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ISG15 deficiency is a rare disease caused by autosomal recessive variants in the

ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role

in both the type I and II interferon (IFN) immune pathways. Extracellularly, the

ISG15 protein is essential for IFN-g-dependent anti-mycobacterial immunity,

while intracellularly, ISG15 is necessary for USP18-mediated downregulation of

IFN-a/b signalling. Due to this dual role, ISG15 deficiency can present with

various clinical phenotypes, ranging from susceptibility to mycobacterial

infection to autoinflammation characterised by necrotising skin lesions,

intracerebral calcification, and pulmonary involvement. In this report, we

describe novel variants found in two different families that result in complete

ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified

a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene

1p36.33 deletion in the proband from the first family. In the second family, a

homozygous total ISG15 gene deletion was detected in two siblings. We also

conducted further analysis, including characterisation of cytokine dysregulation,

interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes
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and lesional tissue. Finally, we demonstrate the complete and rapid resolution of

clinical symptoms associated with ISG15 deficiency in one sibling from the

second family fol lowing treatment with the Janus kinase (JAK)

inhibitor baricitinib.
KEYWORDS

ISG15 deficiency, ISG15, interferonopathy, microdeletion, Janus kinase inhibition,
baricitinib, whole exome sequencing, interferon
Introduction

The range of autoinflammatory and immunodysregulatory

disorders caused by inborn errors in the type I and II interferon

(IFN) pathways has significantly expanded in recent years (1). Type

I interferonopathies are the result of harmful variants in various

genes that encode proteins involved in DNA damage sensing, the

proteasome, the endoplasmic reticulum-golgi apparatus axis, or

proteins directly involved in IFN-I receptor signaling. Skin

vasculitis and neurological involvement, including cerebral

calcification, are common features (2). On the other hand, genetic

disorders affecting the type II interferon pathway are associated

with Mendelian susceptibility to mycobacterial disease (MSMD)

(3), which can also manifest as a reaction to the Bacillus Calmette-

Guérin (BCG) vaccine. Recently, interferon-stimulated gene 15

(ISG15) deficiency has been identified as a complex disorder with

a mixed phenotype that encompasses features of both type I and

type II interferonopathies (4–6). This is not surprising considering

the dual role of ISG15 in these pathways.

ISG15 deficiency remains an extremely rare disease, with fewer

than 100 cases reported worldwide. In this report, we expand the

genotypic spectrum of ISG15 deficiency by describing two families,

one of White British and one of Pakistani ancestry, with novel

microdeletion and nonsense variants in ISG15 that result in

complete ISG15 deficiency. Additionally, we demonstrate for the

first time the efficacy of Janus kinase (JAK) inhibitor baricitinib as a

treatment for this disease.
Materials and methods

Study participants

We obtained written informed consent from all participants

and controls (ethics no. 08H071382 and 11/LO/0330) who

participated in the study.
Whole exome sequencing and analysis

DNA was extracted from EDTA blood using the Gentra

Puregene Blood Kit (Qiagen). For family A, DNA was sent to
02
Nonacus/Informed Genomics Ltd for WES using their ExomeCG

Cell3™ enrichment technology and data processing services. Reads

were aligned to GRCh38 using BWA-MEM (7), and genotyping was

performed with Sentieon® DNAseq®. Data were then annotated

using wANNOVAR (8) and filtered in-house. Variants were

classified according to the ACMG/AMP and ACGS guidelines (9,

10). Exomiser 12.1.0 (11) was also applied to prioritise variants

associated with the described clinical phenotype. Copy number

variant (CNV) analysis was performed using ExomeDepth 1.1.10

(12). For family B, trio WES and subsequent variant calling/filtering

was carried out as previously described (13). CNV calling was

undertaken using SavvyCNV (14).
Sanger sequencing

The ISG15 nonsense variant in family A was confirmed by PCR

and Sanger sequencing using the following primers (Merck) to

amplify and sequence ISG15 exon 2 forward: 5’-GTAGAGGACAG

ACAGGAGGG-3’ and reverse: 5’-ATCTTCTGGGTGATC

TGCGC-3’.
Targeted genomic microarray analysis

Targeted genomic microarray analysis was performed through

Great Ormond Street Hospital clinical services using the Illumina

Beadchip CytoSNP850K platform and infoQuant Fusion v7

software. At Birmingham Women’s and Children’s Hospital, the

Illumina GSAv3 microarray was applied, then analysis performed in

build GRCh37 using NxClinical v6.0 (BioDiscovery) and FASST2

CNV calling algorithm.
Peripheral blood mononuclear cells
isolation and western blotting for
ISG15 protein

Peripheral blood mononuclear cells (PBMC) were isolated from

freshly drawn heparinised blood using gradient density centrifugation

with Lymphoprep™. Cells were stimulated with 1000U/mL IFNa2b
(GenScript) for 24 hours. Cells were lysed with RIPA buffer (Thermo

Fisher Scientific) with 1% protease inhibitor cocktail (Roche), then
frontiersin.org
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protein was quantified by BCA assay and normalised to 10µg. Lysates

were boiled at 95°C for 5 mins with Laemmli buffer (Bio-Rad). After

SDS-PAGE and transfer, membranes were blocked with 5% milk,

then probed with primary antibodies against ISG15 (F-9; Santa Cruz

Biotechnology) or b-actin (MAB1501R; Merck Millipore), followed

by goat anti-mouse IgG, HRP secondary antibody (Thermo Fisher

Scientific). Signal was detected using Amersham ECL Western

Blotting Detection Reagent (Cytiva). Images were taken using a

ChemiDoc Imager (Bio-Rad) and analysed using Image Lab

software (Bio-Rad).
Quantitative PCR of interferon
stimulated genes

Blood was collected into PAXgene® tubes (PreAnalytix), and

RNA extracted using PAXgene® Blood RNA kit 50 v2

(PreAnalytix). Single-strand cDNA was generated using High-

Capacity cDNA reverse transcription kit (Applied Biosystems).

qPCR was then performed using iTaq Universal SYBR Green

Supermix (Bio-Rad) and the relevant QuantiTect Primer Assays

(QIAGEN). The relative abundance of 11 targets (CXCL10, CXCL9,

IFI27, IFI44L, IFIT1, IFNB1, IFNG, IFNL1, IL18, RSAD2, SIGLEC1)

was normalised to the expression level of ACTB, assessed using Bio-

Rad CFX Manager software.
Cytokine and interferon assays

Cytokine levels were measured in plasma or serum using V-

PLEX proinflammatory panel 1 (TNF-a, IL-6, IL-8, IL-1b, IFN-g);
V-PLEX chemokine panel 1 (MCP-1, IP-10); S-PLEX human IFN-

a2a; and S-PLEX human IFN-b Meso Scale Discovery kits (Meso

Scale Diagnostics) according to the manufacturer’s instructions.
STAT1 phosphorylation assay

PBMC were stimulated with 2000U/mL IFNa2b (GenScript)

for 0, 10, 20 and 30 mins. Cells were fixed for 10 mins at 37°C with

Phosflow™ Fix Buffer I (BD), then permeabilised for 30 mins at RT

with Perm Buffer III (BD). Cells were then incubated with PE-anti-

STAT1 pY701 (BD) for 45 mins and then analysed using the

CytoFLEX (Beckman Coulter). Data were analysed using

FlowJo (BD).
Immunofluorescence staining for p-STAT1
in lesional skin tissue

Paraffin embedded skin histopathological sections were

dewaxed by submerging slides in six histological staining boxes

for 5 mins each, in the order xylene x2, 100% ethanol x2, 70%

ethanol x2. Slides were then boiled in citrate buffer for 15 mins,

blocked in 3% BSA in PBS for 30 mins, then incubated at 4°C

overnight with primary antibody (anti-p-STAT1 pY701, Cell
Frontiers in Immunology 03
Signaling, 9167). Slides were then incubated with secondary

antibody (anti-rabbit IgG-Alexa Fluor 555, Invitrogen, A-21429)

for 1 hour at RT. Slides were incubated with DAPI (5µg/ml in PBS)

for 2 mins, then mounted using mounting medium for fluorescence

(Vectashield) and imaged using a ZEISS LSM710 inverted confocal

microscope (Carl Zeiss Ltd, UK). Images were analysed in

ImageJ (NIH).
Results

Clinical presentation

AII-2 is a 4-year-old female who was born to healthy White

British non-consanguineous parents at term (Figure 1A). At the age of

5 months, she presented with ulcerative skin lesions in her right groin

and left axilla, along with extensive necrosis and, later, lipoatrophy

(Figure 1B). No other symptoms were reported, and there were no

signs of neurological abnormalities. Extensive investigations yielded

unremarkable results (Table 1). Candida species was isolated from a

single skin swab, which was treated with topical antifungal creams but

showed no significant improvement. A brain computed tomography

(CT) scan did not reveal any intracerebral calcifications. Skin histology

demonstrated fibrosis of the subcutaneous layer, mild lobular

panniculitis, and superficial perivascular inflammatory infiltrate

(Figure 1C). Based on these findings, an autoinflammatory disease

causing extensive skin ulceration was suspected, and genetic testing

was requested. Treatment included topical steroids and two short

courses of oral prednisolone (1mg/kg for 5-7 days), resulting in

modest and temporary improvement of the skin inflammation.

Methotrexate (15mg/m2 subcutaneously) was also initiated at 21

months of age. This led to significant improvement, with complete

resolution of skin ulceration but persistent scarring and lipoatrophy.

After 18 months, methotrexate treatment was discontinued.

Currently, the patient remains well, without any recurrent skin

lesions or notable symptoms, and her development continues to be

appropriate for her age.

BII-2 is a 2-year-old male born to consanguineous parents of

Pakistani ancestry (Figure 1A). He first presented at 2 months of age

with ulcerated skin lesions on his neck (Figure 1D). Topical antibiotics

showed minimal response, but he remained systemically well until 8

months of age when he experienced status epilepticus accompanied by

fever and vomiting. At that time, a livedoid rash was observed on his

torso, along with further ulcerated skin lesions in his groin. Skin biopsy

revealed widened subcutaneous septae containing neutrophils and

fibrin, and fat necrosis with a hyalinised appearance, raising

suspicion of an atypical mycobacterial infection. The T-SPOT.TB

tuberculosis test yielded an indeterminate result, and cerebrospinal

fluid (CSF) analysis showed elevated protein levels of 0.99g/L (reference

range: 0.15-0.45g/L), prompting initiation of empirical anti-TB

treatment along with antiepileptic medication. However, CT and

magnetic resonance imaging (MRI) showed no evidence of

meningitis and CSF grew no Mycobacteria. A 12-month course of

ethambutol and ciprofloxacin was completed to cover possible atypical

Mycobacterial skin infection, but there was no microbiological

confirmation of this. Extensive autoimmune and immunology tests
frontiersin.org
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mostly returned negative results (Table 1). Over the following 18

months, the patient experienced recurrent seizures, fevers, and

worsening skin lesions. He also had recurrent respiratory tract

infections with chest radiograph changes, and global developmental

delay was noted. CT brain scans showed no intracranial calcifications,

and MRI scans of the brain revealed no intracerebral inflammation but

did note plagiocephaly. During one of these episodes requiring hospital

admission, the patient developed pancytopenia, hypertriglyceridemia,

and hyperferritinemia, prompting a bonemarrow aspirate examination

that showed reactive changes without evidence of malignancy or

hemophagocytic lymphohistiocytosis (HLH). A repeat T-SPOT.TB

test was negative but considering the clinical picture possibly

suggestive of mycobacterial skin infection, genetic analysis for

Mendelian susceptibility to TB was conducted, revealing a

homozygous ISG15 gene deletion (see details of genetic testing

below). The patient was subsequently initiated on oral prednisolone

1mg/kg/day tapered over 8-10 weeks and the JAK inhibitor baricitinib

(2mg orally twice daily). This treatment led to marked clinical

improvement, with no further febrile illnesses or seizures and

complete resolution of ulcerated skin lesions. The patient’s

developmental skills have improved, with only mild speech and

cognitive delay. BII-3, the younger sister of BII-2, recently developed

a single skin ulcerative lesion and mild developmental delay and she

will soon be started on baricitinib (2mg twice daily).
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A summary of all the presenting clinical features and

laboratory/imaging investigations for index cases in family A

(AII-1) and B (BII-2 and BII-3) is shown in Table 1.
Genetic analysis

Both families underwent whole exome sequencing (WES).

In family A, we identified a novel nonsense variant in ISG15 on

chromosome 1 exon 2 c.46C>T (p.Q16X) (Figure 1E). Interestingly,

this variant was observed in a homozygous state in both AII-1 and her

younger sister AII-2, however only their father AI-1 was heterozygous

for this variant. Sanger sequencing of ISG15 exon 2 in the family

confirmed this finding (Figure 1F). Since this did not explain the

inheritance of the homozygous variant in both siblings, we considered

the possibility of a heterozygous deletion at the same locus in the

mother and both siblings. Using ExomeDepth (12) to assess copy

number variants (CNV) detected from WES data, we identified a

heterozygous deletion encompassing ISG15 and a surrounding nine

genes (SAMD11, NOC2L, KLHL17, PLEKHN1, PERM1, HES4, ISG15,

AGRN, RNF223, C1orf159) in the mother (AI-2) and both siblings

(AII-1 and AII-2), but not the father (AI-1). Since this analysis method

only included exonic regions, we next applied targeted genomic

microarray analysis to accurately assess the deletion size, which
A B

D E

F G

C

FIGURE 1

Pedigrees, ISG15 variants and clinical phenotype of ISG15 deficiency. (A) Pedigrees and familial segregation of the ISG15 alleles with affected
individuals marked in black and unaffected in white. Note AII-2 is currently asymptomatic. (B) AII-1 experienced extensive ulcerative skin lesions
observed in the groin and lower abdominal wall, which left persistent scarring and lipoatrophy after resolution of the lesions. (C) Photomicrographs
of skin biopsy from AII-1 at 1-year-of-age demonstrating a moderate diffuse dermal perivascular inflammatory infiltrate composed of predominantly
mononuclear inflammatory cells. There is focal extension into subcuticular adipose tissue but no active panniculitis in this biopsy (H&E original
magnifications x20 LT and x100 RT). (D) BII-2 experienced severe ulcerative skin lesions observed in the groin and neck, as well as livedoid rash with
prominent skin capillaries. (E) Schematic localisation of the c.46C>T variant in ISG15 gene found in family A. (F) Sanger sequencing traces showing
c.46C>T variant in members of family A. (G) Map of chromosome 1p36.33 region showing microdeletion variant encompassing ISG15 found in
family A.
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TABLE 1 Clinical and laboratory features associated with ISG15 deficiency.

AII-1 BII-2 BII-3

Demographics

Sex Female Male Female

Age at first presentation 5 months 2 months 6 months

Ethnicity White British Pakistani Pakistani

Clinical features

Skin manifestations
Area of body affected
Necrosis
Ulceration
Livedoid features
Hyperpigmentation
Scarring
Photosensitivity

Groin/abdomen
Yes
Yes
Yes
Yes
Yes
No

Groin/abdomen/torso/neck/axillae
Yes
Yes
Yes
Yes
Yes
No

Axillae
No
Yes
No
No
Yes
No

Arthritis No No No

Myalgia No No No

Recurrent fevers No Yes Yes

Raynaud’s phenomenon No No No

Neurological involvement None Mild encephalopathy
Hypotonia
Seizures

No

Lung involvement None Recurrent respiratory tract infections Asymptomatic

Development Normal Global developmental delay Mild gross motor delay

Growth Normal <3rd Centile for Height and weight (25-50th at birth) <3rd Centile for Height and weight (9-25th

at birth)

History of recurrent infections

History of mycobacterial
infection

BCG vaccination reaction

Recurrent UTIs

No documented
mycobacterial
infections
Not had
BCG vaccination

Recurrent lower respiratory tract infections. Groin lesions
cultured faecal organisms and Candida as below, but
were likely contaminants
Skin lesions were treated empirically for atypical
Mycobacteria, but no microbiological confirmation

Normal BCG scar

No

Negative

Normal BCG scar

Investigations

Imaging

Neuroimaging CT brain
- normal

CT brain - normal
MRI brain – plagiocephaly

Not done

Abdominal ultrasound Normal Hepatosplenomegaly Not done

Chest radiograph Normal Persistent bilateral perihilar bronchial wall thickening
with patchy inflammatory changes, episodic unilateral/
bilateral consolidation and/or
effusions

Bilateral peribronchial thickening with no effusions
or consolidation (incidental finding during pre-
treatment chest radiograph screening)

Microbiology

Skin swab culture Candida
Lusitania

Candida parapsilosis Enterobacter cloacae
Klebsiella pneumoniae
ESBL E. coli

Not done

Blood and CSF cultures Not done Negative Not done

(Continued)
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confirmed the presence of a heterozygous 313.7kb deletion at the

expected locus (chr1:817,341-1,131,023) (Figure 1G).

In Family B, trio WES analysis with SavvyCNV identified a

homozygous complete ISG15 deletion in the proband BII-2 with

biparental inheritance. This was a single gene deletion as WES

coverage of the surrounding genes was as expected. Upon

investigation of the siblings using ExomeDepth, we found that

younger sister BII-3 also had homozygous deletion of ISG15,

however brother BII-1 had two wildtype variants. Of note, earlier

microarray analysis in the proband did not detect this deletion, due its

small size (∼1kb).
Frontiers in Immunology 06
Absence of ISG15 protein production in
PBMC from individuals with biallelic
mutant ISG15 alleles

To investigate how these three novel variants in ISG15 affect

ISG15 protein expression, PBMC from all members of both families

and healthy controls were stimulated with IFNa2b to induce ISG15
expression, then ISG15 protein levels were analysed with western

blotting. Individuals AII-1, AII-2, BII-2, and BII-3 showed complete

deficiency of ISG15 protein (Figures 2A, B), consistent with these

individuals possessing biallelic total deletion or early truncation
TABLE 1 Continued

AII-1 BII-2 BII-3

Respiratory specimens Not done SARS-Cov-2 and parainfluenza (NPA)
Respiratory syncytial virus and klebsiella
pneumoniae (BAL)

Not done

Blood tests (RR*)

Haemoglobin (105-135 g/L) 109-125 g/L 88-130 g/L 109-119g/L

White blood cell (5-15 x10*9/L) 6.6-11.45
x10*9/L

3.3-19.9 x10*9/L 6.6-7.9 x 10*9/L

Neutrophils (1.5-8.5 x10*9/L) 1.9-2.3 x10*9/L 1.4-13.3 x10*9/L 1.5-2.6 x 10*9/L

Lymphocytes (2-9.5 x10*9/L) 3.7-8.15 x10*9/L 1.0-5.7 x10*9/L 3.7-4.8 x 10*9/L

Platelets (150-450 x10*9/L) 301-341 x10*9/L 121-468 x10*9/L 307-421 x 10*9/L

CRP (0-20mg/L) <5-17 mg/L <1-14 mg/L <1mg/L

ESR (0-10 mm/hr) 5-12 mm/hr 2-19 mm/hr 8-12mm/hr

Serum amyloid A (<10mg/L) <3.5mg/L Not done <3.2mg/L

Ferritin (8.6-74.0 ug/L) Not done 305-3135 ug/L Not done

LDH (192-321 U/L) Not done 857-1107 U/L Not done

Triglycerides (0.36-1.31
mmol/L)

Not done 2.1-6.27 mmol/L 0.56mmol/L

Liver function tests
ALT (5-45 U/L)
AST (20-60 U/L)
GGT (6-19 U/L)

20-30 U/L
56 U/L
10 U/L

48-147 U/L
61-169 U/L
33-45 U/L

20-24 U/L
Not done
Not done

Autoantibodies and
immunology tests

ANA/dsDNA/ENA
Immunoglobulin levels
Pneumococcal and tetanus
vaccine response
Anticardiolipin antibodies (0-
17 GPL U/ml)
Lymphocyte subsets

PHA responses
Complement function

C3 (0.75-1.65 g/L)
C4 (0.14-0.54 g/L)

Negative
Normal
Normal

15.3 GPLU/ml

Normal
distribution
Normal
Normal
1.26 g/L
0.28 g/L

Negative
Normal
Normal

4.0 GPL U/ml

Normal distribution

Not done
Normal (activated)
1.77 g/L
>0.58 g/L

Negative
Normal
Normal

Not done

Not done

Not done
Not done
*RR Reference ranges as per GOSH laboratory. Values provided indicate lower and higher result obtained for specific tests. Abbreviations: UTI, urinary tract infections; CT, computed
tomography; MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; ESBL E.coli, extended spectrum beta-lactamase-producing Escherichia coli; RR, reference range; CRP, C-reactive
protein; ESR, erythrocyte sedimentation rate; LDH, lactate dehydrogenase; ALT, alanine transaminase; AST, aspartate transaminase; GGT, gamma glutamyl transferase; ANA, anti-nuclear
antibody; dsDNA, anti-double-stranded DNA antibodies; ENA, extractable nuclear antigen; C3, component 3; C4, component 4; TB, tuberculosis; BCG, Bacillus Calmette-Guerin; PHA,
phytohaemagglutinin; GPL, G phospholipid; NPA, Nasopharyngeal aspirates; BAL, Bronchoalveolar lavage.
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variants in ISG15. As expected, heterozygous carriers of ISG15

variants (AI-1, AI-2, BI-1, and BI-2) showed decreased levels of

ISG15 when compared with the healthy controls (Figure 2B).
Type I interferon stimulated gene
expression, p-STAT1 signalling and
circulating cytokines in ISG15
deficient individuals

Patients with type I interferonopathies frequently display

increased expression of interferon-stimulated genes (ISGs), and

elevated levels of type I interferons in the blood. We noted high

expression of ISGs in ISG15 deficient individuals, particularly in BII-2

who was the only individual with active disease at the time of blood

sampling (Figure 2C). Interestingly, the ISG15 deficient individuals

did not show altered expression of type II interferon IFNG when

compared with parent carriers (p=0.75) or wildtype BII-1 (p=1.0).

Similarly, type III interferon IFNL1 expression was also not raised in
Frontiers in Immunology 07
patients compared with carriers (p=0.12) or BII-1 (p=0.97). The

patients also showed elevated plasma IFN-a2a and IFN-b compared

with both carriers and healthy controls (Figure 2D). Since ISG15

plays a crucial role in negatively regulating type I interferon

signalling, we next explored this pathway by examining p-STAT1

expression in lymphocytes of all family members. We found that all

four ISG15 deficient individuals showed markedly higher levels of p-

STAT1 than both the healthy control (p<0.0001) and carrier

(p=0.0018) groups (Figures 2E, F). We also tested serum levels of

proinflammatory cytokines, and observed significantly raised levels of

TNF-a, IL-1b, IL-6 and IL-8 in the ISG15 deficient individuals

compared with healthy controls (Figure 2G).
p-STAT1 activation in lesional skin tissue
obtained from AII-1

In line with previous reports (6), we next explored whether

there was STAT1 activation in lesional skin tissue obtained from
A B

D

E

F

G

H

C

FIGURE 2

ISG15 protein expression and IFN gene expression, p-STAT1 signalling and cytokines in ISG15 deficiency. (A, B) Representative western blots and
densitometry analysis of ISG15 protein levels detected in peripheral blood mononuclear cells (PBMC) isolated from all individuals in families A and B,
and two healthy controls (HC1 and HC2). PBMC were stimulated with 1000U/mL IFN-a2b for 24h, and then lysed. b-actin was used as a loading
control. There was no ISG15 protein detected in PBMC from individuals AII-1 and AII-2 carrying the ISG15 p.Q16X/1p36.33del variants; similarly no
protein was detected in PBMC from BII-2 and BII-3 with ISG15:del/ISG15:del. (C) Gene expression of interferon stimulated genes (ISGs) CXCL10,
CXCL9, SIGLEC1, IFIH1, RSAD2 and IFI44L were measured using qPCR in all members of family A and B, excluding AII-2. (D) Plasma concentrations
of IFN-a2a and IFN-b were measured using Meso Scale Discovery (MSD) assays in all members of both families. Both IFN-a2a and IFN-b were raised
in individuals with ISG15 deficiency, compared with both heterozygous carriers and healthy controls. (E) Relative expression of p-STAT1 (MFI, median
fluorescence intensity) in lymphocytes derived from members of families A and B and healthy controls after 10 mins IFN-a2b stimulation. Ten mins
was selected as a representative time point, although similar trends were observed at all time points. (F) Representative flow cytometric histogram
showing p-STAT1 expression (MFI) in lymphocytes of individuals with no, heterozygous, and homozygous loss of ISG15 after 10 mins IFN-a2b
stimulation. (G) Serum concentrations of proinflammatory cytokines TNF-a, IL-6, IL-1b and IL-8 were measured using Meso Scale Discovery (MSD)
assays. All were significantly raised in individuals with ISG15 deficiency, compared with healthy controls. (H) Immunofluorescence staining for p-
STAT1 (red) was performed on a skin biopsy from AII-1 and a healthy control. In AII-1, p-STAT1 is visible as small red spots in the cytoplasm of
differentiating keratinocytes, which is not visible in the healthy control epidermis. For all graphs, averages are shown as mean +-SEM. P values were
calculated by one-way ANOVA with multiple comparisons. Data are grouped by functional ISG15 zygosity.
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AII-1. We confirmed upregulation of p-STAT1 expression in the

differentiated keratinocytes in the epidermis of AII-1 that was not

observed in the healthy control (Figure 2H).
Janus kinase inhibition with baricitinib for
ISG15 deficiency

BII-2 was started on treatment with the JAK inhibitor

baricitinib in combination with oral prednisolone (1mg/kg/day

weaned over 8-10 weeks). This resulted in resolution of all

cutaneous lesions (Figures 3A, B) and other clinical symptoms,

and prednisolone therapy has been weaned off. Peripheral

proinflammatory cytokines and type I interferon levels reduced

after treatment (Figures 3C, D). Expression of p-STAT1 levels in

IFN-a2b-treated lymphocytes was also significantly reduced at six-

week post initiation of treatment compared to levels observed at

baseline pre-treatment initiation (Figures 3E, F). BII-3 is about to

start treatment with baricitinib in view of recent development of

similar skin lesions. Baricitinib treatment is now also being

considered for the affected individuals in family A, should their

symptoms worsen.
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Discussion

In this report, we present two families with ISG15 deficiency

caused by novel deleterious genetic variants. In family A, we

identified an ISG15 variant (p.Q16X) causing premature

termination, alongside a multigene 1p36.33 region deletion

encompassing ISG15 . Family B ’s affected siblings had

homozygous deletion of the entire ISG15 gene with biparental

inheritance. We confirmed enhanced IFN-a/b immunity in all

affected cases, as evidenced by upregulated ISG expression,

elevated circulating interferons and other cytokines, and

activation of p-STAT1 in lymphocytes. Notably, we report for the

first time the successful use of JAK inhibition therapy to treat

ISG15 deficiency.

ISG15 deficiency is exceedingly rare. Initially linked to

mycobacterial susceptibility (4), subsequent reports highlighted

diverse cellular, immunological, and clinical manifestations like

ulcerative skin lesions, cerebral calcification, and lung

inflammation consistent with enhanced IFN-a/b immunity and

resembling other Mendelian autoinflammatory interferonopathies

(5, 6, 15, 16). The variability in the clinical presentation of ISG15

deficiency is not unexpected, considering that ISG15 serves as both
A B

D

E F

C

FIGURE 3

Janus kinase inhibition with baricitinib in the treatment of ISG15 deficiency. (A) Improvement of neck and (B) groin ulcerative lesions in BII-2 after
six-week course of baricitinib. (C) Plasma concentrations of IFN-a2a and IFN-b before and after treatment with baricitinib, measured by Meso Scale
Discovery (MSD) assay, compared with healthy controls (HC). (D) Plasma concentrations of TNF-a, IL-6, IL-1b and IL-8 before and after treatment
with baricitinib, measured by Meso Scale Discovery (MSD) assay, compared with healthy controls (HC). (E) There was downregulation of p-STAT1
(median fluorescence intensity, MFI) expression in IFN-a2b treated lymphocytes derived from BII-2 post-treatment with baricitinib compared to
baseline (pre-treatment) levels of expression. (F) Representative flow cytometric histogram showing p-STAT1 expression (MFI) in lymphocytes
derived from BII-2 stimulated for 30 mins with IFN-a2b examined before treatment with baricitinib was started and post-treatment. For all graphs,
averages are shown as mean +-SEM.
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a redundant factor in antiviral immunity and a negative regulator of

IFN-a/b immunity. We observed a remarkable skin phenotype in

our patients characterised by severe necrotising skin ulceration.

Notably, affected individuals in family B exhibited mild

developmental delay and seizures, without evidence of cerebral

inflammation or calcification; ongoing neuroimaging surveillance

is underway. Additionally, close clinical monitoring has been

initiated for AII-2, who is currently asymptomatic.

We emphasise the limitations of short-read sequencing for

detecting substantial deletions/duplications and advocate

integrating copy number variant (CNV) callers into genetic

testing pipelines. Utilising ExomeDepth (12) we were able to

detect a 10-gene deletion including ISG15 in AII-1, confirmed by

targeted genomic microarray analysis. In family B, the ISG15 gene

deletion was too large to be called by standard variant calling, but in

addition it was too small to be visible through microarray analysis.

SavvyCNV (14) and ExomeDepth (12) detected homozygous gene

deletion in BII-2 and BII-3, one copy from each parent. We would

suggest that for individuals with a highly suspicious clinical

presentation for ISG15 deficiency in whom only one or no

pathogenic variant is found, performing gene-targeted CNV

analysis. There is also a need to consider systematically testing for

gene deletions/duplications across all autoinflammatory diseases

(17–20).

The pathophysiology underlying the skin lesions observed in

ISG15-deficient patients is likely to be complex. We observed

elevated levels of p-STAT1 in keratinocytes of the epidermis in a

lesional skin biopsy from a patient with ISG15 deficiency. Enhanced

IFN-I signaling has been reported in dermal endothelial cells,

monocytes, and macrophages (6). Recent evidence also suggests

that ISG15 plays a crucial role in maintaining cell migration and

epidermal homeostasis (15, 21), which may contribute to the

significant scar formation observed in ISG15 deficiency. We also

observed significant scarring in all symptomatic ISG15-deficient

patients, although we did not investigate the specific mechanisms

underlying this process. It would also be of interest to assess the

expression of ISG proteins (ISG15 or USP18) in the skin of healthy

vs. ISG15-deficient subjects, but this was not possible due to limited

availability of skin biopsy material in these cases.

We present, for the first time, data demonstrating the efficacy of

targeted therapy with JAK inhibition for the treatment of ISG15

deficiency. Earlier in vitro experiments by Malik et al. showed that

JAK inhibition effectively reduces hyperinflammation and enhances

cell migration in ISG15 deficiency (15). Considering this alongside

the favourable outcomes of JAK inhibitors in various

interferonopathies (22–29), we treated one ISG15-deficient

patient from family B with baricitinib. Baricitinib was well

tolerated and led to rapid and sustained clinical improvement.

Baricitinib treatment reduced p-STAT1 expression in lymphocytes

derived from BII-2 and decreased cytokine levels compared to pre-

treatment levels. Our findings suggest that JAK inhibition is a

logical and effective therapeutic approach for ISG15 deficiency.

We note that emerging data indicate that JAK inhibition may be

particularly effective in addressing the systemic and cutaneous

manifestations of these interferonopathies, while efficacy in

treating neuroinflammation or pulmonary inflammation may be
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limited (30, 31). Future studies are needed to establish if this is also

the case in ISG15 deficiency.

We did not investigate whether the specific ISG15 variants

increased susceptibility to mycobacterial disease. Although BII-2

received empirical treatment for TBM, we did not confirm any

mycobacterial infection. It would be interesting to further examine

the effects of these ISG15 variants on leukocyte mycobacterium-

induced ISG15 secretion and lymphocyte/natural killer cell

production of IFN-g. Another limitation of this study was paucity

of blood sample volume, due to both children being difficult to

bleed. We therefore acknowledge that some further functional

studies may have been of interest but were not possible here.

In conclusion, our study presents two families with ISG15

deficiency, expanding the genetic spectrum of the disease.

Furthermore, we demonstrate for the first time that JAK inhibition

with baricitinib can be an effective therapy for ISG15 deficiency.
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