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Ricardo M. Sainz1, Jorge Humberto Rodriguez-Quintero2,
Maria Constanza Maldifassi2, Brendon M. Stiles2

and Erik Wennerberg1*

1Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom,
2Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore
Health System, Bronx, NY, United States
While P2X7 receptor expression on tumour cells has been characterized as a

promotor of cancer growth and metastasis, its expression by the host immune

system is central for orchestration of both innate and adaptive immune

responses against cancer. The role of P2X7R in anti-tumour immunity is

complex and preclinical studies have described opposing roles of the P2X7R in

regulating immune responses against tumours. Therefore, few P2X7R

modulators have reached clinical testing in cancer patients. Here, we review

the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date

in tumour models, and we discuss four aspects of how tumours skew immune

responses to promote immune escape via the P2X7R; non-pore functional

P2X7Rs, mono-ADP-r ibosy l t ransferases , ectonucleot idases , and

immunoregulatory cells. Lastly, we discuss alternative approaches to offset

tumour immune escape via P2X7R to enhance immunotherapeutic strategies

in cancer patients.

KEYWORDS

P2X7 receptor, ART1, CD38, CD39, tumour microenvironment, tumour immune escape,
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Introduction

P2X receptors (P2XR) belong to the ligand-gated ion channel family of receptors (1) and

are characteristically gated by extracellular adenosine triphosphate (ATP). In mammals,

seven subunits are expressed (P2X1-7), and form homo-trimeric or hetero-trimeric structures

with diverse pharmacological characteristics (2). Agonist binding sites are found between

subunit interfaces consisting of mostly positively charged amino acids, where activation of the

receptor induces the opening of a cation permeable channel (2). Among the P2X receptors,

the P2X7R is the least sensitive to ATP with EC50 values in the mM range and is also the most

slowly desensitizing (3). Here, binding of two ATP molecules causes the opening of the

channel, with the subsequent permeation of Ca2+, Na+, and K+ ions, whereas the binding of

the third ATP generates a dilation of the channel which is known also as the “macropore”,

resulting in ATP-induced cell death (AICD) (3–6). Although previously well described in
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various physiological and pathophysiological states (7), recent

interest in the P2X7R has risen because of its involvement in

diverse inflammatory conditions, including cancer (8).

The P2X7R is widely expressed by cells of the immune system.

Because of the high threshold of ATP needed to activate the

receptor, which can be found in conditions of cellular damage, it

is considered a sensor for immunogenic danger signalling or a

damage-associated molecular pattern (DAMP) which can trigger

recruitment of various activated immune cells to the site of tissue

damage, or alternatively AICD depending on ATP concentration

(9–13). However, ATP can also be released through regulated

mechanisms and in this manner control diverse immune-cell

functions in an autocrine/paracrine fashion. In fact, activation of

T-cells induces ATP release through pannexin-1 (Panx1) channels

stimulating in an autocrine manner P2X7R, prompting cytokine

release and proliferation (14). Furthermore, P2X7R plays a role in T

cell migration and egress from lymph nodes following activation

and differentiation by promoting shedding of L-selectin and by

paracrine regulation of T cell motility via the P2X7R (15–17).

Dendritic cells (DCs) respond to ATP stimuli via P2X7R by

activating Panx1 and causing an autocrine signalling loop that results

in maturation of DCs as well as promoting cellular migration to

lymph nodes facilitated by upregulation of the chemokine receptors

CCR7 and CXCR4 (18, 19). P2X7R-induced upregulation of co-

stimulatory molecules through a nuclear factor kappa B (NF-kB)-

dependent mechanism promotes helper T (Th) cell differentiation

(20, 21). Other innate immune populations show a similar effect,

including monocytes (22), macrophages (23), eosinophils and

neutrophils, facilitating actin polymerisation for transendothelial

migration (24, 25). Further, P2X7R activation of DCs and other

myeloid cells can trigger NLRP3 inflammasome complex induction,

associated with efflux of cellular potassium, influx of calcium, reactive

oxygen species (ROS) generation, and mitochondria depolarization.

Altogether, it leads to the release of the pro-immunogenic cytokines

interleukin (IL)-1b and IL-18, eventually inducing pyroptosis, a

highly immunogenic form of cell death which further propagates

the inflammatory signal (26, 27).

The P2X7R influences cell plasticity, differentiation, and

metabolic fitness of immune populations. Genetic ablation of the

P2X7R in the LCMV Armstrong infection model showed a normal

expansion of effector T cells. However, the central memory T cell

(TCM) and tissue-resident memory T cell (TRM) subsets were affected

and lacked long-lasting protection against future reinfections. This

was suggested to be due in part to metabolic impairment, specifically,

a lower mitochondrial mass and a compromised spare respiratory

capacity (28, 29). On the other hand, reduced mitochondrial mass

makes T cells from P2X7R-deficient mice less susceptible to cell

senescence derived from P2X7 activation (30).
P2X7R in tumour immune escape

P2X7R is expressed in most solid and haematological cancers,

and there is ample evidence that tumour cell expression of P2X7R
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promotes proliferation, metabolism and facilitates tumour invasion

and metastatic dissemination (31–35). While P2X7R expression has

also been proven essential for mounting effective anti-tumour

responses, preclinical studies evaluating how P2X7R governs anti-

tumour immune responses have shown widely different and

sometimes contradicting outcomes (36, 37). Ghiringelli and

colleagues showed that P2X7R expression is mandatory for DC-

mediated sensing of immunogenic cell death following anti-cancer

therapy (36). Adinolfi and colleagues confirmed the derogatory

immune effect of P2X7R-deletion in tumour-bearing mice, in

particular the reduced activity of DCs (37). Further, a study by

De Marchi and colleagues revealed that genetic deletion of P2X7R

had adverse effects on tumour-infiltrating T cells and promoted

tumour growth while systemic P2X7R antagonism in the same

tumour model benefited T effector cells and reduced tumour

burden (38).

In the context of adoptive T cell therapy, two studies assessing

how P2X7R-expression affects the performance and anti-tumour

effectiveness of transferred CD8 T cells reached opposite

conclusions. Romagnani et al. described that P2X7R-expressing

tumour-infiltrating lymphocytes (TILs) display signs of cellular

senescence while Wanhainen et al. showed that they have

superior mitochondrial fitness, proliferation and apoptosis-

resistance compared to P2RX7-deficient TILs (30, 39). A potential

explanation for the discrepancy between the two studies was the use

of different T cell culture conditions prior to infusion. Work from

Koch-Nolte’s lab suggest that discrepancies in immune readouts

from pre-clinical P2X7R studies may be explained by selection bias

following NICD- and AICD-mediated elimination of P2X7R-

expressing immune cells exposed to high concentrations of NAD+

and ATP respectively during tissue dissociation and cell preparation

(40, 41).

While the picture of how P2X7R regulates anti-tumour

immunity is complex, there are key emerging areas where

tumours have been shown to skew P2X7R signalling to promote

immune escape. These are summarized below and illustrated

in Figure 1.
Non-pore functional P2X7R (nfP2X7R)
variants

The high concentration of extracellular ATP found in tumours

is proposed to drive the expression of modified P2X7Rs in cancers

to favour tumorigenesis and progression (42, 43). These include

single nucleotide polymorphisms and splice variants, leading to loss

of the P2X7R macropore function, as well as reduced sensitivity to

activation by MARylation which has further been associated with

tumour growth and immune escape (Figure 1) (44, 45). In 2019,

Gilbert et al, showed that the nfP2X7R E200, which does not induce

large pore formation and cell death upon ATP-binding was

expressed broadly across different human cancers. The authors

showed that exposure of tumour cells to high concentrations of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1287310
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sainz et al. 10.3389/fimmu.2023.1287310
ATP expression of E200 nfP2X7R which was essential for survival

of the cancer cells (43).

Antibodies targeting E200 nfP2X7R, was tested in an open-label

phase I non-randomized clinical trial as a topical agent (BIL010t)

for the treatment of basal cell carcinoma of the skin. The trial

demonstrated that after being applied to primary lesions twice a day

for 28 days (n=21), 65% of patients underwent reduction of lesion

size, while 20% and 15% showed no changes, and increase in size,

respectively. Although complete pathologic response was only

observed in 3 of the patients after excision, treatment compliance

was high, and the treatment was well tolerated (46). Further, A

recent paper has shown that chimeric antigen receptor (CAR)-T

cells targeting nfP2X7Rs have potent cytotoxic potential against

human cancer cells. When adoptively transferred to NOD-scid-

IL2Rgnull (NSG) mice, CAR-T cells were able to traffic to and

infiltrate orthotopic breast and prostate tumours (47).
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Mono-ADP-ribosyltransferases (ARTs)

In the presence of ARTs, the P2X7R can be activated by

nicotinamide adenine dinucleotide (NAD+), a nucleotide that can

be released extracellularly after cellular damage or from activated T

cells (48, 49). In mice, expression of ART2 by peripheral T cells,

allows them to mono-ADP-ribosylate (MARylate) the P2X7R in cis

(50). This ART2-mediated MARylation results in Ca2+ increase,

exposure of the phospholipid phosphatidylserine (PS), formation of

a macropore, and ultimately NAD-induced cell death (NICD) (49–

52). Importantly, the NAD+ concentration threshold for NICD via

MARylation of the P2X7R is significantly lower than for P2X7R-

mediated AICD and this process is irreversible (52). Stark and

colleagues showed, in mouse models of tissue damage and infection,

that ART2-mediated NICD of T cells serves as a mechanism for

enrichment of antigen-specific T cells in inflamed tissues.
FIGURE 1

Tumour immune escape mechanisms through P2X7R signalling. 1. Sustained exposure of high concentrations of extracellular ATP, produced in the
tumour microenvironment (TME), is sensed by the P2X7R on tumour infiltrating lymphocytes triggering macropore formation ATP-induced cell death
(AICD). 2. Expression of ART1 by tumour cells can utilize extracellular NAD+ in TME mono-ADP-ribosylate the P2X7R on TILs in trans resulting in
NAD-induced cell death (NICD). 3. Expression by tumour cells of non-pore functional variants of the P2X7R with low affinity for AICD and NICD
allows them to avoid cell death while still exploiting P2X7R-mediated proliferation and growth signalling. 4. CD39-mediated catabolism of
extracellular ATP and CD38-mediated catabolism of extracellular NAD into AMP and ADPR respectively, is converted into immunosuppressive
adenosine by CD73, which is frequently overexpressed by tumour cells, resulting in polarization of intratumoural immune cells towards a regulatory
phenotype (including Tregs and macrophages) as well as reduced proliferation, cytokine production and cytotoxic function of effector lymphocytes.
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ART2 is a pseudogene in humans and no T cell-expressed ART

with similar immune homeostatic function has been identified to

date. However, ART1, which is expressed in various human tissues

including lung epithelium and skeletal muscle as well as on a subset

of CD39+ CD4 T cells, has been shown to MARylate immune cells

in trans (53, 54). In non-small cell lung cancer (NSCLC), ART1

expressed by tumour cells has been characterized as a novel

pathway of immune escape. Wennerberg and Mukherjee et al.

showed that ART1 expression was associated with reduced

tumour infiltration of P2X7+ CD8 T cells in non-small cell lung

cancer (NSCLC) patients, while in murine immune competent lung

tumour models, ART1 knockdown decreased tumour growth (55).

Correspondingly, ART1 blockade with a therapeutic monoclonal

antibody (22C12) reduced the growth and dissemination of ART1

expressing tumours in mice and promoted tumour infiltration of

activated P2X7R+ CD8 T cells (Figure 1) (55).
Ectonucleotidases

Through its catabolism of eATP, CD39 produces precursors for

CD73, which is overexpressed in several cancers, to generate

immunosuppressive adenosine in the tumour microenvironment

(TME). This has prompted testing of CD39 inhibitors in preclinical

mouse models, which have shown impressive T cell and NK cell-

mediated anti-tumour effects in immunogenic mouse tumour

models (56–58). While CD39 expression on T cells has

traditionally been described a marker of exhaustion and

dysfunctionality, emerging patient reports show that CD39-

expressing T cells are enriched in solid tumours, where they are

shown to be preferentially tumour antigen-specific (59–61).

Exposure of T cells and NK cells to high concentrations of ATP

result in AICD and reduced cytotoxicity respectively in P2X7R-

dependent manners (62, 63). Presumably, modulation of CD39

expression following ATP exposure, serves as a cytoprotective

function for lymphocytes to maintain crucial effector functions in

the TME (Figure 1) (38).

CD38 is primarily expressed on activated T cells and through

its generation of cADPR, CD38 can function as a second

messenger for Ca+ mobilization regulating T cell activation (64,

65). Further, CD38 expression clusters in the immune synapse

upon T cell receptor (TCR) interaction with antigen-presenting

cells, suggesting that CD38 plays a role in regulating T cell

function (66). While CD38 expressed on tumour cells can

mediate immune resistance by providing precursors for

adenosine generation via the non-canonical pathway mediated

by ENPP1 (CD203a) and CD73 (67, 68), its NADase function in

immune cells is important for protection against ART-mediated

NICD under NAD-rich conditions (Figure 1). Indeed, Krebs et al.

showed that ART2-mediated mono-ADP-ribosylation following

eNAD exposure was elevated in T cells lacking CD38 expression

while Adriouch et al. showed that CD38-deficient mice

experienced significantly more depletion of P2X7R+ T cells

following NAD+ injection compared to wild-type mice (69, 70).
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In the tumour context, we have demonstrated that NICD of

P2X7R+ CD8 T cells following exposure to recombinant ART1

is exacerbated in the presence of CD38-blocking antibodies.

Consistent with these findings, analysis of P2X7R+ TILs from

ART1-expressing human lung tumours showed enriched

expression of CD38 (55).
Immunoregulatory cells

Regulatory T cells (Tregs) are recruited and polarized by

tumours to blunt anti-tumour immune responses (71). Tregs are

not affected by physiological concentrations of ATP, whereas

concentrations approaching 1 mM triggers Treg-mediated

immunosuppression (72). In lymph nodes, the expression of

P2X7R in CD4 naïve cells or in Treg cells, can induce a posterior

polarization towards the Th1/Th17 phenotype (73). Also, Tregs

show cell plasticity based on the context. For example, in the

presence of IL-6 and ATP, they become Th17 cells (74). If Th17

cells co-express CD39, they can differentiate into the IL-10-

producing Tr1 phenotype (75). In mouse tumour models, P2X7R-

deficient mice have elevated intratumoural Tregs compared to wild

type mice (38, 74, 76). In these mice, the cytokine profile is shifted

from pro-inflammatory to immunosuppressive mediators including

TGF-b (38). In leukaemia patients, treatment with the

chemotherapy agent daunorubicin promoted Tregs through

P2X7R-dependent polarization of tolerogenic DCs (77).

Further, P2X7R is expressed on macrophages and on myeloid-

derived suppressor cells (MDSCs). In a Lewis Lung carcinoma

model, P2X7R expression on tumour-associated macrophages

(TAMs) favoured immunosuppressive M2 polarization and anti-

programmed cell death protein-1 (PD-1) resistance was overcome

by administration of P2X7R inhibitors (78). In a murine

neuroblastoma model, P2X7R signalling by MDSCs was

associated with increased suppressive function including

production of TGF-b, Arginase-1, and reactive oxygen species

(Figure 1) (79). Recent work suggests that Toll-like receptor

(TLR) mediated activation of diverse types of immune cell subsets

can be used as a strategy to activate an immune response in the

TME (80). In this regard, as the P2X7R is known to enhance the

release of pro-inflammatory cytokines in macrophages and DCs

after TLR2 and TLR4 activation, a dual therapeutic strategy could

be conceived to obtain an increased anti-tumour immune effect (13,

81, 82).

As in other immune cells, microglial activation of the P2X7R

causes a polarization of these cells towards a pro-inflammatory

state, and as such the receptor has a clear role in diverse

neuroinflammatory diseases such as Parkinsons and Multiple

Sclerosis (83, 84). Mice microglia is known to express the P2X7a

variant, that although it shows no variation of ATP sensitivity, it

renders it insensitive to ART2-mediated NICD (85). Meanwhile,

through diverse mutational studies, it is known that the retention of

pore formation capabilities seems to be important for P2X7R driven

microglial activation, proliferation, and cytokine release (86).
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Prognostic value of P2X7R expression
in cancer

In Acute Myeloid Leukemia (AML), P2X7R splice variants A

and B have shown promising prognostic potential to identify

patients with relapsing disease. P2X7RB has also been identified

as a poor-prognosis marker in osteosarcoma, neuroblastoma, and

lung adenocarcinoma (87, 88). In colorectal cancer, P2X7R

expression is higher in undifferentiated tumours and has been

associated with adverse oncologic features including invasiveness,

advanced stages, metastatic disease, and worse overall survival (89).

In addition, P2X7R-high tumours may correlate with increased

carcinoembryonic antigen (CEA) expression, a tumour marker used

for monitoring metastatic disease (90). In gastric cancer, P2X7R has

also shown promise as a prognostic marker. In a study of gastric

cancer specimens, P2X7R was overexpressed in specimens from

patients with lymph-node metastases, vascular invasion, and

advanced stages. Additionally, an inverse correlation was noted

between P2X7R and CD8+ TILs (89).

In contrast, in hepatocellular carcinoma, intratumoral P2X7R

expression did not correlate with oncologic outcomes. However,

peri-tumoral expression of the receptor was inversely associated

with overall survival in both an experimental and a validation

cohort (91). Similarly, P2X7R expression has been correlated with

decreased overall survival, and metastatic disease in metastatic

melanoma. In this setting, splicing variants A and B have been

associated with malignant transformation (88). High P2X7R

expression was correlated with decreased overall survival in a

cohort of patients with lung adenocarcinoma from The Cancer

Genome Atlas (TCGA) dataset (92). In muscle-invasive bladder

cancer, P2X7R has been reported as a negative predictor of overall

survival (93). These findings have been validated through TCGA

analysis (94). In the setting of renal-cell carcinoma, a study showed

that P2X7R expression is an adverse prognostic indicator for

postoperative cancer-specific survival (95).

Contrary to the above, a study showed that in non-small cell

lung cancer, overexpression of P2X7R was associated with

improved overall survival (96). However other studies have

shown results that conflict with these findings (97). Similarly, a

study showed that decreased P2X7R expression associated with

development with cervical cancer in patients with epithelial

precancerous lesions (98). Overall, most studies with clinical

correlation associate high P2X7R expression with adverse

prognosis and decreased survival in cancer. It is critical to note

that most of the cited studies did not distinguish between tumour

cell expression and immune cell expression of P2X7R or distinguish

between distinct P2X7R isotypes, analyses that could potentially

better stratify patients in terms of prognosis.
P2X7R antagonists and agonists in
preclinical models

In the preclinical setting, a variety of antagonists of P2X7R have

been described in recent literature, including Brilliant Blue G (BBG),
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oxidized ATP (oxATP), KN-04, KN-62, A740003, and A438079,

although all are not specific for P2X7 andmay block other purinergic

receptors (99, 100). In AML, P2X7R blockade with AZ10606120

resulted in reduced leukemic growth when co-administered with

daunorubicin, a process mediated through the blockade of P2X7

splice variant B (87). In neuro-oncological malignancies,

AZ10606120 was shown to inhibit growth of human glioblastoma

cells (101) and systemic administration of AZ10606120 in nude/

nude mice reduced ACN-derived tumor growth of neuroblastoma.

This was associated with downregulation of the Akt/hypoxia-

inducable factor 1-alpha (HIF-1a) axis, and reduced VEGF and

vessel formation as well as reduced the expression of MYCN, a

crucial oncogene in neuroblastoma (32). In pancreatic cancer,

AZ10606120 a non-selective inhibitor of P2X7R, inhibited the

growth of stellate cells, a promoter of pancreatic adenocarcinoma

progression (102). In contrast, a study by Mohammed et al, the

inhibitors A438079 and AZ10606120 showed no chemopreventive

effect, but instead promoted progression of intraepithelial lesions to

cancer (103). In murine colorectal cancer models, P2X7R blockade

with A438079 and AZD9056, inhibited tumour cell invasion,

migration and TGF-B1 induced metastases (104). In addition, in

murine models (CT26-mP2X7R), P2X7R blockade with

intratumoral oxATP injections lead to reduction in tumour size

and growth (31). Lastly, bilirubin has been found to interact with

P2X7R, and decrease phosphorylation of mammalian target of

rapamycin (mTOR), signal transducer and activator of

transcription 3 (STAT3), and glycogen synthase kinase-3 beta

(GSK-3beta), thus reducing oncogenicity (105).

In pancreatic cancer in-vivo murine models, the anti-P2X7

agent KN-62 abrogated tumor proliferation promoted by ATP

(106). Alternatively, in a breast cancer in-vitro model, KN-62

inhibited ion currents, ethidium uptake, and calcium uptake,

suggesting appropriate anti-P2X7 function (34). A similar

isoquinoline derivative, KN-04 (an inactive analog), was found to

inhibit ion fluxes in the nanomolar range. Subsequently, it was

shown that both KN-62 and KN-04 only partially block pore

formation (107). In vitro, A740003 a P2X7R blocker, has shown

to reduce primary melanoma growth and to activate anti-tumor

immune responses (38). In addition, A740003 has demonstrated a

reduction in melanoma spread and tumour dissemination in-vivo

(88). P2X7R antagonists have also been useful in establishing the

mechanistic effects of P2X7R in lung models. For example, a specific

P2X7R inhibitor GSK1370319A, was used to demonstrate that the

macropore function of P2X7R may be impaired in immune cells of

lung adenocarcinoma (92). Adamantane-1-carbonyl thiourea

derivatives have also been shown to inhibit P2X7R activity,

especially P2X7RB (108). Several natural compounds have been

shown to antagonize P2X7 and have therapeutic potential.

Teniposide, a podophyllotoxin derivative, acts as a topoisomerase

inhibitor and is used in several types of cancer (109). Emodin, an

anthraquinone derivative, specifically inhibited P2X7R-mediated

currents and was shown to block cancer invasiveness in vitro and

in an in-vivo zebrafish model of micrometastases (110). The agent

GSK-1482160, a P2X7 blocker designed to target inflammatory

conditions, was tested in a first-in-human blinded placebo-

controlled study that was completed in 2009. The results of this
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study supported that the compound reduces the efficacy of ATP at

the P2X7 receptor without affecting its affinity. With 29 subjects

included, no safety or tolerability concerns were identified except

for one case of asymptomatic accelerated idioventricular rhythm at

the top dose (111).

Extracellular ATP has also been shown potential as anticancer

therapy. In a study using a human prostate xenografts intraperitoneal

injection of extracellular ATP resulted in significant tumour

regression (112). However, this strategy failed to show clinical

efficacy in a phase II study (113). In osteosarcoma, the P2X7R

agonist benzoyl ATP (BzATP) promoted tumour proliferation and

spread of osteosarcoma throughout the bone matrix. BzATP has also

shown to have anti-tumour effect in glioblastoma stem cells (114).

Non-nucleotide P2X7R agonists have also shown anti-tumour

activity in pre-clinical models. A positive allosteric modulator

against P2X7R, HEI3090, induced immune-mediated tumour

regression in combination with anti-PD-1 antibodies in the

immunotherapy-resistant Lewis Lung Carcinoma model (115),
Future strategies

It has become clear that P2X7R is essential for innate immune

cell sensing of immunogenic cell death, which plays an important

role for efficient priming of tumour-specific T cells. In these T cells,

P2X7R signalling is involved in orchestrating their migration,

metabolic fitness, memory cell differentiation, and survival.

Altogether, the demonstrated crucial role of P2X7R in initiation

and maintenance of adaptive immune responses sends a clear

message to approach P2X7R-inhibition in cancer with caution.

While there is a strong rationale for inhibiting P2X7R in multiple

cancers which exploit it to promote proliferation, invasion and

metastasis, the conflicting outcomes of preclinical testing of P2X7R

inhibitors in immunocompetent mouse models, and the fact that

few P2X7R antagonists have made it to clinical testing in cancer

patients, are further indications that more refined ways of targeting

this pathway need to be devised.

Nevertheless, the selective expression of nfP2X7R on tumour

constitutes an attractive target that could be exploited for cancer

therapy. Expression of nfP2X7R variants by tumour cells provides

an explanation for how they benefit from the proliferative

advantages of P2X7R activation while simultaneously avoiding

NICD and AICD. Indeed, recent pre-clinical and clinical studies

of nfP2X7R- targeting antibodies and CAR-T cells have generated

encouraging results (46, 47).

Emerging findings describing immune regulation by ARTs in

inflammation and cancer are rewriting the script for how P2X7R-

expression shapes the TME (116, 117). ARTs are potent triggers of

NICD via P2X7R, particularly in NAD+-rich conditions such as the

TME. Cytotoxic therapy directed at tumours may increase local

levels of NAD+ and prime ART-mediated NICD in treated

tumours. The recent discovery of how tumour-expressed ART1

allows tumours to co-opt the immune homeostatic mechanism of

NICD suggests that targeted ART1-inhibition would counter this

immune escape mechanism and maintain the viability of critical

anti-tumour immune cells (55).
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It is plausible that tumour-engaged T cells rely on the ATPase

activity of CD39 andNADase activity of CD38 not only to temper their

activation by generating adenosine precursors but also to avoid AICD

and NICD induced by sustained exposure to high concentrations of

ATP and NAD+ in solid tumours (118). In fact, Tregs and TRMs

upregulate CD39 and CD38 in response to activation and TCR

activation (116, 119). This cytoprotective role of ectonucleotidase

expression may be especially crucial in the context of

immunotherapy, where increased susceptibility to activation-induced

apoptosis has been reported (120). Considering these findings, re-

evaluation of clinical trial designs where ectonucleotidase inhibitors in

combination with immunotherapy are warranted. Indeed, clinical

testing of anti-CD38 antibodies daratumumab and isatuximab in

combination with PD-1/PD-L1 inhibitors in patients with solid

malignancies have generated negative survival outcomes, including

early termination of one of the studies due to increased mortality in the

combined treatment arm (121–123).

In summary, new insights have provided both cautionary tales

and important clues for how the dysregulated P2X7R-signalling

that occurs in tumours could be alternatively targeted to optimize

immunotherapeutic treatments of cancer patients.
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