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An integrative analysis of
single-cell and bulk
transcriptome and bidirectional
mendelian randomization
analysis identified C1Q as a
novel stimulated risk gene
for Atherosclerosis
Hong-Kai Cui1*†, Chao-Jie Tang2†, Yu Gao1, Zi-Ang Li1,
Jian Zhang1 and Yong-Dong Li1,2*

1Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical
University, Xinxiang, Henan, China, 2Institute of Diagnostic and Interventional Radiology,
Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
Background: The role of complement component 1q (C1Q) related genes on

human atherosclerotic plaques (HAP) is less known. Our aim is to establish

C1Q associated hub genes using single-cell RNA sequencing (scRNA-seq)

and bulk RNA analysis to diagnose and predict HAP patients more effectively

and investigate the association between C1Q and HAP (ischemic stroke)

using bidirectional Mendelian randomization (MR) analysis.

Methods: HAP scRNA-seq and bulk-RNA data were download from the Gene

Expression Omnibus (GEO) database. The C1Q-related hub genes was

screened using the GBM, LASSO and XGBoost algorithms. We built machine

learning models to diagnose and distinguish between types of atherosclerosis

using generalized linear models and receiver operating characteristics (ROC)

analyses. Further, we scored the HALLMARK_COMPLEMENT signaling

pathway using ssGSEA and confirmed hub gene expression through qRT-

PCR in RAW264.7 macrophages and apoE-/- mice. Furthermore, the risk

association between C1Q and HAP was assessed through bidirectional MR

analysis, with C1Q as exposure and ischemic stroke (IS, large artery

atherosclerosis) as outcomes. Inverse variance weighting (IVW) was used as

the main method.

Results: We utilized scRNA-seq dataset (GSE159677) to identify 24 cell

clusters and 12 cell types, and revealed seven C1Q associated DEGs in both

the scRNA-seq and GEO datasets. We then used GBM, LASSO and XGBoost

to select C1QA and C1QC from the seven DEGs. Our findings indicated that

both training and validation cohorts had satisfactory diagnostic accuracy for

identifying patients with HPAs. Additionally, we confirmed SPI1 as a potential

TF responsible for regulating the two hub genes in HAP. Our analysis further

revealed that the HALLMARK_COMPLEMENT signaling pathway was

correlated and activated with C1QA and C1QC. We confirmed high
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expression levels of C1QA, C1QC and SPI1 in ox-LDL-treated RAW264.7

macrophages and apoE-/- mice using qPCR. The results of MR indicated that

there was a positive association between the genetic risk of C1Q and IS, as

evidenced by an odds ratio (OR) of 1.118 (95%CI: 1.013–1.234, P = 0.027).

Conclusion: The authors have effectively developed and validated a novel

diagnostic signature comprising two genes for HAP, while MR analysis has

provided evidence supporting a favorable association of C1Q on IS.
KEYWORDS

atherosclerotic plaque (AP), ScRNA-seq, Mendelian randomization (MR),
complement component 1q (C1q), LASSO
Introduction

Atherosclerosis is a disease in which several cell types, such as

SMCs, ECs, and immune cells, are activated pathophysiologically

(1–3). Atherosclerosis progresses gradually over time, and as the

lumen narrows, clinical symptoms such as angina and dizziness

emerge. Eventually, this narrowing leads to an ischemic stroke or

myocardial infarction due to plaque rupture or erosion (4, 5).

Therefore, developing an accurate method for diagnosing HAP is

crucial for early intervention.

Currently, the diagnosis of HAP heavily relies on clinical

manifestations, functional outcomes, and invasive intravascular

imaging techniques such as computed tomography angiography

and magnetic resonance angiography that thoroughly assess vessel

stenosis and wall thickness. Non-invasive medical imaging can

accurately identify vulnerable plaques and stratify cardiovascular

risk with the advancement of molecular biology and non-invasive

molecular tools developed for the diagnosis and risk stratification of

atherosclerotic plaques (6–14).

Atherosclerosis is a persistent inflammatory ailment that is

distinguished by the buildup of macrophages that are laden with

lipids in the vascular wall (15, 16). Numerous studies have shown

that immune cell infiltration within the vessel wall is strongly

associated with atherosclerosis initiation and progression (11, 17,

18). The immune composition of atherosclerotic plaque was

inferred from multiple sources such as bulk RNA-seq data,

CyTOF analysis of a single plaque, and scRNA-seq analysis of

atherosclerotic tissue (17, 19–22). Single-cell RNA sequencing and

time-of-flight cytometry have been utilized to analyze immune cell

composition in both murine and human atherosclerotic plaques

(17, 20). Bioinformatics analysis of immune cell infiltration using

bulk RNA-seq data from atherosclerotic tissue has been previously

explained (7–13). However, very few studies have been conducted

utilizing scRNA-seq to predict HPA diagnosis (14, 23).

Recently, C1Q has been identified as a distinct subset of tissue

resident macrophages, tumor-associated macrophages (TAMs) and

tumor immune microenvironments (TIMs), and is commonly
02
acknowledged as a facilitator of cancer progression (24–27). In

the present study, we also identified a significant involvement of the

C1Q cell cluster in the pathogenesis of atherosclerosis. Moreover, to

gain deeper insights into the potential risk factor of C1Q in the

development of HAP, we employed a statistical technique known as

mendelian randomization (MR). MR utilizes single nucleotide

polymorphisms (SNPs) to simulate randomized controlled trials,

aiming to ascertain and explore the causal association between

exposure and outcome variables in epidemiological research. By

effectively eliminating the confounding effects of extraneous factors

and employing genetic variations as instrumental variables (IVs),

MR enables the analysis of disease relationships (28–32).

Therefore, our goal is to develop gene signatures utilizing the

molecular characteristics of C1Q associated genes for the effective

diagnosis and prediction of patients with human atherosclerotic

plaques (HAP) and investigating the association between C1Q and

ischemic stroke (large artery atherosclerosis) with MR. Initially,

we analyzed scRNA-seq and bulk RNA-seq data of human

atherosclerotic plaque (HAP) to identify immunomarkers for the

diagnosis and prediction of HAP. Subsequently, we validated the

diagnostic value of hub markers using GEO datasets and analyzed

the relationship between the signatures and the landscape of

immune cell infiltration. Additionally, we screened the potential

transcription factors (TFs) that may regulate the hub genes in GEO

datasets and examined both the hub genes and TFs in apoE-/- mice.

Finally, we investigated the association between C1Q and IS (large

artery atherosclerosis) using bidirectional MR analysis.
Materials and methods

Data availability

Single-cell transcriptome profiles of human carotid

atherosclerotic plaques (HAP) and adjacent normal tissue

samples were obtained from the Gene Expression Omnibus

(GEO) database (accession code GSE159677). To supplement the
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analysis, we accessed bulk RNA-sequencing data from four other

GEO datasets for atherosclerotic patients, namely GSE28829 (33),

GSE43292 (34), GSE41571 (35), and GSE100927 (36), each

containing over 10 patient cases (Table S1).

The GSE28829 dataset comprises 13 early and 16 advanced

specimens of carotid atherosclerotic plaque that were detected using

the Affymetrix Human Genome U133 Plus 2.0 Array. The

GSE43292 dataset contains 32 early-stage and 32 advanced-stage

specimens of carotid atherosclerotic plaque that were detected using

the Affymetrix Human Gene 1.0 ST Array. The GSE41571 dataset

has 5 ruptured and 6 stable specimens of atherosclerotic plaque that

were detected using the Affymetrix Human Genome U133 Plus 2.0

Array. The GSE100927 dataset includes 35 healthy arteries,

consisting of 12 carotid, 12 femoral, and 11 infra-popliteal

territories arteries. Additionally, the dataset has 69 atherosclerotic

arteries, which comprise 29 carotid, 26 femoral, and 14 infra-

popliteal territories atherosclerotic arteries. All these were

detected using the Agilent-039494 SurePrint G3 Human GE v2

8x60K Microarray. We divided the GSE100927 dataset, which

initially contained three sets, into three subparts. These are

GSE100927_Carotid that has 29 carotid atherosclerotic arteries

and 12 carotid normal arteries; GSE100927_Femoral containing

26 femoral atherosclerotic arteries and 12 femoral normal arteries,

and GSE100927_Infra that has 14 infra-popliteal territories

atherosclerotic arteries and 11 infra-popliteal territories

normal arteries.

The present research utilized a publicly available dataset with

pre-existing ethics approval. Every participant gave their informed

consent. The present study was conducted as per the principles of

the Declaration of Helsinki.
Identification of differential immune cell
genes by scRNA-seq analysis

To analyze the ScRNA-seq data, we relied on the "Seurat"

(version 4.1.2) and "SingleR" (version 1.6.1) packages (37).

Initially, we eliminated low-quality cells by applying specific

criteria, including minimum expression cells greater than 3, gene

numbers less than 200, and mitochondrial genes exceeding 15%.

The remaining cells were subjected to further bioinformatic

analysis. To perform a principal component analysis (PCA), we

selected the top 2,000 genes with the highest variability in

expression. Subsequently, we utilized the T-distributed stochastic

neighbor embedding (t-SNE) technique for dimension reduction

based on the top 15 principal components. Ultimately, we identified

significant marker genes with an adjusted p-value less than 0.05 and

a |log2 (fold change)| greater than 1.
Cell clustering analysis, visualization,
and annotation

We performed cell clustering and sub-clustering analyses using

the FindClusters function of the Seurat package, utilizing
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appropriate resolutions. We filtered cells with ribosome gene

ratios higher than 15% for the re-clustering of each type of cell

cluster. We utilized the Uniform Manifold Approximation and

Projection (UMAP) technique to display the identified cell clusters

and sub-clusters. We annotated the cell clusters with highly-

expressed genes, marker genes from differential expression gene

(DEG) analysis, and reported cellular markers. We applied the DEG

analysis to all of the cell clusters using the FindAllMarkers function

embedded in Seurat (version 4.1.2) to identify useful information

marking the plaque state. We selected the top five genes based on

their log2 fold-change value to serve as the initial feature input for

machine learning.
Functional enrichment analysis for
scRNA-seq

Conducted a Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis of the differential marker

genes between subclusters using ClusterProfiler 4.0 in R (38). We

used GSVA package (39) to analyze the differential marker genes

among subclusters. All gene sets were obtained from the Molecular

Signatures Database MSigDB (https://www.gseamsigdb.org/gsea/

downloads.jsp) (40). We used the Scillus package to perform

Gene Set Enrichment Analysis (GSEA) on the differential marker

gene expression among subclusters (https://github.com/

xmc811/Scillus).
Immune landscape and signal
pathways analysis

In this study, the immune microenvironment (IME) was

assessed using various algorithms, namely EPIC, XCell,

MCPCOUNTER, QUANTISEQ, IPS, ESTIMATE, and TIMER,

which were obtained from the IMvigor210CoreBiologies R

package (41). Additionally, the ssGSEA algorithm from the

"GSVA" package was added to calculate infiltration scores for 29

immune cells (42). Furthermore, immunomodulators (43),

including Antigen presentation, Cell adhesion, Co-inhibitor Co-

stimulator, Ligand, Receptor, and Other, were estimated based on

high and low C1Q expression level. Lastly, the enrichment of 16

signal pathways (44) in the three datasets was analyzed by the

ssGSEA algorithm from the "GSVA" package using C1Q.
Selection of characteristic immune gene
and model construction

We employed Gradient Boosting Machine (GBM), logistic least

absolute shrinkage and selection operator (LASSO) regression, and

extreme gradient boosting (XGBoost) algorithms to identify C1Q-

related hub genes (45). The diagnostic performance of our model was

evaluated using receiver operating characteristic (ROC) curves and the

area under the curve (AUC), employing a generalized linear model.
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In vitro cell analyses

RAW264.7 cells were cultured using DMEM supplemented

with 10% FBS and 1% penicillin/streptomycin in an automatic

incubator set to 37°C and 5% CO2. The cells were passaged or

plated at 80-90% confluency. Then, the cells were seeded into 6-well

plates at a density of 5000 cells per well. Following cell adhesion,

50ug/ml ox-LDL were added and incubated for 1, 3, 5 days,

respectively. To extract RNA for qRT-PCR, total RNA was

isolated from RAW264.7 macrophages using Trizol reagent and

reverse transcribed with the Color Reverse Transcription Kit

(EZB, USA).
Atherosclerotic mouse model construction

Six-week-old male apoE-/- mice (Gempharmacy Co., Ltd,

China) and six-week-old male C57/B6J wild-type mice

(Gempharmacy Co., Ltd, China, no apoE-/- background) were

housed individually in the experimental animal center's specific

pathogen-free barrier system (SPF) of Shanghai Sixth People's

Hospital Affiliated to Shanghai Jiao Tong University School of

Medicine. The six apoE-/- knockout mice were fed a high-fat diet

(68.3% chow diet, 31.7% lard) for 18 weeks, while the remaining six

C57/B6J wild-type mice were used as the control group and were fed

a chow diet for 18 weeks. At the end of the 18th week, the mice were

euthanized, and blood samples were obtained from the abdominal

aorta to measure lipid metabolism indexes. Both the thoracic and

abdominal arteries of each mouse were dissected and harvested for

real-time quantitative polymerase chain reaction (qPCR) analysis.

Additionally, the aortic arch samples were collected, fixed in 4%

paraformaldehyde (PFA) for at least 24 hours, and processed for

immunohistochemistry analysis.
Quantitative real-time PCR

Total cellular RNA was extracted following the instructions of

the manufacturer and using a TRIzol reagent (Invitrogen, USA).

Subsequently, cDNA was generated through reverse transcription

of RNA, employing PrimeScript RT Master Mix (Takara). For the

thoracic and abdominal artery tissues, the primer sequences used

we r e ( 5 ’ - 3 ' ) : GAPDH ( f o rwa rd : 5 ' -CCTCGTCCCG

TAGACAAAATG-3', reverse: 5’- TGAGGTCAATGAAGGG

GTCGT-3), C1QA (forward: 5'- TCACCAACCAGGAG-

AGTCCA -3', reverse: 5'- CACCTGAAAGAGCCCCTTGT- 3'),

C1QC (forward: 5'- GCCGATACAAA- CAGAAGCACCA-3',

reverse: 5'- AACTTCCCTGTGCTTGG- GTTGT-3'), SPI1

(forward: 5'- TTTGAGAACTTCCCTGAGAACCAC-3', reverse:

5’- GCATG TAGGAAACCTGGTGACT- G-3'), IL1B (forward:

5 ' - GCATCCAG- CTTCAAATCTCGC-3 ' , reverse : 5 ' -

TGTTCATCTCG- GAGCCTGTAGTG- 3'), ABCG1 (forward: 5'-

TTGTGCTGTTCGCTGCTCTG-3', reverse: 5'- GTCACGG-

GACCCACAAATGT-3') synthesized by shanghai Generay

Biotech. The primer sequence was obtained from Primer Bank
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synthesized by Shanghai Sangon Biotechnology (Shanghai,

China). The GAPDH gene was used as an internal reference gene.

Calculation of the expression of the target gene was performed

based on the 2-DDCt method.
Statistical analysis

We conducted statistical analysis using R software (version

4.2.1). Mean and standard deviation (SD) were used to present

the data. We used Wilcoxon or Student's t-test to compare the

difference between two groups. For comparing three or more

groups, we employed Student t-test and analyzed variance

(ANOVA). To determine the correlation between variables, we

used either Pearson's or Spearman's correlation tests. The statistical

p-values we used were two-sided, and we considered p-values where

p < 0.05 as statistically significant.
Mendelian randomization analysis

Study design and data source
In order to assess the correlation between C1Q and ischemic

stroke, specifically in relation to large artery atherosclerosis, we

conducted datasets of relevant diseases from the IEU openGWAS

(https://gwas.mrcieu.ac.uk). Given that the data originated from

publicly accessible databases, no supplementary ethical clearance

was deemed necessary. The study utilized GWAS data

encompassing 4373 cases of ischemic stroke (large artery

atherosclerosis) and 406,111 control cases, and C1Q protein were

also obtained from GWAS data for the study (Table S8). The study

utilized samples exclusively derived from individuals of European

descent. A bidirectional two-sample Mendelian randomization

(MR) investigation was conducted to examine the potential

relationship between C1Q and IS. MR was employed to assess the

potential association between C1Q and IS using carefully selected

instrumental variables (IVs). Additionally, sensitivity analysis was

performed to evaluate the robustness of the findings. Lastly, reverse

causality verification was undertaken to obtain a comprehensive

analysis report. Figure S6 provides a visual representation of the

Mendelian randomization study investigating the relationship

between C1Q and IS.

Statistical analysis for Mendelian randomization
The data analysis for this study was conducted utilizing the R

software (version 4.2.2) with the TwoSampleMR package (0.5.7),

following the guidelines provided at https://mrcieu.github.io/

TwoSampleMR/. Mendelian randomization (MR) employs genetic

variation as an instrumental variable (IV) to estimate the causal

effect of risk factors on complex diseases. We conducted a genome-

wide association study (GWAS) to identify single nucleotide

polymorphisms (SNPs) that were both independent and

nominally associated with a significance threshold of P < 1×10-5.

We used a clumping algorithm with a cutoff of r2 = 0.01 and
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kb = 10000 to select SNPs that were in linkage disequilibrium with

each other (28, 29). Previous studies have described the methods

used for other Mendelian randomization (MR) analyses (30–32). To

assess heterogeneity among instrumental variables (IVs), we

employed Cochran's Q test, with a P-value greater than 0.05

indicating no significant heterogeneity. We considered an IV to

exhibit horizontal pleiotropy if the MR-Egger regression intercept

was not equal to 0 and had a statistically significant P-value less

than 0.05. In the reverse MR analysis, a P-value greater than 0.05

indicated no evidence of reverse causality between the exposure

factors and the outcome variables.
Results

Profiling of scRNA-Seq and screening of
marker genes

The workflow of the study design is depicted in Figure S1.

ScRNA-seq data were obtained from plaque specimens and

adjacent tissues of the patient who underwent carotid

endarterectomy (CEA). Three patients provided plaque specimens

from near full-thickness sections of arteries and plaques from the

atherosclerotic core (AC: patient 1-3), as well as adjacent tissue

from full-thickness proximally adjacent (PA: patient 1-3) arterial

sections. The proximally adjacent (PA) tissues were deemed to be

the normal tissue. A total of 50,856 cell samples from six patients

with HAP were retrieved from the GEO database containing 38,611

AC cells and 12,245 PA cells (Table S2). The number of cells in AC

was three times greater than that in PA. Following initial quality

control, 44,843 cells including 34,378 cells and 10,465 normal cells

from all six samples were used for further analysis of their single-cell

transcriptomic data (Table S3). The number of cells from the AC

region was significantly higher than those analyzed by Li et al. (46),

as we analyzed the AC and PA data together.

Following batch effect correction and normalization through

the Harmony R package, the evaluation yielded twenty-four major

cell clusters that exhibited distinct gene expression patterns at a

resolution of 0.8 (Figures 1A–C). The genes in twenty-four cell

clusters were shown in Table S4. The clusters were then combined

to form a total of 12 cell clusters, which comprised of 8 immune cell

subtypes (CD8+ T, CD4+ T, macrophage, monocyte, B cells, mast

cells, plasma cells, and dendritic cells), 3 non-immune cell subtypes

(SMC, EC, and Firboblast clusters), and a miscellaneous cell cluster

(Figure 1D). The FindAllMarkers embedded in Seurat were then

applied to all the cell clusters to search for DEGs to compare all of

the cell clusters (Table S5; Figure 1D). Finally, we performed

FindMarkers to estimate DEGs between AC and PA, and 781

DEGs were obtained (Table S6).

Several studies have demonstrated the involvement of immune

cell infiltrations and pathways in atherosclerosis, highlighting their

crucial role in atherosclerotic plaque progression (9, 11, 17, 47, 48).

Figures 1E, F illustrates that in the PA group, endothelial cells (EC)

and clusters of CD8+ T cells and fibroblasts constituted the top

three cell clusters, whereas in the AC group, CD8+ T, CD4+ T, and
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macrophages were predominant. When considering all immune cell

types together, namely CT4+ T, CT8+ T, macrophages, monocytes,

dendritic cells, B cells, mast cells, and plasma cells, they accounted

for more than 70% of the total cells in the AC groups (Figures 1G,

H), whereas immune cells made up less than 45% of the total cells in

the PA groups (Figures 1G, H). These findings indicate that

immune cell involvement in atherosclerotic plaque progression

increased significantly.
C1Q hub genes selection from GEO and
scRNA-seq

Two steps were applied to select C1Q-associated hub genes. First,

the top 10 genes in C1Q subcluster were extracted as initial features

(Figure 2A). And then, we detected the 10 genes in 781 DEGs

between AC and PA groups in scRNA-seq (Figure 2B), and seven

DEGs (C1QA, C1QB, C1QC, CCL3, HLA-DPA1, FOLR2 and HLA-

DQA1) was obtained for further analysis. Second, the dataset

GSE43292 was utilized to select characteristic genes in atheroma

plaque (stage IV and over) and distant macroscopically intact tissue

(stages I and II) using machine learning models (LASSO (Figure 2C)

Gradient Boosting Machine (Figure 2D), and XGBoost (Figure 2E)).

The three algorithm was used to reduce the number of biomarkers,

resulting in the selection of 2 biomarkers (C1QA and C1QC), as

shown in Figure 2F. Hence, the two biomarkers were identified as the

definitive diagnostic prediction biomarkers.
The expression and signaling pathways
involved in characteristic genes in
scRNA-seq

After identifying the biomarker genes, we prioritized

investigating their expression in HAP cells. As displayed in

Figures 3A–C, C1QA and C1QC were mainly expressed in

macrophage cells, and upregulated in AC group (Figure 3D), while

SPI1 was expressed in macrophages, monocytes, dendritic cells

(Figures 3A–C), and also upregulated in AC group (Figure 3D).

Subsequently, we conducted GSEA for all the identified cells. The

GSEA demonstrated significant enrichment of crucial signaling

pathways in HAP tissues (Figure 3E). These signaling pathways

include immune signaling (INTERFERON_GAMMA_ RESPONSE,

IL6_JAK_STAT3_SIGNALING, IL2_STAT5_SIGNALING,

COMPLEMENT), allograft rejection, complement, inflammatory

response, metabolism, apoptosis, and glycolysis. We conducted

KEGG pathway enrichment analysis for macrophages derived

from all differentially expressed genes between AC and PA. KEGG

pathway analysis revealed the enrichment of various immune

pathways involving Th17 cell differentiation, as well as the

differentiation of Th1 and Th2 cells, toll-like receptor signaling

pathway, and complement and coagulation cascades, among others

(Figure 3F). These results suggest that multiple immune pathways

and signals contribute to the pathophysiological progression of

atherosclerotic plaque.
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FIGURE 1

Single-cell RNA-seq of human AP tissues. (A) The clustering tree of total scRNA-seq mate data was analyzed at different resolutions. (B) The top
three markers of each cluster were plotted using the “FindAllMarkers” function from the Seurat package (4.1.2). The red box indicates C1Q cell
cluster. (C) T-distributed stochastic neighbor embedding (tSNE) revealed 24 clusters under a resolution of 0.8. (D) The tSNE plot was colored to
display 12 distinct cell types. Note: The marker gene is located below the tSNE plot. (E) An overview of the 12 cell types between AC and PA groups
was generated and colored by cell types. (F) Using a pie plot, the proportion of cell types in each group was compared. (G, H) The tSNE and pie
plots were used to depict cell types between AC and AP groups after merging the immune cells with the Seurat package (4.1.2). AC, Atherosclerotic
core; PA, Proximally adjacent; EC, Endothelial cells; Mac, Macrophages; SMC, Smooth muscle cells; Mono, Monocytes; DC, Dendritic cells.
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Efficient diagnostic model development
and validation for HAP tissues and
adjacent tissues

After selection of the immune DEGs, we trained and validated

our model using GEO data. GSE43292 was used as training datasets,

respectively, while GSE41571 and GSE28829 was used as an

external validation dataset to develop and validate the signatures

for diagnosing and predicting atherosclerotic plaque progression

between HAP tissues and adjacent tissues. Firstly, a model was built

with two biomarkers using a generalized linear model (regression).

The model score was -24.304 + (1.169 * C1QA + 1.339 * C1QC)

(Table S7). Fitting the two markers into the model revealed high

consistency between predicted results and surgical diagnosis results

in the training dataset (Figure 4A). The AUC of the ROC curve was

0.842 while the specificity and sensitivity were 71.9% and 81.2%,

respectively. This indicates good diagnostic efficiency in predicting

atherosclerosis progression (Figure 4B). PCoA visualization was

used with signatures and revealed a significant difference between

HAP and adjacent tissues (Figure 4C).

The two biomarkers and the same statistical model were then

used to evaluate the accuracy of the signature in predicting

atherosclerotic plaque progression in the external validation
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cohorts (GSE41571 & GSE28829). Furthermore, the model

demonstrated high consistency between the predicted and

surgical diagnosis results in both validation cohorts, as depicted

in Figures 4D, G. Additionally, the two biomarkers yielded

satisfactory diagnostic accuracy in identifying patients with HPAs,

with respective AUCs of 0.933 (95% CI: 0.779–1.0) for GSE41571

and 0.938 (95% CI: 0.832–1.0) for GSE28829. These results are

depicted in Figures 4E, H. Similarly, there was a significant

difference between the two groups on both validation cohorts, as

shown in Figures 4F, I, when using PCoA.

The expression levels of the two immune biomarkers in HAP

tissues and adjacent tissues were compared in the three GEO datasets.

The results, shown in Figures S2A–C, demonstrated significant

differences between the two groups across all three datasets.

Furthermore, Figures S2D–F demonstrates strong correlations

between the two immune biomarkers in all three datasets.
External validation for diagnosis and
predicting HAP from normal controls

The study proceeded to perform an external validation of the

efficient machine learning models for GSE100927, which included 69
A B
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C

FIGURE 2

C1Q hub genes selection from scRNA-seq and GEO dataset. (A) The top ten genes extract from C1Q cell cluster. (B) The 10 genes are detected in
781 DEGs between AC and PA groups in scRNA-seq, and seven genes (C1QA, C1QB, C1QC, CCL3, HLA-DPA1, FOLR2 and HLA-DQA1) was obtained
for further analysis. (C) C1Q hub genes selection by LASSO algorithm. (D) C1Q hub genes selection by GBM algorithm. (E) C1Q hub genes selection
by XGBoost algorithm. (F) Two genes (C1QA and C1QC) are identified by the three algorithms.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1289223
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2023.1289223
atherosclerotic arteries and 35 healthy normal arteries from three

d i ff e r ent a r t e ry types , name ly GSE100927_Carot id ,

GSE100927_Femoral, and GSE100927_Infra. To assess the validity

of the method and the precision of the results, the study employed the

two biomarkers and the same statistical model for GSE100927 and its
Frontiers in Immunology 08
three subsets. The model continued to exhibit a high level of

consistency between the predicted outcomes and the surgical

diagnosis for all four validation cohorts (Figures 5A, D, G, J). The

two biomarkers demonstrated satisfactory diagnostic accuracy in

identifying HPAs patients from normal patients, with the Area
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C

FIGURE 3

The expression and signaling pathways involved in characteristic genes in scRNA-seq. (A–C) The plots display the expression of C1QA, C1QC and
SPI1 in cell clusters using scRNA-seq. (D) The three characteristic genes were upregulated in AC group. (E) The GSEA showed that the signaling
pathways in all 12 cells clusters. (F) The KEGG plot shows the KEGG pathway in macrophage clusters.
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Under the Curve (AUCs) values of 0.899 for GSE100927 (Figure 5B),

0 .928 for GSE100927_Carotid (Figure 5E), 0.971 for

GSE100927_Femoral (Figure 5H), and 0.916 for GSE100927_Infra

(Figure 5K). Figures 5C, F, I, L presented that the two groups could

consistently be distinguished by utilizing the two signatures across all

four datasets.

Last, the expression of the two immune biomarkers between

HAP tissues and normal tissues in the three GEO datasets were
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presented at Figures S3A–D, and the significant differences

between the two groups were observed in all datasets. In

addition, the correlations between the two immune biomarkers

were displayed in Figures S3E–H, and strong correlations were

found in all datasets.

Finally, the expression levels of the two immune biomarkers in

HAP tissues and normal tissues were compared in the three GEO

datasets. The results, shown in Figures S3A–D, demonstrated
A B

D E F

G IH

C

FIGURE 4

Diagnostic prediction model for AP progression. (A) The actual and predicted samples with confusion matrices built from the diagnostic prediction
model using the two biomarkers with generalized linear models (regressions) between Atheroma and intact in the GSE43292 training cohorts.
(B) Assessment of the diagnostic predictive accuracy for the training cohort for the two signatures using ROC curves (Atheroma = 32, intact = 32,
AUC = 0.842). (C) PCoA analysis showing that the two signatures can distinguish between Atheroma and intact samples significantly. (D) The actual
and predicted samples with confusion matrices built from the diagnostic prediction model using the two biomarkers with generalized linear models
(regressions) in the GSE41571 external validation cohorts. (E) Assessment of the diagnostic predictive accuracy for the validation cohort for the two
signatures using ROC curves (Ruptured = 5, Stable = 6, AUC = 0.933). (F) PCoA analysis showing that the two signatures can discriminate ruptured
from stable samples significantly. (G) The actual and predicted samples with confusion matrices built from the diagnostic prediction model using the
two biomarkers in the GSE28829 external validation cohorts. (H) Assessment of the diagnostic predictive accuracy for the validation cohort for the
two signatures using ROC curves (advanced = 13, early = 16, AUC = 0.938). (I) PCoA analysis showing that the two signatures can discriminate
advanced from early samples significantly.
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FIGURE 5

Diagnostic prediction model for diagnosis and predicting HAP from normal controls. (A) The actual and predicted samples with confusion matrices
built from the diagnostic prediction model using the two biomarkers in the GSE100927 external validatin cohorts. (B) Assessment of the diagnostic
predictive accuracy for the validation cohort for the two signatures using ROC curves (atherosclerotic arteries = 69, normal arteries = 35, AUC =
0.899). (C) PCoA analysis showing that the two signatures can distinguish between atherosclerotic arteries and normal arteries significantly. (D) The
actual and predicted samples with confusion matrices built from the diagnostic prediction model using the two biomarkers in the
GSE100927_Carotid external validatin cohorts. (E) Assessment of the diagnostic predictive accuracy for the validation cohort for the two signatures
using ROC curves (Carotid = 29, Normal = 12, AUC = 0.928). (F) PCoA analysis showing that the two signatures can distinguish between carotid
atherosclerotic arteries and normal arteries significantly. (G) The actual and predicted samples with confusion matrices built from the diagnostic
prediction model using the two biomarkers in the GEO100927_Femoral external validation cohorts. (H) Assessment of the diagnostic predictive
accuracy for the validation cohort for the two multi-omics signatures using ROC curves (Femoral = 26, Normal = 12, AUC = 0.981). (I) PCoA analysis
showing that the two signatures can discriminate AP in femoral artery from normal samples significantly. (J) The actual and predicted samples with
confusion matrices built from the diagnostic prediction model using the two biomarkers in the GSE100927_Infra validation cohorts. (K) Assessment
of the diagnostic predictive accuracy for the validation cohort for the two signatures using ROC curves (Infra-popliteal territories = 14, Normal = 11,
AUC = 0.89). (L) PCoA analysis showing that the two signatures can discriminate AP in infra-popliteal artery from normal samples significantly.
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significant differences between the two groups across all three

datasets. Furthermore, Figures S3E–H demonstrates strong

correlations between the two immune biomarkers in all

three datasets.
Immune microenvironment analysis based
on C1Q hub genes

In order to further investigate the correlation between C1Q and

the immune microenvironment of the HAP samples, a comparative

analysis was conducted on the differences in immune cells between

normal/early samples and HAP samples in three GEO datasets

using eight algorithms (Figures 6A–C). The results revealed that a

majority of the immune cells in the HAP samples exhibited distinct

characteristics compared to the normal/early samples across the

three GEO datasets. Furthermore, patients in the HAP group

displayed significantly higher stromal scores, ESTIMATE scores,

and immune scores, while the plaque purity was found to be lower

than that of the normal or early group (P < 0.001) (Figures 6D–F).

The findings of this study suggest that the HAP tissue obtained

from the subgroup with high C1Q levels exhibited a greater

abundance of immune cells and immune molecules.
Immune signaling pathway
and immunomodulators

Based on our observations, it has been noted that HAP tissue with

a high level of C1Q contains a greater number of immune cells and

immune molecules. In order to further investigate this phenomenon,

we proceeded to examine the immune signaling pathway and

immunomodulators based on C1Q hub genes. The results, as

depicted in Figures 7A–C, indicate that the majority of the 16

immune signal pathways were found to be enriched in the high

C1Q group in HAPs. Furthermore, a positive correlation was

observed between the majority of C1QA and C1QC and the 16

immune signal pathways in three GEO datasets. Additionally, the

heatmap in Figures 7D–F illustrates that HAP samples with a high

C1Q level exhibited significantly higher levels of immunomodulators

levels. The findings of this study suggest that the HAP tissue obtained

from individuals with high levels of C1Q exhibited a greater

enrichment of immune signal pathways and a higher abundance

of immunomodulators.
C1QA and C1QC activated the
HALLMARK_COMPLEMENT signaling
pathway in HAP

To explore the molecular function of HAP in detail, we

invest iga ted whether C1QA and C1QC act iva te the

HALLMARK_COMPLEMENT signaling pathway in GEO datasets.

We conducted GSEA analysis on three GEO datasets (GSE43292,

GSE28829, and GSE100927) to identify any signaling pathway that
Frontiers in Immunology 11
might be altered between AP and control samples. As anticipated, the

HALLMARK_COMPLEMENT signaling pathway was activated in

all three datasets (Figures 8A–F), indicating its crucial implication

in HAP.
Correlation between C1QA and C1QC and
HALLMARK_COMPLEMENT signaling
pathway in HAP

The activation of the HALLMARK_COMPLEMENT signaling

pathway by C1QA and C1QC in HAP was investigated.

Subsequently, a correlation analysis was conducted between C1QA/

C1QC and the HALLMARK_COMPLEMENT signaling pathway

using three GEO datasets. Notably, our analysis revealed a positive

correlation between C1QA and the majority of genes in this pathway

(Figures 9A, E, I). Specifically, C2, CD36, CTSB, APOC1, CCL5, and

others exhibited a high correlation with C1QA across all three datasets.

Furthermore, the ssGSEA algorithm was employed to score the

HALLMARK_COMPLEMENT signaling pathway for the three GEO

datasets. Based on the obtained scores, a distinct positive correlation

was observed between C1QA and the HALLMARK_COMPLEMENT

signaling pathway (Figures 9B, F, J). The present study demonstrates

the ability to discriminate pathway scores for subgroups with high and

low C1QA expression (Figures 9C, G, K), as well as to distinguish

C1QA expression levels between subgroups with high and low pathway

scores (Figures 9D, H, L). These findings suggest that heightened

C1QA expression is implicated in the progression of AP via the

HALLMARK_COMPLEMENT signaling pathway. Furthermore, a

comparable positive correlation between C1QC and the

HALLMARK_COMPLEMENT signaling pathway was identified in

HAP (Figure S5).
Screening the key transcription factors
regulating the two hub genes

The potential transcription factors (TFs) that could regulate

the two crosstalk genes C1QA and C1QC were first screened from

three databases (ENCODE, JASPAR, and ChEA) by using

NetworkAnalyst 3.0. Figures 10A–C presents the TFs that could

regulate the two crosstalk genes from the ENCODE, JASPAR, and

ChEA databases as 2, 1, and 4, respectively. The mRNA expression

levels of these TF were calculated in three GEO datasets, and as a

result, the expression levels of SPI1 were considerably upregulated

in all three datasets (Figure 10D). Hence, it can be concluded that

SPI1 could be the crucial TF regulating the two crosstalk genes in

HAP. Due to cytokines interleukin-1b (IL-1b) is considered to be

the key mediators of HAP (49), and lipid metabolism related genes,

such as ABCG1, etc., were the key to the transformation of

macrophages into foam cells (50), hence we examined the

expression levels of IL-1b, CXCL1, CCL3, CCL4, and ABCG1 in

the three GEO datasets. Figures 10E–I shows that the expression

levels of IL-1b, CXCL1, CCL3, CCL4, and ABCG1 were upregulated
in all three GEO datasets.
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FIGURE 6

Immune microenvironment analysis based on C1Q hub genes. (A) Heatmap displaying enrichment of immune-infiltrating cells through 8 algorithms
between atheroma and intact samples in the GSE43292 cohorts. (B) Heatmap displaying enrichment of immune-infiltrating cells through 8 algorithms
between early and advanced samples in the GSE28829 cohorts. (C) Heatmap displaying enrichment of immune-infiltrating cells through 8 algorithms
between atherosclerotic plaques and control samples in the GSE100927 cohorts. (D–F) The stromal scores, immune scores, ESTIMATE scores, and
plaque purity are compared between high- and low C1Q groups in the GSE43292 (D), GSE28829 (E), and GSE100927 (F) datasets. *P <0.05, **P < 0.01,
***P < 0.001.
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In vitro and in vivo analyses C1QA
and C1QC

To validate our diagnostic prediction model, we conducted in

vitro and in vivo experiments to confirm the biological function of

C1QA and C1QC. In vitro, we upregulated the mRNA expression of

C1QA (Figure 11A), C1QC (Figure 11B) and SPI1 (Figure 11C) in
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the ox-LDL-treated RAW264.7 macrophages group compared to

the control group (RAW264.7 macrophages group treated with

normal saline).

The results of the in vivo study revealed that compared to healthy

control mice, the expression of C1QA (Figure 11D) and C1QC

(Figure 11E) genes were upregulated in the thoracic and abdominal

arteries of apoE-/- mice, as confirmed by RT-qPCR. Additionally, the
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FIGURE 7

Evaluation of immune signaling pathway and immunomodulators based on C1Q hub genes. (A–C) Comparison of 16 immune signaling pathway
between high- and low C1Q groups and correlation analysis between immune signaling pathway and C1QA or C1QC in the GSE43292 (A),
GSE28829 (B) and GSE100927 (C) datasets. (D–F) The enrichment of immunomodulators is visualized through heatmap analysis using seven
algorithms in the same datasets: GSE43292 (D), GSE28829 (E), and GSE100927 (F).
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expression of IL1B (Figure 11F), SPI1 (Figure 11G), and ABCG1

(Figure 11H) genes also showed upregulation in the thoracic and

abdominal arteries of the apoE-/- mice as compared to the healthy

control mice. Moreover, these five genes displayed a positive

correlation with each other (Figure 11I). These findings imply that

C1QA and C1QC may promote the migration and proliferation of

ABCG1 in macrophage cells. Based on the findings depicted in

Figure 11J, it is postulated that SPI1 may augment the expression of

IL1B, thereby inducing an upregulation of the C1QA and C1QC

genes. This, in turn, results in the accumulation of ABCG1 genes

within macrophages, leading to a reduction in foam cell formation

and atheroma development. Ultimately, this mechanism confers

protection against atherosclerosis, aligning with previously

published research (51, 52).
MR analysis of associations between C1Q
and ischemic stroke

In the two-way Mendelian randomization (MR) analysis, six

single nucleotide polymorphisms (SNPs) were selected to

investigate the relationship between C1Q as the exposure and

ischemic stroke (specifically, large artery atherosclerosis) as the

outcome. The findings from the analysis revealed significant results

for the inverse variance weighted (IVW) method (odds ratio [OR] =

1.118, 95% confidence interval [CI] = 1.013 - 1.234, p-value =

0.027), MR-Egger method (OR = 0.863, 95%CI = 0.568 - 1.31,

p-value = 0.527), and weighted median method (OR = 1.093, 95%CI
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= 0.964 - 1.24, p-value = 0.1665). These results suggest that

individuals with C1Q are genetically predisposed to a 1.118 times

higher risk of ischemic stroke compared to those without C1Q,

indicating a positive association between C1Q and ischemic stroke

(Table S9 and Figure 12). The Cochran’s Q report indicated the

absence of heterogeneity among the independent variables (IVs)

(Table S10, P>0.05), suggesting no heterogeneity among these IVs.

The scatter plots in Figure 12A display the SNP effect sizes for C1Q

and ischemic stroke (large artery atherosclerosis). The MR-Egger

analysis revealed no evidence of horizontal pleiotropy (C1Q on risk

of IS: intercept = 0.0641, P = 0.2795, Table S11 and Figure 12B). The

leave-one-out analysis identified high-impact points in 83.3% (5/6)

of SNPs (P < 0.05), indicating that the association between C1Q and

IS was influenced by the collective action of multiple SNPs (Table

S12 and Figure 12C). The results support a positive genetic

relationship between C1Q and IS (large artery atherosclerosis).
Reverse MR analysis of ischemic stroke
on C1Q

Taking IS (large artery atherosclerosis) as exposure and C1Q as

outcome, a total of 77 single nucleotide polymorphisms (SNPs) were

extracted for analysis. The results of the analysis using the inverse

variance weighted (IVW) method showed an odds ratio (OR) of 0.827

with a 95% confidence interval (CI) of 0.626 – 1.092, and a p-value of

0.181. TheMR-egger method yielded an OR of 0.697 with a 95% CI of

0.294 – 1.569, and a p-value of 0.4067. The weighted median method
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FIGURE 8

C1QA activated HALLMARK_COMPLEMENT signaling pathway in HAP. (A–F) GSEA analysis results of C1QA for three GEO datasets (GSE43292,
GSE28829 and GSE100927).
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FIGURE 9

C1QA correlated HALLMARK_COMPLEMENT signaling pathway in HAP. (A) Correlation between C1QA and HALLMARK_COMPLEMENT signaling pathway
genes in the GSE43292 dataset. (B) Correlation between C1QA and HALLMARK_COMPLEMENT signaling pathway scores in the GSE43292 dataset.
(C) Comparison of the HALLMARK_COMPLEMENT signaling pathway scores between subgroups with high and low C1QA expression in the GSE43292
dataset. (D) Comparison of the expression of C1QA between subgroups with high and low HALLMARK_COMPLEMENT signaling pathway scores in the
GSE43292 dataset. (E) Correlation between C1QA and HALLMARK_COMPLEMENT signaling pathway genes in GSE28829 dataset. (F) Correlation between
C1QA and HALLMARK_COMPLEMENT signaling pathway scores in GSE28829 dataset. (G) Comparison of the HALLMARK_COMPLEMENT signaling
pathway scores between high and low C1QA expression subgroups in GSE28829 dataset. (H) Comparison of C1QA expression between high and low
subgroups of HALLMARK_COMPLEMENT signaling pathway scores in GSE28829 dataset. (I) Correlation between C1QA and HALLMARK_COMPLEMENT
signaling pathway genes in GSE100927 dataset. (J) Correlation between C1QA and HALLMARK_COMPLEMENT signaling pathway scores in GSE100927
dataset. (K) Comparison of the HALLMARK_COMPLEMENT signaling pathway scores between high and low C1QA expression subgroups in GSE100927
dataset. (L) Comparison of C1QA expression between high and low subgroups of HALLMARK_COMPLEMENT signaling pathway scores in
GSE100927 dataset.
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resulted in an OR of 0.773 with a 95% CI of 0.529 – 1.128, and a p-

value of 0.1817. These findings indicate that there was no significant

correlation between ischemic stroke and C1Q, as shown in Table S9

and Figure 13A. The Cochran’s Q report indicated the absence of

heterogeneity among the independent variables (IVs) (Table S10,

P>0.05), suggesting no heterogeneity among these IVs. TheMR-Egger

analysis revealed no evidence of horizontal pleiotropy (IS on risk of

C1Q: intercept = 0.0338, P = 0.6462) (Table S11 and Figure 13B). The

leave-one-out analysis results demonstrated no significant

abnormalities (Table S12 and Figures 13C, D). Therefore, the

findings do not support a reverse genetic relationship between C1Q

and IS (large artery atherosclerosis).
Discussion

Atherosclerotic lesions comprise cells generated by innate and

adaptive immunity, which exert a substantial influence on the
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modulation of diverse immune cells during the evolution and

advancement of atherosclerotic lesions (47). The utilization of

scRNA-seq has facilitated the exploration of the molecular

characteristics of immune cells infiltrating high plaque areas, as well

as the roles of C1Q-related genes during the course of atherosclerosis.

In the initial phase of this investigation, we performed scRNA-seq

analysis of HAP and contiguous tissues to discern the subpopulations

of cells present in HAP, and demonstrated the presence of C1Q cell

cluster in HAP tissue. We then extracted the top 10 C1Q-related genes

from C1Q cell cluster. We identified seven significant DEGs between

AC and PA from scRNA-seq analysis. The GBM, LASSO and XGBoost

algorithms were employed to create a diagnostic prediction model

assigning GLM regression, which identified C1QA and C1QC as

suitable C1Q hub genes for predicting the diagnosis of HAP. We

further investigated SPI1 as a potential key transcription factor that

regulates C1QA and C1QC in HAP and found that C1QA and C1QC

were interdependent and activated by HALLMARK_COMPLEMENT

signaling pathway. Furthermore, qPCR analysis confirmed the
A B

D E

F G

IH

C

FIGURE 10

SPI1 was identified as a potential key TF in HAP. (A–C) The potential TFs that may regulate the C1QA and C1QC gene was screened from three
databases (ENCODE, JASPAR and ChEA) via the NetworkAnalyst 3.0. (D) Only the expression of SPI1 significantly elevated in all the three GEO
datasets (GSE43292, GSE28829 and GSE100927), and regarded as the potential TFs for C1QA and C1QC genes. (E–I) The expression of IL-1b,
CXCL1, CCL3, CCL4 and ABCG1genes were upregulated in all the three GEO datasets.
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upregulated expression of C1QA, C1QC, SPI1, IL1B, and ABCG1

genes in the thoracic and abdominal arteries of apoE-/- mice. Finally,

bidirectional mendelian randomization analysis conducted on the IEU

open GWAS data revealed a positive correlation between C1Q and

HAP (ischemic stroke (large artery atherosclerosis)). Upon successful

validation, it is expected that the two hub genes associated with C1Q

could serve as valuable diagnostic tools and provide guidance for the

development of immunotherapeutic strategies in patients with HAP.

In the HAP, the scRNA-seq has found immune cells in plaques

to be associated with cerebrovascular events (17, 19, 20, 22), while

bioinformatics analyses have confirmed that immune cell

infiltrations and immune-associated pathways (IAP) play a role in

AP development (7–14). In this study, 8 of 12 cell clusters, including

CT4+ T, CT8+ T, macrophages, monocytes, dendritic cells, B cells,

mast cells and plasma cells, were immune cells from scRNA-seq

analysis of GSE159677 data. In AC groups, immune cells

represented more than 70% of the total cells, whereas in adjacent
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groups, they accounted for less than 45%. The GSEA showed that

the most common signaling pathways, such as the immune

s i g n a l i n g ( I N T E R F E RON _GAMMA_R E S PON S E ,

IL6_JAK_STAT3_SIGNALING and IL2_STAT5_ SIGNALING),

allograft rejection, the complement response, the inflammatory

response, metabolism and glycolysis were enriched in HAP

tissues. These observations unveil the pivotal part played by the

immune system in the pathogenesis of atherosclerosis.

When compared with the adjacent tissues in GSE159677, we

found that the proportion of T cells increased from 29.39% to

40.08%, while the percentage of macrophages increased from 5.17%

to 17.94%. There was a remarkably high level of upregulation of

both C1QA and C1QC across all scRNA-seq and bulk-RNA

datasets observed as atherosclerosis progressed. The ROC curves

showed that both C1QA and C1QC were able to distinguish HAP

samples from adjacent/normal tissues. The findings of our study

indicate that the immune marker genes we have identified may have
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FIGURE 11

In vitro and in vivo validation of C1QA and C1QC. (A–C) Relative mRNA expression of C1QA and C1QC detected by real-time PCR in ox-LDL-treated
RAW264.7 macrophages group and normal control group. (D–H) Relative mRNA expression value of C1QA, C1QC, IL1B, SPI1, and ABCG1 detected
by real-time PCR in thoracic and abdominal arteries of apoE-/- mice and normal mice. (I) The five genes were positive correlated with each other.
(J) The potential mechanism for HAP development regulated by the C1QA and C1QC genes.
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significant implications in the pathogenesis of atherosclerosis.

Conducting further research on the disease-associated molecular

processes and immune cell regulation may facilitate the

development of potential therapeutic interventions.

Figures 3A–C shows the scRNA-seq analysis results indicating

that C1QA and C1QC were predominantly expressed in

macrophages. Consistent with previous findings, Castellano G

et al. have confirmed that dendritic cells derived from monocytes

and macrophages are the main producers of C1Q (53). Therefore,

our study’s two marker genes align with these prior observations.

Given that macrophages constitute a major immune cell population

in atherosclerosis (54, 55), with macrophages playing a significant

role, we selected them for functional experiments at the

cellular level.

C1Q, a classical component of the complement system, can

perform immunological and non-immune functions, either

complement-dependent or complement-independent (56). The

complement system’s effects can be either beneficial or harmful,

contingent upon the pathophysiological mechanisms at play, and in

certain instances, it may cause tissue damage (57). Research has

demonstrated that C1Q plays a protective role in the initial phases

of neuronal injury and amyloid-induced neurotoxicity by
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suppressing inflammation (58). Additionally, during cholesterol

ingestion, C1Q can promote macrophage survival and enhance

foam cell efferocytosis function, suggesting a possible protective role

in the early stages of atherosclerosis (59, 60).

Previous research has indicated a positive correlation between

C1Q and coronary artery disease, with the potential for it to serve as

a cardiovascular event indicator (61, 62). Our own investigation

supports this finding, as heightened C1Q expression may

significantly contribute to atherosclerotic plaque instability or

rupture. Additionally, Chen LH et al. have proposed that groups

exhibiting elevated levels of C1QA, C1QB, and C1QC display

notably enriched signaling pathways associated with immune

functions, such as allograft rejection, complement response, and

inflammatory response (56). Our research revealed that C1QA and

C1QC were significantly overexpressed in HAP and were also

enriched in signaling pathways of allograft rejection, the

complement response, and the inflammatory response.

Additionally, we confirmed that macrophage-derived foam cells

had overexpression in RAW264.7 macrophages treated with

oxLDL. Therefore, the confirmed overexpression of C1QA and

C1QC in atherosclerotic plaques indicated that these two markers

are correlated with plaque macrophages.
A B

DC

FIGURE 12

Visualization of the MR analysis of C1Q on ischemic stroke (IS). (A) Scatterplot of the MR analysis of the effect of C1Q on IS. (B) Forest plots of causal
effects of C1Q-associated single nucleotide polymorphisms (SNPs) on IS. (C) Leave-one-out sensitivity analysis of the effect of C1Q on IS. (D) Funnel
plot showed there were no significant heterogeneity among SNPs.
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Previous research has examined the correlation between HAP

immune scores and diagnostic predictions for patients with

TNFSF13B, CCL5, CCL19, ITGAL, CD14, GZMB, and BTK

genes, which were utilized as predictive targets (9). For clinicians,

the immune score is a reliable tool for predicting the progression of

atherosclerotic plaques. In another comparable study, it was found

that C1QA and ITGB2 could have pathogenic effects on the

complete atherogenic process (13). In a recent study, Li et al (14)

proposed five innovative diagnostic biomarkers for atherosclerosis

based on oxidative stress and macrophage ferroptosis and

confirmed them using GSE100927 and atherosclerosis tissues

from animals. The primary theme in all three studies was the

selection of hub genes utilizing the protein-protein interaction (PPI)

network. The hub genes obtained may vary based on the datasets. In

this study, we established hub genes on DEGs using scRNA-seq and

two GEO datasets, which reduced the inconsistency in hub genes

and improved the reliability of the outcomes. We obtained an AUC

value similar to the three scholars with two immune genes (9,

13, 14).

It is remarkable that SPI1 might be the key transcription factor

regulating the C1QA and C1QC genes in HAP pathology. As HAP

progresses, IL1B and/or S100A8 are released (15, 63), inducing the
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growth of SPI1 and further upregulating C1QA and C1QC

expression. As a consequence, excessive amounts of free cholesterol

accumulate in macrophages as lipid droplets, leading to the formation

of foam cells (high expression of ABCG1, etc.) (64–66). Our study

showed that C1QA, C1QC, SPI1, IL1B, and ABCG1 expressions were

all upregulated, not only in GEO datasets but also in apoE-/- mice

thoracic and abdominal arteries. The elevated SPI1, stimulated by

inflammatory cytokines, increases C1QA and C1QC, which

ultimately leads to the formation of foam cells in macrophages. The

hypothesis needs to be tested further with basic cellular and animal

experiments. Additionally, we observed that the expression of

C1QA and C1QC genes was positively correlated with the

HALLMARK_COMPLEMENT signaling pathway in the analysis of

three GEO datasets. Therefore, SPI1 may be upregulating C1QA and

C1QC through the HALLMARK_COMPLEMENT pathway.

Our study has demonstrated an association between C1Q and

an increased risk of HAP; however, Mendelian randomization

studies do not provide supporting evidence for this relationship.

To address this issue, biodirectional Mendelian randomization

(MR) utilizing data from genome-wide association studies

(GWAS) was employed to evaluate causality in a potential

exposure-outcome pathway. In this particular investigation, C1Q
A B

DC

FIGURE 13

Visualization of the MR analysis of ischemic stroke (IS) on C1Q. (A) Scatterplot of the MR analysis of the effect of IS on C1Q. (B) Forest plots of causal
effects of IS-associated single nucleotide polymorphisms (SNPs) on C1Q. (C) Leave-one-out sensitivity analysis of the effect of IS on C1Q. (D) Funnel
plot showed there were no significant heterogeneity among SNPs.
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was considered as the exposure variable, while ischemic stroke

(specifically large artery atherosclerosis) was utilized as the outcome

measure in place of HAP. To our surprise, the initial findings of the

study revealed a statistically significant positive association between

C1Q and IS, as indicated by the forward results (IVW: OR = 1.118,

95%CI = 1.013 -1.234, P = 0.027). This suggests that there is a

genetic risk associated with C1Q and IS. Additionally, the leave-

one-out analysis demonstrated that certain SNPs in C1Q have a

substantial impact on IS (83.3% (5/6), P < 0.05). However, upon

conducting a reverse MR analysis using the IVW and leave-one-out

results, it was determined that there is no significant correlation

between IS and C1Q. Despite this, the evidence gathered supports a

positive genetic association between C1Q and IS, specifically in

cases of large artery atherosclerosis.

Despite the identification of characteristic atherosclerotic

plaque progression- and immune-associated genes through

machine learning algorithms, which have been confirmed to be

diagnostically effective in external datasets, this study is subject to

certain limitations. In order to investigate the potential of these

genes in predicting the progression of atherosclerotic plaques,

prospective cohorts will need to be conducted. Additionally, to

gain a more comprehensive understanding of the mechanisms

underlying these characteristic genes, further experimentation is

necessary. Ultimately, further studies are warranted to clarify the

underlying mechanisms. Finally, the statistical measure of genetic

aggregation constrains the analytical scope, while also accounting

for interindividual variations.

In conclusion, our research has effectively established and

validated a unique diagnostic signature comprising two C1Q-

related marker genes by employing both single-cell and bulk RNA

sequencing techniques. Furthermore, the utilization of MR analysis

has confirmed a positive correlation between C1Q and HAP

(ischemic stroke (large artery atherosclerosis)). The aforementioned

signature exhibits considerable promise as a diagnostic biomarker

and has the potential to enhance the prognostication of

atherosclerosis progression. Additionally, our research has yielded

valuable insights into the importance of C1Q-related hub genes in

diagnosing and predicting the response to immunotherapy in

patients with HAP.
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