62–64), and

abundant surfactant protein and lipids (65) in the alveoli

(Figure 1). All these special components are involved in shaping

the inactivation and hypofunctional status of NK cells. When

tumors grow in the lungs, there are more immunosuppressive

cells infiltrating the lung tumor microenvironment, such as

myeloid-derived suppressor cells (MDSCs), tumor-associated

macrophages (TAMs), and regulatory T cells (Tregs) (66). These

types of cells produce more PGE2 and TGF-b (67, 68) (Figure 2).

Moreover, the physical and chemical environment is changing to

hypoxia, low pH, and lower glucose (69–71) (Figures 1, 2). All these

mediators further promote NK cells changing to exhaustion status

with altered phenotype and impaired function.
TGF-b

TGF-b is a critical immunosuppressive cytokine of the lungs in

a steady state and plays critical roles in driving AMs proliferation

and differentiation and maintaining lung immune homeostasis (72).
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TGF-b is produced by multiple cell types in the normal lung

microenvironment (12). In 1984, Robinson and colleagues found

that NK cells isolated from lung tissue display impaired cytotoxic

function (42). Later, several studies have proven that exogenous

TGF-b could inhibit the IFN-g production and activity of human

NK cells in vitro, indicating the role of TGF-b in shaping special

phenotypes and impaired function of lung NK cells (73–75).

As a biomarker of tumors and an extensive inducer of the tumor

microenvironment, TGF-b is produced by different types of cells

and plays multiple roles in tumor progression. Lung tumor cells

themselves can secrete large amounts of TGF-b (76). TGF-b can

induce tumor formation by promoting the process of epithelial-

mesenchymal transformation (EMT) (77, 78). TGF-b also facilitates
the transformation of fibroblasts into cancer-associated fibroblasts

(CAFs), and CAFs can be the main source of TGF-b to further

elevate the levels of TGF-b in the lung tumor microenvironment

(79). TGF-b promotes CD4+ T cells to differentiate into Tregs and

macrophages to polarize to M2 cells (80). Furthermore, with the

formation of a tumor microenvironment, large numbers of TAMs,

MDSCs, and Tregs appear in lung tumors (66). These cells could

also secrete TGF-b, which further promotes NK cell exhaustion

(Figure 2). TGF-b promotes NK cell exhaustion in several different

ways. First, TGF-b alters the receptor-ligand interaction between

NK cells and tumor cells. In response to TGF-b, NK cells

downregulate the activating receptors NKG2D, NKp30, and

NKp80 (81) and upregulate the inhibitory receptors NKG2A and

PD1 (82). On the other hand, TGF-b also inhibits the expression of

NKG2D ligands in human lung cancer cells (67). Second, TGF-b
changes the metabolic features of NK cells. In the Kras-driven lung

cancer mouse model, TGF-b inhibits glycolysis in NK cells by

regulating the production of FBP1, which further mediates the

exhaustion of NK cells (36). Finally, TGF-b induces microRNAs to
FIGURE 1

Key components from the lung microenvironment and lung tumor microenvironment. Abundant TGF-b, PGE2 and surfactant in the lung
microenvironment are crucial for lung homeostasis. High oxygen and low glucose are special features of the lung microenvironment. When tumors
grow in the lungs, more TGF-b and PGE2 are produced, and the physical and chemical environment changes to low oxygen, lower glucose, and low
pH. Created with BioRender.com.
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silence NK cells. In human lung cancer, high levels of TGF-b
deplete DAP12 by inducing microRNA-183 expression (83).

Overall, in exposure to gradually increased TGF-b in the lung

tumor microenvironment, lung NK cells are precisely regulated step

by step and change themselves from hypofunction to exhaustion.
PGE2

PGE2 is a lipid compound generated from arachidonic acid via

the catalysis of the enzyme cyclooxygenase (COX), including COX1

and COX2, and it plays multiple roles in regulating different stages

of the immune response (68). In healthy lungs, PGE2 is mainly

secreted by lung fibroblasts (2). The expression level of Ptgs2,

encoding COX2, is much higher in lung fibroblasts than in lung

epithelial cells, endothelial cells, lung CD45+ immune cells, and

fibroblasts from other tissues, such as bone, heart, liver, spleen, and

mammary gland, in mice (2). Similarly, high levels of PTGS2

expression were also detected in human lung tissues compared to

other tissues through analyses of microarray data (2, 84). Gong et al.

proved that the high level of PGE2 secreted by lung fibroblasts is

responsible for the unique lung microenvironment, and the unique

lung microenvironment endows the immunosuppressive phenotype

of myeloid cells and the dysfunction of DCs in the lungs, which

ultimately inhibits the cytotoxicity of NK cells (2) (Figure 2). The

lung is the most common site for tumor metastasis (2). Deletion of

Ptgs2 in lung fibroblasts or inhibition of the PGE2 receptor EP2 and

EP4 could reverse the immunosuppression of resident myeloid cells

and diminish lung metastasis in several breast cancer models,

indicating that PGE2 is a critical factor in mediating

premetastatic niche formation (2). As an important component of
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the premetastatic niche, neutrophils secrete the inflammatory

cytokine IL-1b in the lungs, which facilitates lung fibroblasts to

produce more PGE2 and promote the formation of the lung tumor

microenvironment. Furthermore, TGF-b could increase the

production of PGE2 by augmenting the expression of COX-2

through a noncanonical pathway (80).

In the tumor microenvironment, an increased amount of PGE2 is

secreted by multiple cell types, including tumor cells, TAMs, CAFs,

and MDSCs (76, 85–87). Increased evidence has shown that PGE2

can inhibit the antitumor activity of NK cells in lung cancer (88, 89).

A high level of PGE2 could also induce immunosuppressive FOXP3+

Treg cells in lung cancer (90, 91). In PGE2-producing tumors, fewer

NK cells are in the tumor, and they lose the ability to produce the

cytokines CCL5 and CXCL1 (92). Moreover, PGE2 downregulates

the expression of the activating receptors NKp46, NKp44, NKp30,

and NKG2D by binding to the receptors EP2 and EP4 on NK cells

(93), then promoting the amplification of cyclic AMP cascade protein

kinase A signaling (94), and finally resulting in the exhaustion of NK

cells (95, 96) (Figure 2). Thus, PGE2 plays an important role in

inducing NK hypofunction in the lung microenvironment and NK

exhaustion in the lung tumor microenvironment.
Oxygen

Since the critical physiological function of the lungs is to mediate

the exchange of oxygen and carbon dioxide, the respiratory tract is a

unique niche with relatively high levels of oxygen (61), which has a

direct influence on lung immunity (60). Oxygen is transported by red

blood cells from alveoli to different organs. Under physiological

conditions, due to oxygen being delivered according to the
FIGURE 2

NK cell hypofunction and exhaustion are modulated by key components of the lung microenvironment and lung tumor microenvironment. PGE2
and TGF-b secreted by lung epithelial cells, AMs, and fibroblasts in the lung microenvironment modulate the hypofunction of lung NK cells in
homeostasis. When tumors grow in the lungs, more PGE2 and TGF-b are secreted by multiple cell types, including tumor cells, MDSCs, TAMs, CAFs,
and Tregs. The physical and chemical environment changes to hypoxia, lower glucose, and low pH. All these factors promote NK cell exhaustion in
the lung tumor microenvironment. Created with BioRender.com.
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metabolic requirements of each tissue, different tissues have their own

special ‘physioxia’ status. The oxygen levels in the atmosphere, so-

called normoxia, are 21.1% (160 mmHg). The oxygen levels are

approximately 19% (150 mmHg) in the trachea, approximately 14.5%

(110 mmHg) in the alveoli, and 13.2% in arterial blood, which is

relatively higher than other tissues (61). Cells from different organs

can sense oxygen levels and change their metabolic and

transcriptional features. Moreover, inflammation and oxygen levels

are tightly linked, and hypoxia can cause inflammation (97). In the

lung microenvironment, hypoxia could induce fundamental

biological actions in lung structure cells and alveolar macrophages.

The decline in oxygen levels in the local environment leads to the

expression and stabilization of the transcription factor hypoxia-

inducible factor (HIF), which plays a key role in lung diseases (98).

HIF1a and HIF2a can be expressed by pulmonary artery smooth

muscle cells (PASMCs), endothelial cells, and epithelial cells (98).

Furthermore, recent studies have shown that the Von Hippel−

Lindau (VHL) protein, which is a negative regulator of HIF,

directly controls the terminal differentiation, self-renewal, and

function of alveolar macrophages in homeostasis (99, 100). All

these changes induced by hypoxia in the lung microenvironment

might modulate other immune cells, including NK cells.

When a tumor appears in the lungs, the oxygen levels are

completely changed due to the rapid growth of tumor cells. Hypoxia

can promote the progression of tumors in multiple ways (101). The

hypoxia-induced pathway plays important roles in promoting EMT,

maintaining tumor stem cells, promoting angiogenesis, and driving the

activation and expansion of immune-suppressive stromal cells (101).

After the formation of a typical tumor microenvironment, hypoxia

could further induce NK cell exhaustion (102). HIF1a induced in NK

cells suppresses the upregulation of activating receptors such as

NKp46, NKp44, NKp30, and NKG2D in the presence of activating

cytokines, and NK cells display impaired cytotoxic capacity to target

cells (103). Hypoxia in NK cells induces lower cytokine production

(104). Furthermore, NK cells from HIF1a KO mice increase cytokine

secretion and display higher antitumor activity (105), further

demonstrating the important role of HIF1a. Overall, the low levels

of oxygen (hypoxia) in the lung tumor microenvironment could

promote the phenotype and function of NK exhaustion, but the

detailed mechanism is not clear, and more studies need to be done.
Glucose

In homeostasis, the glucose concentration in the fluid line with

lung epithelial cells is more than 10 times lower than that in blood. The

glucose concentration in blood is maintained at approximately 4.0-5.5

mmol/L, which is the optimal level for normal brain functions (106).

The liquid from the lower airways of healthy human donors contains

only approximately 0.4 mmol/L glucose (106), which is critical to limit

bacterial growth in mice and human lungs (62–64). Glucose levels in

the alveoli increase when airway homeostasis is disrupted by

inflammation and viral infection, and high glucose levels in blood

are observed in patients with diabetes or acute hyperglycemia (64, 106).

Low glucose levels in the alveoli are maintained against a concentration

gradient by the highly activated glucose transporters Glut1 and Glut 10
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(62). Elevated airway glucose concentrations may increase the risk of

respiratory bacterial infection, particularly methicillin-resistant

Staphylococcus aureus (MRSA) (64). High airway glucose

concentrations might also exacerbate lung disease by inducing local

inflammation. As the critical carbon source, the effect of glucose on

inflammation and infection is higher than that of other nutrients (63).

Interestingly, the glycolytic capacity of alveolar macrophages is

relatively low compared to that of macrophages from other tissues

(107), which might be explained by the low glucose levels in the

alveolar niche. Normally, aerobic glycolysis is vital for T, B, and NK cell

activation by supporting the biosynthetic demands of these cells (108).

Thus, the inactivated state of lymphocytes might be partially associated

with glucose shortage in the lung microenvironment.

Glucose restriction is also a biomarker of the lung tumor

microenvironment (71). Cong et al. found that NK cells isolated

from the lung tumor microenvironment have lower levels of glycolytic

capacity accompanied by attenuated cytotoxic function and cytokine

production (36). They also found that the increased expression of

fructose-1,6-bisphosphatase (FBP1) inhibits glycolysis in NK cells

from a lung cancer mouse model. These data indicate that tumor-

driven glucose restriction inhibits glycolysis in NK cells and impairs

their antitumor activity (109). On the other hand, the increased lactate

concentration is also a biomarker of the TME, which is due to tumor

cells primarily using glucose for glycolytic metabolism. Elevated lactate

levels or low pH have been proven to prevent the cytotoxic activity of

NK cells (110). Stimulation of NK cells by PMA/ionomycin in the

presence of lactic acid could block their IFN-g production (111).

Overall, the correlation between glucose metabolism and NK cell

exhaustion in the lung tumor microenvironment is largely unknown,

and more research needs to be done.
Surfactant

The alveoli are coated with a layer of surfactant, a highly surface-

active phospholipid-rich material, which is essential for respiratory

function in mammals (112). Pulmonary surfactant is a complex

mixture of approximately 90% lipids and 8-10% protein, which is

essential for reducing surface tension at the air-liquid interface of the

terminal airways and preventing the alveolus collapse upon expiration

(113, 114). Surfactant is produced in type II alveolar epithelial cells,

where it is assembled into lamellar bodies, densely packed

membranous acidic organelles (112, 115). Type II alveolar epithelial

cells and alveolar macrophages are the main cells responsible for

surfactant uptake and degradation (114). When inflammation or lung

injury occurs, some of the surfactant components might leak into the

blood. The appearance of surfactant proteins in plasma could be used

as an early marker of lung injury (114).
Surfactant protein
There are four surfactant proteins (SP), SP-A, SP-B, SP-C, and SP-

D in the alveoli. SP-B and SP-C are small and very hydrophobic

proteins that are essential for forming a monolayer at the air-liquid

interface and have lower surface tension. SP-B deficiency or gene

mutation is associated with respiratory distress syndrome in neonates
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(116). Furthermore, gene mutation of SP-C induces pulmonary

alveolar proteinosis-like disease in some cases (117). SP-A and SP-D

are larger hydrophilic-related proteins of the collectin family, which

have important roles in innate immunity and local immune

modulation (118). SP-A and SP-D can directly bind respiratory

pathogens, allergens, and particles through their collectin binding

domain and mediate phagocytosis by lung-resident cells, which are

important for pathogen clearance in the early stage of infection (119–

121). Studies have shown that SP-A could increase AM alternative

activation (122, 123), indicating that SP-A might be involved in

mounting the anti-inflammatory microenvironment in the lungs.

However, SP-A has also been reported to increase activated NK cell

numbers and prevent lung cancer progression by promoting the

polarization of M1 tumor-associated macrophages (124). SP-D was

found to prevent lung cancer progression by downregulating epidermal

growth factor signaling (125). Although the role of surfactant protein in

lung cancer has been studied, its importance in NK cells remains

largely unclear. More research is needed to investigate the direct role of

surfactant protein in influencing NK cell functions.
Surfactant lipids
Approximately 75–80% of phospholipids are phosphatidylcholines.

The most abundant component of surfactant lipids is saturated

dipalmitoylphosphatidylcholine (DPPC), approximately

40% of the total lipids. DPPC contains two saturated palmitic chains

(16:0/16:0 PC). In addition, other anionic phospholipids,

such as phosphatidylglycerol (PG, approximately 7%),

phosphat idylethanolamine (PE, approximately 3 .7%),

phosphatidylinositol and phosphatidylserine (5.4%), and

sphingomyelin (6.8%), appear as components of surfactant (126, 127).

Decreased levels of surfactant lipids have been described in smokers and

COPD patients (128, 129). Surfactant phospholipids reduce alternative

activation and proliferation of alveolar macrophages by decreasing the

activation of PI3K-Akt-mTORC1 signaling (130, 131). Studies have

shown that lipids purified from the BAL fluid of healthy donors inhibit

NK cell cytotoxicity in vitro (132). However, different lipid components

have distinct roles in NK cell activation. PG was found to suppress,

while PE could augment, the cytotoxic function of NK cells (132).

Recently, Gong et al. reported that lipid-laden lung mesenchymal cells

facilitate breast cancer lung metastasis via metabolic reprogramming of

tumor cells and NK cells. They found that lipid-laden mesenchymal

cells could transport their lipids to tumor cells and NK cells via

exosome-like vesicles, which leads to tumor cell proliferation and NK

cell exhaustion (133). Despite the high abundance of surfactant lipids in

the alveoli, their roles in inflammation and cancer are unknown, and

more studies are necessary to understand the importance of each

phospholipid in shaping the function of NK cells.
Perspective

The effector function of NK cells is regulated by the fine balance

between activating and inhibitory signals. Blockage of checkpoint
Frontiers in Immunology 07
receptors has displayed the potential to reverse NK cell exhaustion in

tumors and boost their antitumor function. As a promising

immunotherapy strategy for tumors, NK cell-based checkpoint

blockade immunotherapy has displayed potential roles in improving

current T-cell-based tumor immunotherapy. Recently, the therapeutic

potential of many inhibitory receptors on NK cells, such as NGK2A,

KIRs, TIM-3, TIGIT, CD96, and PD-1, has been proven by animal

experiments or some clinical trials (102, 134). However, NK cell-based

checkpoint blockade did not fully exhibit its antitumor function

because the immunosuppressive tumor microenvironment plays a

critical role in regulating the antitumor functions of NK cells. Thus,

combining NK cell-based checkpoint blockade and targeting the vital

specific components of the lung microenvironment would be a better

solution for lung cancer therapy.

As the key immunosuppressive components of the lung tumor

microenvironment, TGF-b and PGE2 have been widely studied.

Targeting TGF-b or PGE2 in several studies has been shown to

restore NK cell function in tumor therapy. However, the direct role

of other components of the lung tumor microenvironment (glucose

metabolism, hypoxia, and surfactant protein and lipids) is largely

unknown. More basic research is needed to fully understand the

relationship between these components and NK cell exhaustion.

Notably, insights in the field of the lung tumor microenvironment

and NK cell exhaustion will allow and facilitate the development of

rationally designed combination immunotherapeutic strategies for

lung cancers.
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