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Obesity is a known risk factor for severe respiratory tract infections. In this

prospective study, we assessed the impact of being obese or overweight on

longitudinal SARS-CoV-2 humoral and cellular responses up to 18 months after

infection. 274 patients provided blood samples at regular time intervals up to 18

months including obese (BMI ≥30, n=32), overweight (BMI 25-29.9, n=103) and

normal body weight (BMI 18.5-24.9, n=134) SARS-CoV-2 patients. We determined

SARS-CoV-2 spike-specific IgG, IgA, IgM levels by ELISA and neutralising antibody

titres by neutralisation assay. RBD- and spike-specific memory B cells were

investigated by ELISpot, spike- and non-spike-specific IFN-g, IL-2 and IFN-g/IL-2
secreting T cells by FluoroSpot and T cell receptor (TCR) sequencing was

performed. Higher BMI correlated with increased COVID-19 severity. Humoral

and cellular responses were stronger in overweight and obese patients than

normal weight patients and associated with higher spike-specific IgG binding

titres relative to neutralising antibody titres. Linear regression models

demonstrated that BMI, age and COVID-19 severity correlated independently

with higher SARS-CoV-2 immune responses. We found an increased proportion

of unique SARS-CoV-2 specific T cell clonotypes after infection in overweight and

obese patients. COVID-19 vaccination boosted humoral and cellular responses

irrespective of BMI, although stronger immune boosting was observed in normal

weight patients. Overall, our results highlight more severe disease and an over-

reactivity of the immune system in overweight and obese patients after SARS-

CoV-2 infection, underscoring the importance of recognizing overweight/obese

individuals as a risk group for prioritisation for COVID-19 vaccination.
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Introduction

Obesity increases susceptibility to respiratory tract infections

and is associated with an elevated risk of developing severe disease.

The negative impact of obesity is mediated by various mechanisms,

involving direct mechanical effects on ventilation, and physiological

alterations, including chronic inflammation and impaired immune

responses (1). During the coronavirus disease 2019 (COVID-19)

pandemic, body mass index (BMI) has been found to correlate with

COVID-19 severity (2–4), with obesity and being overweight

emerging as risk factors for severe disease outcomes (5–7).

Adipose tissue stores energy in the form of triglycerides but is also

an endocrine organ involved in production and secretion of various

cytokines, chemokines, and hormones. Excess amounts of adipose

tissue perturb the balance between anti-inflammatory and pro-

inflammatory signals, resulting in chronic low-grade inflammation

with increased levels of C-reactive protein, interleukin (IL)-6 and

tumour necrosis factor alpha (8, 9). The hormone leptin, which is

produced in adipose tissue, is increased in obese individuals and has

been implicated in attenuated antiviral type I interferon (IFN-I)

responses (10). Low IFN-I responses have been reported in

association with severe COVID-19 (11, 12). Inefficient or delayed

IFN-I responses can result in higher severe acute respiratory

coronavirus 2 (SARS-CoV-2) viral loads and may in part explain

why obesity represents a risk factor for severe disease (13, 14).

Contradictory results regarding the impact of obesity on

immune responses following SARS-CoV-2 infection have been

reported with both negative and positive correlations between

BMI/obesity and humoral responses (15–17). Obesity is known to

have a negative impact on immune responses following vaccination

against influenza, tetanus, hepatitis B and rabies. For COVID-19

vaccination, impaired humoral and cellular responses after

vaccination in SARS-CoV-2 naïve obese and overweight

individuals have been reported (18–21). A large population-based

cohort study suggested that COVID-19 vaccination had comparable

vaccine effectiveness in overweight and obese vaccinees as normal

weight individuals, providing similar levels of protection against

severe COVID-19 (22). However, an increased risk of severe

COVID-19 outcomes were found for individuals of high and

low BMIs.

In our current study we investigated the association between

being overweight or obese and longitudinal anti-SARS-CoV-2

humoral and cellular immune responses in a cohort comprising

COVID-19 patients diagnosed in Bergen, Norway, during the first

pandemic wave (23). Furthermore, our study evaluates the impact

of COVID-19 vaccination after recovery from infection in

overweight, obese and normal weight individuals.
Materials and methods

Study population

COVID-19 patients were recruited prospectively during the first

pandemic wave of SARS-CoV-2 in Bergen, Norway, in 2020 from

Bergen Municipality Emergency Clinic (BMEC) and the two main
Frontiers in Immunology 02
city hospitals, Haukeland University Hospital and Haraldsplass

Deaconess Hospital. Confirmation of SARS-CoV-2 infection was

based on reverse transcription polymerase chain reaction (RT-PCR)

of nasopharyngeal specimens or based on the presence of

convalescent SARS-CoV-2 specific serum antibodies 2 months

after acute COVID-19.
Ethical considerations

Participants provided written informed consent. For patients

unable to provide consent, informed consent was signed by their

next-of-kin. COVID-19 survivors subsequently signed informed

consent to continue in the study. The study was conducted

according to the guidelines of the Declaration of Helsinki and

approved by the Regional Committee for Medical and Health

Research Ethics in Western Norway (#118664).
Collection of clinical data and
blood samples

Relevant demographic and clinical data were registered in an

electronic case report form (eCRF), using the Research Electronic

Data Capture tools (REDCap; Vanderbilt University, Nashville, TN,

USA). Data included information on gender, age, BMI,

comorbidities, COVID-19 symptoms, and COVID-19 vaccination

status. Blood sampling started in March 2020 and the final follow-

up was 18 months later in October-December 2021. Blood samples

were collected at approximately 2, 4, 6, 12 and 18 months after

symptom onset.
Blood collection and processing

Serum was collected from clot activator tubes (CAT, BD, UK),

aliquoted and stored at -70°C. Serum was thawed, heat-inactivated

(56°C, 1 hour), and batch analysed in serological assays (ELISA,

neutralisation assay). Peripheral blood mononuclear cells (PBMCs)

were isolated using Cell Preparation Tubes (CPT, BD, UK)

according to the manufacturer’s instructions, diluted in cell

culture medium (RPMI-1640 with L-glutamine (Lonza), 10%

heat-inactivated foetal bovine serum (FBS, Hyclone), 100 U/ml

penicillin and 0.1 mg/ml streptomycin (Sigma-Aldrich)) and used

directly in memory B cell ELISpot and T cell FluoroSpot assays.

Blood for T cell receptor (TCR) sequencing was collected in EDTA

tubes (BD, UK), frozen at -70°C, and shipped on dry ice for

sequencing by Adaptive Biotechnologies (Seattle, WA, USA).
Antigens and peptides

The SARS-CoV-2 (Wuhan-Hu-1 isolate) receptor binding

domain (RBD) protein and surface glycoprotein (spike) for ELISA

were produced in-house from constructs provided by Professor

Florian Krammer (24). Libraries of 17-mer synthetic peptides with
frontiersin.org
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overlaps of 10 amino acids (> 80% pure) covering the full length of

SARS-CoV-2 spike and non-spike (nucleocapsid and matrix

proteins) of the USA-WA1/2020 strain were obtained from BEI

Resources (VA, USA). Peptides were solubilized in dimethyl

sulphoxide (DMSO; ≥ 99.9%), pooled and diluted in medium

(final DMSO concentration <0.5%). Peptides for spike were

combined in two distinct pools, S1 (amino acid (a.a.) 1-689) and

S2 (a.a. 680-1273).
Enzyme-linked immunosorbent assay

Spike-specific IgG, IgA, and IgM endpoint titres were

determined by enzyme-linked immunosorbent assay (ELISA).

RBD screening and spike ELISA were performed as previously

described (24), with some modifications (25, 26). Serum from a

hospitalised COVID-19 patient and the monoclonal antibody

CR3022 were used as positive controls (27, 28), whereas pooled

pre-pandemic sera (n=128) were used as a negative control (26).

Endpoint titres were calculated as the reciprocal of the serum

dilution giving an optical density (OD) value of 3 standard

deviations above the mean of the negative control. Negative

samples were assigned a value of 50, half of the starting dilution

of 1/100, for calculation purposes.
Microneutralisation assay

Neutralising antibody titres were determined by the

microneutralisation assay in a certified biosafety level 3

laboratory, as previously described (26). A local SARS-CoV-2

isolate from March 2020 (hCoV-19/Norway/Bergen-01/2020,

GISAID accession ID EPI_ISL_541970) was used in this assay.

Neutralisation titres were determined as the reciprocal of the serum

dilution giving 50% inhibition of virus infectivity (half maximal

inhibitory concentration, IC50). Negative samples were assigned a

value of 10, half of the starting dilution of 1/20, for

calculation purposes.
Memory B cell ELISpot

PBMCs were stimulated at 1x106 cells/ml in medium

supplemented with 1 mg/ml R848 (Mabtech AB, Sweden) and 10

ng/ml rhIL-2 (Mabtech), or medium alone (negative control) for 6

days (37°C, 5% CO2). ELISpot plates (MultiscreenHTS MSHA N45

10, Millipore) were coated with 10 mg/ml spike protein, 10 mg/ml

RBD and 15 mg/ml anti-human IgG (MT91/145, Mabtech) in PBS

(Phosphate Buffered Saline), or PBS only (control) at 4°C overnight.

Stimulated and non-stimulated PBMCs were transferred in

duplicate to ELISpot plates and incubated for 16 hours (37°C, 5%

CO2). Plates were incubated with 1 µg/ml biotinylated anti-IgG

mAbs (MT78/145, Mabtech) and Streptavidin-HRP (1:1000,

Mabtech). Spots were developed with 3,3’,5,5’-Tetramethyl-

benzidine (TMB) ELISpot substrate (MabTech) and counted

using an ELISpot reader (Advanced Imaging Devices, Germany).
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SARS-CoV-2 spike-specific spots were calculated as the mean of

duplicate wells, subtracting spots in negative control wells, and

presented as spot forming units (SFU) per 1x106 PMBCs.
Interferon-gamma and interleukin-2
FluoroSpot assay

Antigen-specific interferon-gamma (IFN-g), interleukin-2 (IL-

2), and double-positive IFN-g/IL-2 cytokine-secreting T cells were

quantified with FluoroSpot kits (Mabtech AB, Sweden), as

previously described (29). Average SFU were counted using a

fluorescence reader with FITC and Cy3 filters (Advanced Imaging

Devices, Germany) and background from negative controls

were subtracted.
SARS-CoV-2 associated T cell
receptor b sequences

The immunoSEQ Assay (Adaptive Biotechnologies, Seattle,

WA, USA) is a molecular tool for quantification and monitoring

of T cell responses to SARS-CoV-2 that is high throughput,

sensitive, and that does not rely on live cells (30, 31).

In short, genomic DNA was extracted from blood collected in

EDTA tubes using the Qiagen DNeasy Blood Extraction Kit

(QIAGEN, Germantown, MD) and amplified in a bias-controlled

multiplex PCR (Polymerase Chain Reaction), followed by high-

throughput sequencing. SARS-CoV-2 associated CDR3 regions of

TCRb chains were sequenced as previously described (30, 31).

TCRb sequences were statistically associated with SARS-CoV-2

using case and control repertoires as described in (32). SARS-CoV-2

associated sequences were associated with CD4 and CD8 spike and

non-spike antigens using annotated TCRbs from the immunoSEQ

T-MAP™ COVID platform. ImmunoSEQ® T-MAP™ COVID is a

TCR sequence-based approach to quantitatively assess the T cell

response to SARS-CoV-2. This approach utilizes a multiplexed

experimental platform to interrogate T cell repertoires with large

numbers of query antigens to identify SARS-CoV-2-specific TCRs

in the context of HLA (33).
Statistical analysis

GraphPad Prism (version 9.5.1; La Jolla, CA, USA) was used to

analyse data and generate figures. Antibody titres were log-

transformed and compared between groups and time-points,

using an unpaired, non-parametric Kruskal-Wallis test with

Dunn’s multiple comparisons test to evaluate statistical

significance. Correlation was evaluated by computing non-

parametric Spearman correlation with a two-tailed 95%

confidence interval (CI).

R version 4.3.0 (R Foundation for Statistical Computing,

Vienna, Austria) was used to generate linear regression models

where variables were adjusted for BMI (continuous), age

(continuous), gender (reference: male), any comorbidity
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https://doi.org/10.3389/fimmu.2023.1287388
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Onyango et al. 10.3389/fimmu.2023.1287388
(reference: no comorbidity) and COVID-19 severity (category).

Study participants with BMI<18.5 were excluded in the models.

Results are presented as adjusted estimates, 95% CIs and p-values.

Log-transformed values of dependent variables were used in the

models. Exponentiated values of estimate (geometric mean) and CI

are presented in the tables. For TCR breadth measurements, a small

number (10-5) was added to every value to handle zero values of

measurements, which are problematic for log-transformation. For

TCR depth measurements, values were shifted on the original scale

to have all positive values, similarly, to handle the problem with

log-transformation.
Results

Study population

The study population included 274 patients from the first

COVID-19 wave comprising both home-isolated patients, with

asymptomatic (n=3) and moderate disease (n=210), and

hospitalised patients, with severe (n=52) to critical disease (n=9).

The cohort was divided into groups based on BMI consisting of 5
Frontiers in Immunology 04
underweight (BMI<18.5 kg/m2), 134 normal weight (BMI=18.5-

24.9 kg/m2, median age 45 years, 41% male), 103 overweight

(BMI=25-29.9 kg/m2, median age 52 years, 58% male) and 32

obese (BMI≥30 kg/m2, median age 53 years, 59% male) COVID-19

patients (Table 1). Forty percent (40%) of normal weight

participants reported comorbidities, whereas the percentages

increased to 49% for overweight and 66% for obese patients.

Hypertension was associated with increasing body weight.

Study participants provided at least 3 follow-up blood samples

at approximately 2, 4, 6, 12 and 18 months post symptom onset to

evaluate the kinetics and durability of the humoral and cellular

SARS-CoV-2 specific immune responses (Supplementary Figure 1).
Increasing BMI associated with higher risk
of severe COVID-19 and hospitalisation

Patients were assigned a severity of disease score [modified from

(34)] from 1 (asymptomatic) to 7 (hospitalised needing respirator)

(Table 1). All underweight (n=5, 100%) and 86% of normal weight

patients (n=115) were home-isolated with asymptomatic to mild

disease (severity scores 1 or 2, respectively), while 14% of normal
TABLE 1 Baseline demographic and clinical data.

Underweight
<18.5 kg/m2

Normal weight
18.5-24.9 kg/m2

Overweight
25-29.9 kg/m2

Obese
≥30 kg/m2

N = 274

n (%) 5 (2%) 134 (49%) 103 (38%) 32 (12%)

Gender

Male: n (%) 0 (0%) 55 (41%) 60 (58%) 19 (59%)

Female: n (%) 5 (100%) 79 (59%) 43 (42%) 13 (41%)

Age: range, median 16-64, 22 16-84, 45 21-80, 52 16-78, 53

Hospitalised: n (%) 0 (0%) 19 (14%) 26 (25%) 16 (50%)

Home-isolated: n (%) 5 (100%) 115 (86%) 77 (75%) 16 (50%)

Severity score*:

1 asymptomatic 1 (20%) 1 (<1%) 1 (1%) 0

2 home-isolated 4 (80%) 114 (85%) 76 (74%) 16 (50%)

4 hospitalised with medical needs 0 (0%) 14 (10%) 10 (10%) 5 (16%)

5 hospitalised needing oxygen 0 (0%) 5 (4%) 12 (12%) 6 (19%)

6 hospitalised needing ventilation 0 (0%) 0 (0%) 2 (2%) 1 (3%)

7 hospitalised needing respirator 0 (0%) 0 (0%) 2 (2%) 4 (13%)

Comorbidities:

Comorbidity (%) 3 (60%) 54 (40%) 50 (49%) 21 (66%)

Any lung disease (%) 1 (20%) 16 (12%) 14 (14%) 4 (13%)

Chronic heart disease (%) 0 (0%) 4 (3%) 14 (14%) 3 (9%)

Hypertension (%) 0 (0%) 7 (5%) 18 (17%) 8 (25%)

Immunosuppressed (%) 0 (0%) 6 (4%) 3 (3%) 1 (3%)
*Severity score was modified after (34).
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weight patients (n=19) were hospitalised with moderately severe

disease (severity score 4 or 5) (Figure 1A). Of the overweight group

(n=103), 75% (n=77) were home-isolated, while 25% (n=26) were

admitted to hospital (severity score 4-7). Half (n=16) of the obese

group (n=32) were home-isolated, while half (n=16) were

hospitalised (severity score 4-7), with the highest percentage of

respirator patients. In agreement with previous findings (2–4),

increasing BMI in our cohort correlated significantly with

progression to severe COVID-19 (r=0.2733, p<0.0001).
Higher spike-specific and neutralising
antibody titres in overweight and
obese patients

Spike-specific IgG titres were significantly higher in overweight

compared to normal weight patients up to 6 months, and in obese

compared to normal weight patients up to 12 months (except 4

months) (Figure 1B). The lack of significance for the obese group at

4 months is likely due to the relatively small number of obese

individuals in the study population. A higher proportion of

overweight and obese patients had detectable RBD-specific IgA

and IgM antibodies at 2 months than normal weight patients.

However, if detected, spike-specific IgA and IgM endpoint titres

in the RBD-positive samples were comparable between normal
Frontiers in Immunology 05
weight, overweight and obese patients (Supplementary Figure 2).

Linear regression models adjusted for age, gender, any comorbidity

and COVID-19 severity, showed that BMI significantly impacted

spike-specific IgG titres at 2 months post symptom onset (Table 2).

The adjusted estimates showed that both age and COVID-19

severity significantly affected IgG titres at all time-points.

Neutralising titres were significantly higher in overweight than

normal weight patients up to 12 months, and at 2 (p<0.01) and 12

months (p<0.05) in obese patients (Figure 1C). Furthermore,

adjusted models demonstrated that BMI, age and COVID-19

severity were independently and significantly associated with

neutralising antibody titres (Supplementary Table 1). The ratio of

neutralising to total SARS-CoV-2 specific antibodies has been

suggested to predict COVID-19 severity and survival (35). We

calculated the ratio of neutralising to spike-specific IgG titres and

found a trend of lower ratios in obese than in overweight and

normal weight patients (Figure 1D).

We calculated the fold reduction in spike-specific IgG and

neutralising titres at 6 and 12 months relative to 2 months post

symptom onset (Figures 1E, F). The fold reduction was significantly

higher for the overweight group compared to the normal weight

group for IgG at 6 and 12 months (p<0.05), and for neutralising

antibodies at 6 months (p<0.05). Possible SARS-CoV-2 re-infection

was observed in 1%-4% of patients at 6 and 12 months by

seroconversion of spike IgG and neutralising antibodies,
TABLE 2 Variables associated with spike IgG and T cell responses after SARS-CoV-2 infection.

Time post
infection
(months):

Variables: Spike IgG titer
Adjusted estimate
(95% CI)

p-value Spike TCR breadth
Adjusted estimate
(95% CI)

p-value Spike TCR depth
Adjusted estimate
(95% CI)

p-value

2 BMI (cont.) 1.07 (1.03-1.11) 0.001 1.02 (0.99-1.04) 0.151 1.03 (1.00-1.06) 0.024

Age (cont.) 1.02 (1.01-1.03) <0.001 1.01 (1.01-1.02) <0.001 1.00 (1.00-1.01) 0.200

Gender (ref:male) 0.86 (0.66-1.14) 0.297 0.92 (0.76-1.11) 0.370 1.13 (0.93-1.37) 0.212

Any comorbidity
(ref:no) 1.09 (0.82-1.44) 0.567 1.06 (0.87-1.28) 0.567 0.95 (0.78-1.15) 0.577

COVID-19
severity (cat.) 1.68 (1.49-1.90) <0.001 1.05 (0.96-1.14) 0.279 1.01 (0.93-1.10) 0.818

6 BMI (cont.) 1.03 (1.00-1.07) 0.066 1.04 (1.02-1.06) 0.001 1.04 (1.01-1.06) 0.003

Age (cont.) 1.02 (1.02-1.03) <0.001 1.01 (1.01-1.02) <0.001 1.01 (1.00-1.01) 0.007

Gender (ref:male) 1.04 (0.81-1.35) 0.759 1.14 (0.97-1.33) 0.104 1.31 (1.10-1.57) 0.003

Any comorbidity
(ref:no) 1.12 (0.86-1.46) 0.411 0.99 (0.84-1.16) 0.912 1.02 (0.85-1.23) 0.832

COVID-19
severity (cat.) 1.63 (1.45-1.83) <0.001 1.10 (1.03-1.18) 0.007 1.04 (0.96-1.13) 0.298

12 BMI (cont.) 1.04 (1.00-1.08) 0.073 1.05 (1.03-1.07) <0.001 1.06 (1.03-1.09) <0.001

Age (cont.) 1.02 (1.01-1.03) <0.001 1.01 (1.01-1.02) <0.001 1.01 (1.00-1.02) 0.001

Gender (ref:male) 1.28 (0.96-1.70) 0.089 1.05 (0.91-1.22) 0.494 1.19 (0.99-1.43) 0.064

Any comorbidity
(ref:no) 1.12 (0.84-1.51) 0.439 1.07 (0.92-1.24) 0.377 1.03 (0.85-1.24) 0.766

COVID-19
severity (cat.) 1.60 (1.41-1.81) <0.001 1.03 (0.97-1.10) 0.340 1.02 (0.94-1.10) 0.665
fr
Statistically significant results are written in bold font.
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1287388
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Onyango et al. 10.3389/fimmu.2023.1287388
respectively. However, none of the participants tested positive for

SARS-CoV-2 during this period.
Higher spike-specific cellular responses in
overweight and obese patients

We analysed the spike- and non-spike (i.e. internal proteins)

specific T cell receptor (TCR) repertoire up to 12 months post

symptom onset, using the immunoSEQ Assay T-MAP™ COVID

platform, a high throughput sequence-based method for

quantification of SARS-CoV-2-specific T cell responses (32). We

calculated TCR breadth defined as the proportion of unique SARS-

CoV-2-specific T cell clonotypes relative to the total TCR repertoire,

and TCR depth defined as the extent of SARS-CoV-2-specific T

cells expansion. Clonal breadth and depth are calculated as

described in (32).

Spike and non-spike TCR breadth and depth were highest at 2

months for all patients (Figures 2A–D). Generally, overweight and

obese patients had higher spike and non-spike specific TCR breadth

and depth than the normal weight group, with the differences

becoming more pronounced by 6 and 12 months post symptom

onset. Linear regression models (adjusted for BMI, age, gender, any

comorbidity, and COVID-19 severity) demonstrated that spike and

non-spike TCR breadth were significantly associated with age at 2, 6

and 12 months, although BMI and COVID-19 severity were also

important at 6 and 12 months (only BMI for spike TCR breadth)

(Table 2 and Supplementary Table 2). Spike TCR depth was

significantly associated with BMI at 2, 6 and 12 months, whilst age

and gender were also important at 6 months, and age at 12 months
Frontiers in Immunology 06
(Table 2). BMI, age and COVID-19 severity were significantly

associated with non-spike TCR depth at 6 and 12 months

(Supplementary Table 2).

To confirm T cell functionality, we assessed the frequencies of

spike- and non-spike-specific T cells secreting IFN-g, IL-2 and IFN-
g/IL-2 at 6 and 12 months by FluoroSpot assay in a subgroup of the

study population providing PBMCs (Supplementary Figure 1).

Generally, we found that the frequencies of cytokine-secreting T

cells were higher in overweight and obese than in normal weight

patients, although not significantly, possibly due to the relatively

small sample size (Figures 3A, B, D, E; linear regression models in

Supplementary Table 3). We therefore combined the groups of

overweight and obese patients and found that the frequencies of

spike- and non-spike-specific total cytokine-secreting T cells were

significantly higher for overweight/obese patients than in normal

weight patients at 12 months (Figures 3C, F, p<0.01). The

frequencies of spike-specific total cytokine-secreting T cells were

significantly associated with BMI and age at 12 months in linear

regression models, while there was no significant association

between BMI and non-spike-specific total cytokine-secreting T

cells (Supplementary Table 4).
COVID-19 vaccination significantly
boosted humoral and cellular responses

The final follow-up was 18 months after initial SARS-CoV-2

symptom onset, and after the implementation of the COVID-19

vaccination campaign. Ninety-three normal weight, 78 overweight

and 27 obese participants attended the final follow-up of whom 186
A B

D E F

C

FIGURE 1

SARS-CoV-2 specific antibody titres are higher in overweight and obese patients. The pie charts in (A) show the proportion of underweight, normal
weight, overweight and obese study participants that were home-isolated (disease severity score 1-2) and hospitalised (disease severity score 4-7).
Spike-specific IgG endpoint titres were determined by ELISA (B) and neutralising antibody titres (Inhibitory Concentration 50, IC50) against SARS-
CoV-2 (Wuhan) were determined by neutralisation assay (C) at 2, 4, 6 and 12 months post symptom onset for normal weight, overweight and obese
patients. The ratio of neutralising to spike-specific IgG levels for normal weigh, overweight and obese patients were calculated for paired samples at
2, 6 and 12 months post symptom onset (D). Fold reduction of spike-specific IgG (E) and neutralisation titres (F) relative to the 2 months values were
determined at 6 and 12 months post symptom onset for normal weight, overweight and obese patients. Patients that were vaccinated against
COVID-19 before the 12 months follow-up were excluded from the figures at the 12 months time-point (n=20). The results in (D–F) are displayed as
means with 95% CIs, the results in (B, C) are displayed as geometric means with 95% CIs. In (B, C), statistically significant differences between
overweight and normal weight patients are indicated with orange asterisks, and significant differences between obese and normal weight patients
indicated with purple asterisks. A non-parametric Kruskal-Wallis test with Dunn’s multiple comparisons test was used to evaluate statistical
significance, with * = p<0.05, ** = p<0.01, *** = p<0.001 and **** = p<0.0001.
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(94%) had received COVID-19 vaccination and 169 had paired

samples (Figure 4 and Supplementary Table 5).

Vaccination significantly boosted spike-specific IgG and

neutralising antibody titres, regardless of body weight category

(Figures 4A, B, p<0.0001), although no significant differences were

observed between the weight categories or in functional neutralising
Frontiers in Immunology 07
to spike-specific IgG ratios (Figure 4C). We also found a significant

fold increase of neutralising antibodies in normal weight compared to

overweight and obese patients (Figure 4D, p<0.05).

Spike- and RBD-specific IgG MBC responses after vaccination

were further assessed in 65 individuals with paired samples by

ELISpot assay (Figure 4E). COVID-19 vaccination significantly
B C

D E

A

F

FIGURE 3

Spike- and non-spike-specific cytokine-secreting T cell frequencies were higher in overweight/obese COVID-19 patients. Frequencies of IFNg, IL-2
and IFNg/IL-2 spike- (A, B) and non-spike (D, E) specific T cells were determined at 6 (A, D) and 12 months (B, E) for normal weight, overweight and
obese COVID-19 patients using FluroSpot assay. The total frequencies of cytokine-secreting spike- (C) and non-spike (F) specific T cells were
determined for normal weight and the combined group of overweight and obese patients 6 and 12 months. Results for participants that were
vaccinated against COVID-19 before 12 months (n=9) were excluded from the 12 months time-point. The results following vaccination at the 18
months follow-up are included in (C, D). Results are presented as means with 95% CIs. A non-parametric Kruskal-Wallis test with Dunn’s multiple
comparisons test was used to evaluate statistical significance, with ** = p<0.01 and **** = p<0.0001.
A B

DC

FIGURE 2

Spike- and non-spike-specific T cell receptor sequencing showed higher clonal breadth and depth in overweight and obese than in normal weight
COVID-19 patients. Spike-specific (A, C) and non-spike-specific (B, D) T cell receptor clonal breadth (A, B) and depth (C, D) were measured using

the immunoSEQ T-MAP™ COVID platform at 2, 4, 6 and 12 months post symptom onset. The results are presented as means with 95% CIs. Patients
that were vaccinated against COVID-19 before the 12 months follow-up were excluded from the figures at the 12 months time-point (n=20). A non-
parametric Kruskal-Wallis test with Dunn’s multiple comparisons test was used to evaluate statistical significance, with * = p<0.05, ** = p<0.01, *** =
p<0.001 and **** = p<0.0001.
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(p<0.05) boosted spike-specific MBCs only in normal weight

patients. Furthermore, spike-specific total cytokine-secreting T

cells increased significantly (p<0.0001) after vaccination only in

normal weight, but not in overweight/obese participants

(Figure 3C). The main findings of this study (Figures 1–4) are

summarized in Supplementary Table 6.
Discussion

Obesity is a known risk factor for severe COVID-19, and being

overweight has also been associated with more severe illness (5–7).

Furthermore, severe COVID-19 is characterized by an increased

aberrant immune response (11, 35, 36). Here, we conducted a

longitudinal study to investigate immune responses and immune

memory after COVID-19 infection and subsequent vaccination,

focusing on the impact of being overweight and obese. Our findings

demonstrate a correlation between increasing BMI and severe

COVID-19, as well as significantly higher levels of spike-specific

IgG and neutralising antibody titres up to twelve months post

infection in overweight and obese patients compared to normal

weight patients, agreeing with previous reports (16, 17). BMI

independently and significantly impacted spike-specific IgG and

neutralising titres at two months post symptom onset, supporting

reports of a positive association between antibody levels and obesity

(16, 17). Previous findings showed that BMI and age were

independently associated with higher SARS-CoV-2 antibody

levels in convalescent COVID-19 patients (17), while our present

data show that BMI and age impact both spike-specific IgG and
Frontiers in Immunology 08
neutralising antibodies as well as durable spike and non-spike TCR

breadth and depth. This indicates an increased proportion of

unique SARS-CoV-2 specific T cell clonotypes that rapidly

expanded and were maintained after infection, suggesting an

over-reactivity of the immune system in overweight and

obese patients.

More than 90% of neutralising antibodies have been shown to

bind the RBD of the spike protein (37), with neutralisation

associated with IgG specific for conformational spike and RBD

epitopes (38). The ratio of neutralising to total SARS-CoV-2 specific

antibodies was found to be lower in severe COVID-19 (35). Severe

and fatal COVID-19 cases had delayed and reduced production of

neutralising antibodies (39, 40). Here we found a trend of lower

ratios of neutralising to spike IgG titres in obese relative to

overweight and normal weight individuals following both initial

infection and vaccination, highlighting obese individuals as a risk

group for vaccine prioritisation. In agreement, reduced levels of

neutralising antibodies have been detected in obese individuals

following COVID-19 vaccination (18, 20).

Higher frequencies of SARS-CoV-2 specific memory T cells

have been found in severe COVID-19 (29, 41, 42). Convalescent

critically ill patients were shown to have persisting SARS-CoV-2

specific T cell responses for more than one year after discharge from

hospital, with the magnitude being associated with the length of

hospital stay (43). Our overweight/obese patients had higher

frequencies of spike- and non-spike-specific T cells than normal

weight COVID-19 patients at twelve months. Furthermore, we

found that spike and non-spike TCR breadth and depth were

significantly higher for overweight and obese compared to normal
B C

D E

A

FIGURE 4

COVID-19 vaccination boosted SARS-COV-2 specific antibody responses in normal weight, overweight and obese individuals. Spike-specific IgG
titres were determined by ELISA (A) and neutralising antibody titres (IC50) by microneutralisation assay (B) for paired samples at 12 (pre-vaccination)
and 18 months (post-vaccination) for normal weight, overweight and obese patients. The ratios of neutralising/spike-specific IgG titres were
calculated post-vaccination at 18 months (C). The fold increase in spike-specific IgG and neutralising titres post-vaccination was calculated relative
to the respective values at 12 months (D). Results from study participants that had received COVID-19 vaccine before 12 months (n=20), and
unvaccinated (n=11) or unknown vaccination status (n=1) at 18 months were excluded. Frequencies of spike- and RBD-specific IgG MBCs were
assessed in 65 patients with paired samples by ELISpot assay at 12 and 18 months. Participants were excluded from the analyses if they were COVID-
19 vaccinated before 12 months (n=6) or were unvaccinated at 18 months (n=1) (D). The results in (A, B) are presented as geometric means with
95% CIs, the results in (C–E) are presented as means with 95% CIs. A non-parametric Kruskal-Wallis test with Dunn’s multiple comparisons test was
used to evaluate statistical significance, with * = p<0.05 and **** = p<0.0001.
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weight COVID-19 patients, although the patients age and disease

severity were also important. TCR sequencing has been reported to

correlate with COVID-19 disease severity, as well as with SARS-

CoV-2 neutralising antibody titres (44). Interestingly, we have

previously shown that long COVID (post COVID-19 condition)

correlated with higher levels of spike-specific IgG (23) and spike-

specific CD4+ TCR depth (45), indicating that increasing BMI

could be associated with persisting symptoms. In agreement with

this, an increased risk for long COVID has been found for

overweight/obese patients (46).

We found that RBD- and spike-specific MBCs were maintained

in most of our convalescents, regardless of weight category, at

twelve months, although often at higher frequencies in overweight/

obese patients. This is in agreement with previous reports showing

maintenance of MBCs for up to fifteen months post infection (47,

48). Based on the correlation between BMI and severity, our

observations support the findings that the maintenance and the

magnitude of RBDMBCs correlate with disease severity after twelve

months (49).

Hybrid immunity, the combination of natural infection and

vaccination, induces a broader and more durable immune response

than vaccination alone (48, 50). Here, we observed that vaccination

after infection induced a significant increase in spike-specific IgG

and neutralising antibodies in all weight groups. Cellular immune

responses were boosted by vaccination, with significant increases in

spike-specific MBC frequencies and total spike-specific T cells for

normal weight patients. The trend of a lower ratio of neutralising to

spike IgG for obese patients could indicate a reduced neutralising

potency in this group. However, protective immunity relies on both

cellular and humoral responses, and the induction of SARS-CoV-2

specific T cells has been suggested to have a central role, with the

potential to provide cross-reactive protection against new viral

variants and with a slower decay compared to neutralising

antibodies (51–54).

The strengths of this study include that it comprises an almost

complete cohort from the first pandemic wave of COVID-19 in

Bergen, Norway. Our study had good follow-up rates reducing bias,

and both humoral and cellular responses were studied in detail.

Further strengths are the stratified analysis of confounding factors

such as age and severity in multivariable models. Caveats of the

study include that the Norwegian population has relatively low

levels of obesity, being reflected in the relatively few obese

individuals in the study population. Furthermore, the study was

conducted with Wuhan virus infected patients and there may be

differences with other SARS-CoV-2 variants.

In summary, our finding supports the concept that over-

reactivity of the immune system, and possibly autoimmune effects

of antibodies could play a role in the pathogenesis of severe

COVID-19. We showed that increasing BMI is correlated with

severe disease and associated with increased humoral and cellular

responses up to twelve months following SARS-CoV-2 infection,

with lower levels of neutralising to spike IgG antibodies in the obese

group following infection and vaccination. Vaccination boosted

humoral and cellular SARS-CoV-2 immune responses to similar

levels in normal weight, overweight and obese convalescent

COVID-19 patients, highlighting the importance of overweight/
Frontiers in Immunology 09
obese individuals as a risk group for prioritisation for COVID-

19 vaccination.
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